JPS58197796A - Method of producing ceramic board - Google Patents

Method of producing ceramic board

Info

Publication number
JPS58197796A
JPS58197796A JP7992382A JP7992382A JPS58197796A JP S58197796 A JPS58197796 A JP S58197796A JP 7992382 A JP7992382 A JP 7992382A JP 7992382 A JP7992382 A JP 7992382A JP S58197796 A JPS58197796 A JP S58197796A
Authority
JP
Japan
Prior art keywords
green sheet
hole
support film
pressure
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7992382A
Other languages
Japanese (ja)
Inventor
大沢 義幸
真田 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7992382A priority Critical patent/JPS58197796A/en
Publication of JPS58197796A publication Critical patent/JPS58197796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、セラミック基板の製造工程において、グリー
ンシー)Q経時的な寸法収縮とハンドリングによる変形
を低減するセラミック基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ceramic substrate that reduces dimensional shrinkage over time and deformation due to handling in the process of manufacturing a ceramic substrate.

第1図に従来技術による多層セラミック基板の製造工程
?示す。従来は、グリーンシート製造後、ガイド穴穿孔
ン行うまでの間、少くとも1週間、通常は2〜5週間、
グリーンシー)Y貯蔵していた。これは、次の理由によ
る。すなワチ、第5図に示すようにグリーンシート製造
後、貯蔵日数の経過に伴い、寸法収縮が生じる。
Figure 1 shows the manufacturing process of a multilayer ceramic substrate using conventional technology. show. Conventionally, after manufacturing the green sheet, it takes at least one week, usually 2 to 5 weeks, before drilling the guide holes.
Green Sea) Y was stored. This is due to the following reason. In other words, as shown in FIG. 5, after the green sheet is manufactured, dimensional shrinkage occurs as storage days elapse.

この傾向は特に製造直後において著しい。従っ ゛て、
グリーンシートの製造直後、直ちにガイド穴乞穿孔する
と、その後の寸法収縮のためにガイド穴ピッチが収縮し
、以後の工程での位置合せに支障Yきたす。この不具合
点Y解消するために、従来は、グリーンシート製造後、
少くとも1週間、通常は2〜3週間以上貯蔵して、寸法
収縮が比較的緩慢になってからガイド穴あけン行なって
いた。しかし、寸法収縮は緩やかではあるが、停止する
のではないため、例えばスルホール穴あけ後、大内導体
ペースト充填までノ仕掛り期間が長いとグリーンシート
の穴ピッチと導体充填用スクリーン・ノコ穴ピンチが合
わなくなり、導体ペーストの充填不良が生じるなどの不
具合点が生じていた。
This tendency is particularly remarkable immediately after production. Accordingly,
If guide holes are punched immediately after the green sheet is manufactured, the pitch of the guide holes will shrink due to subsequent dimensional shrinkage, which will hinder alignment in subsequent steps. In order to solve this problem Y, conventionally, after manufacturing the green sheet,
The guide hole was drilled after storage for at least one week, usually for two to three weeks or more, and when the dimensional shrinkage became relatively slow. However, although the dimensional shrinkage is gradual, it does not stop, so for example, if there is a long period of time between drilling the through hole and filling the Ouchi conductor paste, the hole pitch of the green sheet and the screen/saw hole pinch for filling the conductor will be affected. This caused problems such as misalignment and poor filling of the conductor paste.

また、グリーンシートの厚さが薄くなると、特に厚さが
0.31131以下になると、ハンドリング時の僅かな
機械的な力によりグリーンシートが変形し、導体ペース
ト充填、印刷、積層接着の各工程において、位置合せず
れの原因となり、高密度の多層セラミック基板を製造す
るときの大きな支障となっていた。
In addition, when the thickness of the green sheet becomes thin, especially when the thickness becomes less than 0.31131, the green sheet may be deformed due to slight mechanical force during handling, and the process of filling conductor paste, printing, and lamination bonding may cause deformation of the green sheet. This causes misalignment and is a major hindrance when manufacturing high-density multilayer ceramic substrates.

本発明の目的は、多層セラミック基板の製造工程におい
て、グリーンシートの変形ン防止する方法を提供するこ
とにある。
An object of the present invention is to provide a method for preventing deformation of a green sheet during the manufacturing process of a multilayer ceramic substrate.

本発明者等はグリーンシートの経時寸法収縮防止方法と
して加圧加熱処理χ行う方法を発明したが、この加圧加
熱処理は、通常、グリーンシートの表裏にポリエステル
フィルムのような支持体フィルムを当てて行うが、加圧
加熱処理後、表面の支持体フィルムのみを剥し、裏面側
のフィルムは、支持体としてグリーンシートに密着した
状態で残したま\、以降の工程であるガイド穴あけ、ス
ルホール穴あけ、スルホール穴導体ペースト充填、表面
導体ペースト印刷を行えば、これらの工程において、一
層の経時的寸法収縮の防止とへンドリングGこよる機械
的な変形防止をはかることができる。
The present inventors have invented a method of performing pressure heat treatment χ as a method for preventing dimensional shrinkage of green sheets over time, but this pressure heat treatment is usually performed by applying a support film such as a polyester film to the front and back of the green sheet. However, after the pressure and heat treatment, only the front support film is peeled off, and the back film is left in close contact with the green sheet as a support for the subsequent steps of guide hole drilling, through hole drilling, If through-hole conductor paste filling and surface conductor paste printing are performed, further dimensional shrinkage over time and mechanical deformation due to hendling G can be prevented in these steps.

本発明の一実施例?第2図に示す。An embodiment of the present invention? Shown in Figure 2.

■のグリーンシートの製造は、アルミナ等のセラミック
原料の粉体馨、焼結助剤、有機バインダとともに粉砕混
合し、これに溶剤を加えてスリップ状にしたもの?、ド
クターブレードの間?通過させ、所定厚さのシート状に
し、溶剤のみを乾燥除去することにより行う。このよう
にして製造したグリーンシートには、残留溶剤残留応力
、密度の不均一等が生じているために、製造後の残留溶
剤の揮発、残留応力の解放等により寸法の収縮が経時的
に生ずる。本発明は、この経時的寸法収縮を防止するた
め、■の寸法安定化処理を行う。すなわち、第4図に示
すようにグリーンシート10表裏にポリエステルフィル
ムのような寸法安定性に優れた支持体フィルム2?密着
させ、加圧加熱する。このとき一括で加圧加熱処理を行
うために、グリーンシート10表裏面に、支持体フィル
ム2乞密着させたものを金属板5χ間に介し、多数組重
ね、全体を加圧加熱用の治具板4.4′ではさみ、一括
加圧加熱することにより安定化処理馨行う。このときの
圧力は1〜100kg/cII、望しくけ5〜20 #
/cdがよい。圧力が低すぎると安定化処理の効果が薄
れ、逆に圧力が高すぎるとグリーンシートが緻密化しす
ぎて、後工程である焼結において有機バインダの分解除
去が充分に行なわれず、密度の高い焼結体が得られなく
なる。また、温度は室温〜250°C1望しくは70〜
150°Cがよい。温度は用いる有機バインダの軟化点
以上が望しく、例えばポリビニルブチラールを有機バイ
ンダとして用いる場合は80°C以上が望しい。逆に°
温度が高すぎると、有機バインダの分解が生じ、グリー
ンシートの可撓性が失なわれるため望しくない。ポリビ
ニルブチラール馨用いる場合、150°Cを越えると分
解硬化が生じ、グリーンシートは脆くなる。
Is the green sheet manufactured in ■ by pulverizing and mixing ceramic raw material powder such as alumina, sintering aid, and organic binder, and then adding a solvent to the mixture to form a slip? , between Doctor Blade? This is done by passing it through, forming it into a sheet with a predetermined thickness, and drying and removing only the solvent. Green sheets manufactured in this way have residual solvent residual stress, uneven density, etc., so dimensional shrinkage occurs over time due to residual solvent volatilization and release of residual stress after manufacturing. . In the present invention, in order to prevent this dimensional shrinkage over time, the dimensional stabilization process (2) is performed. That is, as shown in FIG. 4, a support film 2 having excellent dimensional stability such as a polyester film is placed on the front and back sides of the green sheet 10. Place them in close contact and heat under pressure. At this time, in order to perform the pressure and heat treatment all at once, a support film 2 is closely attached to the front and back surfaces of the green sheet 10, and a large number of sets are stacked with the metal plates 5χ interposed between them. Stabilization treatment is carried out by sandwiching between plates 4 and 4' and applying pressure and heat all at once. The pressure at this time is 1 to 100 kg/cII, preferably 5 to 20 #
/cd is good. If the pressure is too low, the effect of the stabilization treatment will be weakened, and if the pressure is too high, the green sheet will become too dense, and the organic binder will not be fully decomposed and removed in the subsequent sintering process, resulting in dense sintering. It becomes impossible to obtain a solid body. In addition, the temperature is room temperature to 250°C1, preferably 70°C to
150°C is good. The temperature is preferably at least the softening point of the organic binder used, and for example, when polyvinyl butyral is used as the organic binder, it is preferably at least 80°C. On the contrary °
If the temperature is too high, the organic binder will decompose and the green sheet will lose its flexibility, which is undesirable. When polyvinyl butyral is used, if the temperature exceeds 150°C, decomposition and hardening will occur and the green sheet will become brittle.

以上のような加圧加熱による安定化処理によりグリーン
シートの残留溶剤、残留応力が除去されかつ緻密化する
ためのグリーンシートは寸法変化の少ない安定したもの
となる。また、支持体フィルムは、加圧加熱処理により
グリーンシートに密着した状態となり、グリーンシート
の寸法変化防止に効果χ発揮する。
Through the above-described stabilization treatment using pressure and heating, the residual solvent and residual stress in the green sheet are removed, and the green sheet becomes densified and stable with little dimensional change. In addition, the support film becomes in close contact with the green sheet by the pressure and heat treatment, and exhibits an effect χ in preventing dimensional changes in the green sheet.

次に、次工程のガイド穴穿孔を行う前に表面の支持体フ
ィルムχ剥離し、グリーンシート裏面の支持体フィルム
はグリーンシートに密着させた状態で残しておく。加圧
加熱処理により、支持体フィルム2はグリーンシート1
の以降の寸法変化、変形?防止するのに充分な強度で、
グリーンシート1に密着した状態になっている。
Next, before drilling guide holes in the next step, the support film χ on the front surface is peeled off, and the support film on the back surface of the green sheet is left in close contact with the green sheet. By pressure and heat treatment, the support film 2 becomes the green sheet 1.
Subsequent dimensional changes and deformation? strong enough to prevent
It is in close contact with the green sheet 1.

支持体フィルムとしては例えば寸法安定性に優れたポリ
エステルフィルムが良く、その厚さはグリーンシートの
厚さによるが、l)、03〜0.20mがよく、グリー
ンシート厚さが0.2111の場合、005〜0.10
inが望しい。このように裏面に支持体フィルム馨密着
させた状態で、ガイ穴パンチスルホ−k 穴あけ?行う
。第5図において、グリーンシート1の裏面に支持体フ
ィルム2が密着した状態で、ガイド穴5が穿孔され(■
ガイド穴穿孔)、このガイド穴57a−基準にしてスル
ホール6が穿孔されている(■スルホール穿孔)ガイド
穴、スルホールの穿孔は、打抜き、ドリリング等周知の
方法で行い、グリーンシートと支持体フィルムの穴は同
時に穿孔される。
As the support film, for example, a polyester film with excellent dimensional stability is preferable, and its thickness depends on the thickness of the green sheet, but it is preferably 0.3 to 0.20 m, and when the green sheet thickness is 0.2111 mm. ,005~0.10
In is preferable. In this way, with the support film tightly attached to the back side, punch holes through holes. conduct. In FIG. 5, with the support film 2 in close contact with the back surface of the green sheet 1, guide holes 5 are bored (■
(Guide hole drilling) A through hole 6 is drilled based on this guide hole 57a (■Through hole drilling) The guide hole and through hole are drilled by a well-known method such as punching or drilling, and the green sheet and the support film are The holes are drilled at the same time.

次に、スクリーン印刷法或は真空吸引法等の周知の方法
で、スルホール内に導体ペーストY充填しく■穴内導体
ペースト充填)、引続きグリーンシート表面に導体ペー
スト?印刷し、配線ライン等の形成?完成する(■導体
ペースト印刷)。
Next, by using a well-known method such as screen printing or vacuum suction, conductive paste Y is filled into the through holes. Print and form wiring lines etc? Complete (■ Conductor paste printing).

次に裏面の支持体フイルムヶ静かに引剥した後(■支持
体剥離)、印刷の終ったグリーンシートラ所定の組合せ
で所定枚数、ガイド穴を基準に積層し、加圧加熱により
一体化する(■積層接i)このとき圧力、潤度ともに安
定化処理時のときの値よりも高くするのがよい。続いて
焼結(■)、めっきくO>W行なうことにより多層セラ
ミック基板の製造ン完TTる。
Next, after gently peeling off the support film on the back side (■ Support peeling), a predetermined number of printed green sheets are laminated in a predetermined combination based on the guide hole, and integrated by pressure heating (■ Lamination connection i) At this time, both the pressure and the moisture content are preferably set higher than the values at the time of stabilization treatment. Subsequently, sintering (■) and plating (O>W) are performed to complete the production of the multilayer ceramic substrate.

第6図は実施例による安定化処理?施したグリーンシー
トの寸法変化ン示T0これから明らかなように加圧加熱
および支持体密着により寸法安定性に非常に優れている
。このような優れた寸法安定性のために、次のような効
果があり、高精度σ〕高密度多層セラミンク基板の製造
が可能となる。
Is Fig. 6 the stabilization process according to the embodiment? As is clear from the dimensional change T0 of the applied green sheet, it has excellent dimensional stability due to pressure heating and close contact with the support. Such excellent dimensional stability has the following effects, making it possible to manufacture high-precision σ] high-density multilayer ceramic substrates.

(1)  ガイド穴穿孔後のガイド穴ピッチの寸法収縮
がないため、グリーンシートのガイド穴径?位置決めガ
イドビン径に近づけることができガイド穴のガタによる
位置合せ誤差を軽減することができる。このため、スル
ホール穿孔、穴内導体ペースト充填、導体ペースト印刷
、積層接着を精度よく行うことが可能となる。
(1) Since there is no dimensional shrinkage of the guide hole pitch after drilling the guide holes, the guide hole diameter of the green sheet? It can be made close to the diameter of the positioning guide bin, and alignment errors due to play in the guide hole can be reduced. For this reason, it becomes possible to perform through-hole drilling, conductor paste filling in the holes, conductor paste printing, and lamination bonding with high precision.

(2)経時的寸法変化がないため、グリーンシート製造
後、ガイド穴穿孔までの貯藏期間が不要となり、納期短
縮?はかることができる。
(2) Since there is no dimensional change over time, there is no need for storage time from manufacturing the green sheet to drilling guide holes, reducing delivery time. It can be measured.

(3)経時的寸法変化がないため、ガイド穴穿孔径積層
接着までの仕掛り期間が仮りに長くなっても大内導体ペ
ースト充填工程において、スルホールとスクリーンの穴
ピッチずれのために充填不良が生じるとか、導体ペース
ト印刷工程において導体充填スルホール位置と印刷スク
リーン位置のピッチずれのためにスルホール導体と51
1接配線ラインとの間にシ讐−トが生じるとか、或は積
層接着工程においてグリーンシートの寸法収縮の不揃い
のために積層したシート相互間のバタンの位置ずれのた
めにシ冒−ト/オープン不良が生じるといったような不
具合点がなくなり、高精度の多層セラミック基板の製造
が可能となる。
(3) Since there is no dimensional change over time, even if the time required for the guide hole drilling and lamination bonding becomes longer, there will be no possibility of filling defects due to hole pitch deviation between the through holes and the screen during the Ouchi conductor paste filling process. Due to the pitch deviation between the conductor-filling through-hole position and the printing screen position during the conductor paste printing process, the through-hole conductor and 51
Seats may occur between the first connection wiring line, or the sheets may be misaligned between the laminated sheets due to uneven shrinkage of the dimensions of the green sheets during the lamination bonding process. Problems such as open defects are eliminated, and high-precision multilayer ceramic substrates can be manufactured.

(4)支持体貼付のため、0.1〜0.3uのような薄
いグリーンシートのハンドリング時楽になり、ハンドリ
ング時の機械的な変形による不良が生じなくなる。
(4) Since the green sheet is attached to a support, handling of a thin green sheet such as 0.1 to 0.3 μ becomes easier, and defects due to mechanical deformation during handling do not occur.

(5)  支持体フィルムがガイド穴を保護してい 。(5) The support film protects the guide hole.

るため、グリーンシートのガイドビンへの挿入離脱によ
るガイド穴の変形(シートの屑れ)がなくなる。
This eliminates deformation of the guide hole (sheet debris) due to insertion and removal of the green sheet into the guide bin.

以上述べたごとく本発明によれば、グリーンシートに支
持フィルムを密着させた状態で穿孔ヘースト充填、ペー
スト印刷?行なうので、製造工程におけるグリーンシー
ト・ノ〕変形を防止することができる。
As described above, according to the present invention, with the support film in close contact with the green sheet, hole filling and paste printing can be performed. As a result, deformation of the green sheet during the manufacturing process can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による多層セラミック基板の製造工程
を示す図、第2図は本発明の一実施例の製造工程を示す
図、第3図は従来技術におけるグリーンシートの経時寸
法変化を示す図、第4図は本発明を説明するための断面
図、第5図は本発明に従って安定化処理を施したグリー
ンシートのガイド穴穿孔、スルホール穿孔ヲ終った状態
Y示す断面図、第6図は本発明に従って安定化処理を施
したグリーンシートの経時寸法変化を示す図である。 1・・・グリーンシート、  2・・・支持体フィルム
3・・・金属板、 4/4′・・・加圧加熱処理用治具板、5・・・ガイド
穴、     6・・・スルホール。 才1 図        f2圏 オ 3 回 ゛7゛リーンシート聾町、造ネ艶2の一イユJ邑1日収
第48!I 〃ロIE770興汽              奪F
醪 専 麿 廿 才 5図 オ 6 記 −U、υ0 −0.fo 0     tO;’0   30   40安、定4
t:処理後のaB数日凌叉→
FIG. 1 is a diagram showing the manufacturing process of a multilayer ceramic substrate according to the prior art, FIG. 2 is a diagram showing the manufacturing process of an embodiment of the present invention, and FIG. 3 is a diagram showing the dimensional change over time of a green sheet in the conventional technology. , FIG. 4 is a cross-sectional view for explaining the present invention, FIG. FIG. 3 is a diagram showing dimensional changes over time of a green sheet subjected to stabilization treatment according to the present invention. DESCRIPTION OF SYMBOLS 1...Green sheet, 2...Support film 3...Metal plate, 4/4'...Jig plate for pressure and heat treatment, 5...Guide hole, 6...Through hole. Sai 1 figure f2 area O 3 times ゛ 7 ゛ Lean seat Deaf town, 1st Iyu J-eup of Zoune 2, 48th daily income! I 〃RO IE770 Koki F
5 diagram O 6 note −U, υ0 −0. fo 0 tO;'0 30 40 stable, constant 4
t: AB several days after treatment →

Claims (1)

【特許請求の範囲】[Claims] ト充填、シート表面導体ペースト印刷?行なうことt特
徴とするセラミック基板の製造方法。
Filling, sheet surface conductor paste printing? A method for manufacturing a ceramic substrate characterized by:
JP7992382A 1982-05-14 1982-05-14 Method of producing ceramic board Pending JPS58197796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7992382A JPS58197796A (en) 1982-05-14 1982-05-14 Method of producing ceramic board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7992382A JPS58197796A (en) 1982-05-14 1982-05-14 Method of producing ceramic board

Publications (1)

Publication Number Publication Date
JPS58197796A true JPS58197796A (en) 1983-11-17

Family

ID=13703818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7992382A Pending JPS58197796A (en) 1982-05-14 1982-05-14 Method of producing ceramic board

Country Status (1)

Country Link
JP (1) JPS58197796A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157799A (en) * 1985-12-27 1987-07-13 松下電器産業株式会社 Method of machining hole of ceramic green sheet
JPS6442808A (en) * 1987-08-10 1989-02-15 Murata Manufacturing Co Manufacture of laminated ceramic capacitor
JPH01205595A (en) * 1988-02-12 1989-08-17 Nec Corp Manufacture of ceramic multilayer wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157799A (en) * 1985-12-27 1987-07-13 松下電器産業株式会社 Method of machining hole of ceramic green sheet
JPH0468113B2 (en) * 1985-12-27 1992-10-30 Matsushita Electric Ind Co Ltd
JPS6442808A (en) * 1987-08-10 1989-02-15 Murata Manufacturing Co Manufacture of laminated ceramic capacitor
JPH01205595A (en) * 1988-02-12 1989-08-17 Nec Corp Manufacture of ceramic multilayer wiring board

Similar Documents

Publication Publication Date Title
US4497677A (en) Method for manufacturing ceramic substrate
KR100521941B1 (en) Method of manufacturing a multi-layered ceramic substrate
JP2002290038A (en) Manufacturing method for multilayer ceramic board
JPS58197796A (en) Method of producing ceramic board
JP2004106540A (en) Composite and its manufacturing process, and manufacturing process of ceramic substrate
JPH0786743A (en) Manufacture of multilayer ceramic board
JP2003031948A (en) Method of manufacturing ceramic multilayer board
JP2007053294A (en) Process for manufacturing multilayer ceramic electronic component
JPH0730253A (en) Method of manufacturing multilayer ceramic board
JP3413880B2 (en) Method for producing multilayer ceramic sintered body
JPS59147486A (en) Method of filling hole of green sheet
JP3112258B2 (en) Circuit board and its manufacturing method
US20050205196A1 (en) Multilayer substrate manufacturing method
JPS6252999A (en) Formation of through conductor path of ceramic circuit boardand manufacture of multilayer circuit board obtained by laminating same
JPH06326470A (en) Manufacture of multilayered ceramic board
JP2766504B2 (en) Method for manufacturing multilayer circuit board
JPH06275953A (en) Manufacture of multilayer circuit substrate
JPS62296496A (en) Manufacture of multilayer ceramic circuit board
JPH084193B2 (en) Method for manufacturing multilayer ceramic circuit board
JPH0645758A (en) Multilayer ceramic board and manufacture thereof
JP3491698B2 (en) Method for manufacturing multilayer circuit board
JPH0722752A (en) Multilayer ceramic substrate and its manufacture
JPS6226200B2 (en)
JP3266986B2 (en) Manufacturing method of ceramic multilayer substrate
JPS6259479B2 (en)