JPH0786743A - Manufacture of multilayer ceramic board - Google Patents

Manufacture of multilayer ceramic board

Info

Publication number
JPH0786743A
JPH0786743A JP22550193A JP22550193A JPH0786743A JP H0786743 A JPH0786743 A JP H0786743A JP 22550193 A JP22550193 A JP 22550193A JP 22550193 A JP22550193 A JP 22550193A JP H0786743 A JPH0786743 A JP H0786743A
Authority
JP
Japan
Prior art keywords
ceramic substrate
multilayer ceramic
conductor
substrate according
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22550193A
Other languages
Japanese (ja)
Other versions
JP3351043B2 (en
Inventor
Eishin Nishikawa
英信 西川
Manabu Tazaki
学 田崎
Takahiko Iwaki
隆彦 岩城
Hiroyuki Otani
博之 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22550193A priority Critical patent/JP3351043B2/en
Publication of JPH0786743A publication Critical patent/JPH0786743A/en
Application granted granted Critical
Publication of JP3351043B2 publication Critical patent/JP3351043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To hold small the resistance value of a board to prevent the generation of a crack in the board and to contrive to improve the reliability of the board by a method wherein when electrode patterns are formed on green sheets, a metal conductor is used in an electrode formation method. CONSTITUTION:Green sheets 1 consisting of a glass ceramic material, an organic binder and a plasticizer are formed and electrode patterns 3 and 8 are formed on the green sheets. The number of desired sheets of the green sheets 1 and electrode pattern formation finished green sheets 4 different from the sheets 1 are laminated. Then, green sheets 2 consisting of an inorganic composition, which is not sintered at the firing temperature of a board, are respectively laminated on both surfaces of this first laminated material consisting of low-temperature sintered glass ceramic, a second laminated material 9 is formed and the material 9 is fired to form into a firing finished laminated material 10. At this time, a metal conductor 7 is used in an electrode formation method. In this manufacturing method of the board, a shrinkage in the plane direction of the board is stopped and a shrinkage is generated only in the thickness direction of the board As a result, separation between the conductor 7 and a glass ceramic layer can be prevented from being generated using the metal conductor having little dimensional change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体LSI、チップ部
品などを搭載し、かつそれらを相互配線するためのセラ
ミック多層配線基板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a ceramic multilayer wiring board for mounting semiconductor LSIs, chip parts and the like and interconnecting them.

【0002】[0002]

【従来の技術】近年、低温焼結ガラス・セラミック多層
基板の開発によって、使用できる導体材料に、金、銀、
銅、パラジウムまたはそれらの混合物が用いられるよう
になった。これらの金属は従来使用されたタングステ
ン、モリブデンなどに比べ導体抵抗が低く、且つ使用で
きる設備も安全で低コストに製造できるものであり、応
用範囲が広い。しかしながら、一般に多層セラミック基
板は、焼成時に焼結に伴う収縮が生じ、この収縮は、使
用する基板材料、グリーンシート組成、粉体ロットなど
により異なるといった挙動を示す。これにより多層基板
の作製においていくつかの問題が生じている。まず第1
に、多層セラミック基板の作製において前述のごとく内
層配線の焼成を行ってから最上層配線の形成を行なうた
め、基板材料の収縮誤差が大きいと、最上層配線パター
ンと寸法誤差のため内層電極との接続が行えない。その
結果、収縮誤差を予め許容するように最上層電極部に必
要以上の大きい面積のランドを形成しなければならず、
高密度の配線を必要とする回路には使用できない。また
収縮誤差に合わせて最上層配線のためのスクリーン版を
いくつか用意しておき、基板の収縮率に応じて使用する
方法が取られている。この方法ではスクリーン版が数多
く用意しなければならず不経済である。
2. Description of the Related Art In recent years, with the development of a low temperature sintered glass / ceramic multilayer substrate, usable conductor materials include gold, silver,
Copper, palladium or mixtures thereof have come into use. These metals have a lower conductor resistance than conventionally used tungsten, molybdenum, etc., and can be manufactured with safe equipment at low cost, and thus have a wide range of applications. However, in general, a multilayer ceramic substrate undergoes shrinkage due to sintering during firing, and this shrinkage behaves differently depending on the substrate material used, the green sheet composition, the powder lot, and the like. This has caused some problems in the fabrication of multilayer substrates. First of all
In the production of the multi-layer ceramic substrate, the inner layer wiring is fired as described above before the uppermost layer wiring is formed.Therefore, if the shrinkage error of the substrate material is large, the upper layer wiring pattern and the inner layer electrode may cause a dimensional error. Can't connect. As a result, a land having an unnecessarily large area must be formed in the uppermost electrode portion so as to allow the shrinkage error in advance.
It cannot be used in circuits that require high-density wiring. In addition, a method is used in which some screen plates for the uppermost layer wiring are prepared according to the shrinkage error and are used according to the shrinkage rate of the substrate. This method is uneconomical because many screen versions must be prepared.

【0003】一方、最上層配線を内層焼成と同時に行え
ば大きなランドを必要としないが、この同時焼成法によ
っても基板そのものの収縮誤差はそのまま存在するの
で、最後の部品搭載時のクリーム半田印刷において、そ
の誤差のため必要な部分に印刷できない場合が起こる。
また部品実装においても所定の部品位置とズレが生じ
る。
On the other hand, if the uppermost layer wiring is performed at the same time as the inner layer firing, a large land is not required, but since the shrinkage error of the substrate itself is still present even by this simultaneous firing method, in the cream solder printing at the time of the last component mounting. However, there may be a case where the necessary part cannot be printed due to the error.
Also, when mounting components, there is a deviation from the predetermined component position.

【0004】第2のグリーンシート積層法による多層基
板は、グリーンシートの造膜方向によって幅方向と長手
方向によってもその収縮率が異なる。このこともセラミ
ック多層基板の作製の障害となっている。
The shrinkage rate of the multi-layered substrate formed by the second green sheet laminating method varies depending on the film-forming direction of the green sheet depending on the width direction and the longitudinal direction. This is also an obstacle to the production of the ceramic multilayer substrate.

【0005】これらの収縮誤差をなるべく少なくするた
めに、一般に以下の方法が提案され、また実施されてい
る。それは、第1に収縮誤差が決められた仕様内に収ま
ったものだけを使用する方法であり、これは所望の高寸
法精度のものが得られるが、製造歩留まりが極めて低い
ために生産コストが大きく、現在のニーズに合わない。
第2に基板収縮率の絶対値が大きいまま、その収縮誤差
を抑制する方法であり、製造工程において、基板材料お
よびグリーンシート組成、の管理はもちろん、粉体ロッ
トの違いや積層条件(プレス圧力、温度)を十分管理す
ることによって行われるが、一般に収縮率の誤差は±
0.5%程度存在すると言われ、それ以上、収縮誤差を
抑制するには限界である。第3に基板収縮率を小さくす
ることによってその収縮誤差を抑制する。これは、グリ
ーンシート積層体の両面に多孔質な焼結板、または基板
の焼成温度では焼結しない材料によるグリーンシート等
を接触させ、焼成することによって、基板の収縮を抑制
する技術であり、特公昭62−260777によって提
案されたものである。以下にその構造と製造方法につい
て、図2を参照しながら説明する。図2において、12
はガラス・セラミックグリーンシート積層体、13は多
孔質セラミック焼結板である。上記構成において、
(a)に示したように、多孔質セラミック焼結板13を
ガラス・セラミックグリーンシート積層体12の両面に
配して加圧する。次に(b)に示したようにガラス・セ
ラミック材料の焼成温度で焼成する。このようにしてガ
ラス・セラミック基板の焼結による収縮を平面方向には
抑制し、厚み方向だけに起こす。この後、(c)に示し
たように、基板両面に残った多孔質セラミック焼結板1
3を取り除き多層基板11を製造する。この多層セラミ
ック基板の製造方法によると、平面方向の収縮が極めて
小さく、かつ収縮誤差を小さいため高寸法精度の基板が
作製でき、工業上極めて有効である。
In order to reduce these shrinkage errors as much as possible, the following methods have been generally proposed and implemented. The first is to use only those whose shrinkage error is within the specified specifications. This gives the desired high dimensional accuracy, but the production yield is extremely low, resulting in a large production cost. , Does not meet current needs.
The second is a method of suppressing the shrinkage error while the absolute value of the substrate shrinkage rate is large. In the manufacturing process, not only the management of the substrate material and the green sheet composition but also the difference in the powder lot and the stacking condition (press pressure) , Temperature) is adequately controlled, but generally the error of shrinkage ratio is ±
It is said that about 0.5% exists, and there is a limit to suppressing the shrinkage error further. Thirdly, the shrinkage error is suppressed by reducing the substrate shrinkage rate. This is a technique for suppressing shrinkage of the substrate by contacting both sides of the green sheet laminate with a porous sintered plate, or a green sheet made of a material that does not sinter at the substrate firing temperature, and firing. It was proposed by Japanese Examined Patent Publication No. 62-260777. The structure and manufacturing method will be described below with reference to FIG. In FIG. 2, 12
Is a glass / ceramic green sheet laminate, and 13 is a porous ceramic sintered plate. In the above configuration,
As shown in (a), the porous ceramic sintered plates 13 are arranged on both surfaces of the glass / ceramic green sheet laminate 12 and pressed. Next, as shown in (b), it is fired at the firing temperature of the glass / ceramic material. In this way, shrinkage due to sintering of the glass-ceramic substrate is suppressed in the plane direction, and occurs only in the thickness direction. Thereafter, as shown in (c), the porous ceramic sintered plate 1 remaining on both surfaces of the substrate
3 is removed and the multilayer substrate 11 is manufactured. According to this method for manufacturing a multilayer ceramic substrate, the contraction in the plane direction is extremely small and the contraction error is small, so that a substrate with high dimensional accuracy can be manufactured, which is extremely effective industrially.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、基板の
平面方向の収縮を抑制し、厚み方向の収縮しか起こさな
い多層セラミック基板の製造において問題が生じてい
る。それは、基板収縮を抑制したために焼成時の、基板
と電極ペーストによるパターンの収縮が一致しなくなる
といった問題である。このために電極パターンと基板と
が接する下面部分で焼成時の収縮挙動による違いによる
基板割れが発生し、または電極パターンの焼結が阻害さ
れることによって電極の焼結密度が上がらずに焼成後の
導体抵抗値が大きくなっている。このような問題によっ
て、基板の平面方向の収縮を抑制し、厚み方向の収縮し
か起こさない多層セラミック基板は高寸法精度を有する
も基板としての信頼性が低く、かつ導体の抵抗値が高い
ことによって、抵抗値の増大の影響を受けにくい極端に
小さい回路パターンを有する基板にしか使用できないと
いった制約を受ける。
However, there is a problem in manufacturing a multilayer ceramic substrate which suppresses the contraction of the substrate in the plane direction and only contracts in the thickness direction. The problem is that the shrinkage of the pattern due to the substrate and the electrode paste does not match during firing because the shrinkage of the substrate is suppressed. For this reason, substrate cracking occurs due to the difference in shrinkage behavior during firing at the lower surface portion where the electrode pattern and the substrate are in contact, or the sintering of the electrode pattern is hindered and the sintered density of the electrode does not increase and after firing The conductor resistance value of is large. Due to such a problem, the multilayer ceramic substrate that suppresses the contraction in the plane direction of the substrate and causes only the contraction in the thickness direction has high dimensional accuracy, but the reliability as a substrate is low, and the resistance value of the conductor is high. However, there is a restriction that it can be used only for a substrate having an extremely small circuit pattern which is hardly affected by an increase in resistance value.

【0007】[0007]

【課題を解決するための手段】前記の課題を解決するた
めに、ガラス・セラミック材料と有機バインダと可塑剤
からなるグリーンシートを作製し、電極パターンを形成
し、前記グリーンシートと別の電極パターン形成済みグ
リーンシートとを所望枚数積層し、前記低温焼結ガラス
・セラミックよりなる第1の積層体の両面に、基板の焼
成温度では焼結しない無機組成物によるグリーンシート
を積層し第2の積層体を形成し、前記第2の積層体を焼
成する多層セラミック基板の製造方法において、電極金
属導体を使用する。
In order to solve the above-mentioned problems, a green sheet made of a glass / ceramic material, an organic binder and a plasticizer is prepared, an electrode pattern is formed, and an electrode pattern different from the green sheet is formed. A desired number of formed green sheets are laminated, and green sheets made of an inorganic composition that does not sinter at the firing temperature of the substrate are laminated on both surfaces of the first laminated body made of the low-temperature sintered glass / ceramic to form a second laminated body. An electrode metal conductor is used in a method for manufacturing a multilayer ceramic substrate, which comprises forming a body and firing the second laminated body.

【0008】[0008]

【作用】本発明は前記のような工程を行なうことによっ
て、焼成時において厚み方向だけ収縮し、平面方向には
収縮しない多層セラミック基板において、導体抵抗値の
低い、かつ信頼性の高い基板を製造する。以下に本発明
の作用を説明する。
According to the present invention, by performing the above-mentioned steps, a multilayer ceramic substrate that shrinks only in the thickness direction and does not shrink in the planar direction during firing produces a substrate having a low conductor resistance value and high reliability. To do. The operation of the present invention will be described below.

【0009】ガラス・セラミック材料と有機バインダと
可塑剤からなるグリーンシートを作製し、電極パターン
を形成し、前記グリーンシートと別の電極パターン形成
済みグリーンシートとを所望枚数積層し、前記低温焼結
ガラス・セラミックよりなる第1の積層体の両面に、基
板の焼成温度では焼結しない無機組成物によるグリーン
シートを積層し第2の積層体を形成し、前記第2の積層
体を焼成する多層セラミック基板の製造方法において、
電極形成方法は金属導体を使用する。この基板の製造方
法では、基板焼成時にガラス・セラミック層が、両面に
積層した焼結しない材料で挟み込まれているため、平面
方向の収縮が阻止され、厚み方向にしか収縮は起こらな
い。そのために電極材料として焼成時に金属粉体を焼結
させるペーストのような導体材料ではなく、基板の平面
方向の収縮が起こらず、基板焼成時に寸法変化の小さい
金属導体を使用するほうが導体として有効である。前記
金属導体は、一般に導体材料となるAg,Ag−Pd,
Ag−Pt,Cuのいずれかを主成分とするものを使用
する。この時、金属導体の表面を粗化し金属導体とガラ
ズ・セラミック層との密着をよくし、有機バインダの除
去を含む基板焼成時に金属導体とガラス・セラミック層
間での剥離を防止する。さらに、導体にCuOを主成分
とした金属導体を使用し、空気雰囲気で熱処理して基板
の有機バインダを除去した後、例えば水素雰囲気のよう
な還元雰囲気でCuOをCuに還元し、窒素雰囲気のよ
うな中性雰囲気で焼成する。この方法によって基板焼成
の雰囲気制御を容易にできる。
A green sheet composed of a glass / ceramic material, an organic binder and a plasticizer is prepared, an electrode pattern is formed, a desired number of the green sheet and another green sheet having an electrode pattern are laminated, and the low temperature sintering is carried out. A multilayer in which green sheets of an inorganic composition that are not sintered at the firing temperature of the substrate are laminated on both surfaces of the first laminated body made of glass / ceramic to form a second laminated body, and the second laminated body is fired. In the method of manufacturing a ceramic substrate,
The electrode forming method uses a metal conductor. In this substrate manufacturing method, since the glass / ceramic layers are sandwiched between the non-sintering materials laminated on both surfaces during firing of the substrate, shrinkage in the plane direction is prevented, and shrinkage occurs only in the thickness direction. Therefore, it is more effective as a conductor to use a metal conductor that does not cause shrinkage in the plane direction of the substrate and has a small dimensional change when firing the substrate, rather than a conductor material such as a paste that sinters metal powder during firing as the electrode material. is there. The metal conductor is generally Ag, Ag-Pd, which is a conductor material.
A material containing Ag-Pt or Cu as a main component is used. At this time, the surface of the metal conductor is roughened to improve adhesion between the metal conductor and the glass / ceramic layer, and peeling between the metal conductor and the glass / ceramic layer is prevented during firing of the substrate including removal of the organic binder. Further, a metal conductor containing CuO as a main component is used as a conductor, and after heat treatment in an air atmosphere to remove the organic binder of the substrate, CuO is reduced to Cu in a reducing atmosphere such as a hydrogen atmosphere, and a nitrogen atmosphere is used. Bake in such a neutral atmosphere. This method can easily control the atmosphere for firing the substrate.

【0010】前記金属導体による導体パターン形成は、
熱可塑性樹脂層を有する高分子フィルム上に導体箔を、
熱可塑性樹脂の融点付近の温度で熱圧着し、その後メッ
キ法により導体パターンを形成し、またはフィルム上に
蒸着法によって導体パターンを形成し熱可塑性樹脂の融
点付近の温度でガラス・セラミックグリーンシートへ熱
転写する。この高分子フィルム上での導体パターンの形
成方法は、一般にガラス・エポキシ基板での導体パター
ン形成と同じ方法であり、既存設備で容易にできる。ま
た、金属導体による導体パターン形成は、焼成時に導体
ペーストと反応、接着しない、かつ焼結済みセラミック
と反応、接着しない層としてAl23、MgO,ZrO
2、MgO,SiO2、AlN、BN、TiO2を少なく
とも1種類以上を含む粉体層を有する焼結済みセラミッ
ク基板上に導体にペーストを印刷・焼成して形成した導
体パターンをガラス・セラミックグリーンシートへ転写
することによっても可能である。この方法では、メッキ
液のような液体を多量に使用しないために環境保全設備
が不用である。
The formation of the conductor pattern by the metal conductor is
Conductor foil on a polymer film having a thermoplastic resin layer,
Thermocompression bonding is performed at a temperature near the melting point of the thermoplastic resin, and then a conductor pattern is formed by plating, or a conductor pattern is formed on the film by vapor deposition, and the glass / ceramic green sheet is formed at a temperature near the melting point of the thermoplastic resin. Heat transfer. The method for forming the conductor pattern on the polymer film is generally the same as the method for forming the conductor pattern on the glass / epoxy substrate, and can be easily performed by existing equipment. In addition, the conductor pattern formed of the metal conductor is formed of a layer that does not react with or adhere to the conductor paste during firing and does not react with or adhere to the sintered ceramics, such as Al 2 O 3 , MgO or ZrO.
A glass / ceramic green conductor pattern formed by printing and firing a paste on a conductor on a sintered ceramic substrate having a powder layer containing at least one of 2 , 2 , MgO, SiO 2 , AlN, BN, and TiO 2. It is also possible by transferring to a sheet. In this method, a large amount of liquid such as a plating liquid is not used, and therefore environmental protection equipment is not required.

【0011】前記ガラス・セラミック積層体の焼成は通
常800℃〜1000℃の範囲で行われる。銅電極、銀
電極を使用する場合は900℃で行なう。またガラス・
セラミック低温焼結基板材料の焼成温度では焼結しない
無機組成物グリーンシートの無機成分には、Al23
MgO,ZrO2,TiO2,BeO,BNの内少なくと
も1種類以上を含む。900℃の焼成温度で行なう低温
焼結基板材料には、Al23が最も有効である。
Firing of the glass-ceramic laminate is usually performed in the range of 800 ° C to 1000 ° C. When a copper electrode or a silver electrode is used, the temperature is 900 ° C. Again glass
Inorganic composition that does not sinter at the firing temperature of the ceramic low temperature sintering substrate material The inorganic component of the green sheet is Al 2 O 3 ,
At least one of MgO, ZrO 2 , TiO 2 , BeO, and BN is included. Al 2 O 3 is most effective for the low temperature sintering substrate material that is performed at a firing temperature of 900 ° C.

【0012】前記ガラス・セラミック積層体の焼成時に
前記ガラス・セラミック積層体を加圧して焼成を行なう
と、厚み方向の焼結性が更に促進されち密な焼結体が得
られる。
When the glass-ceramic laminate is pressed and fired during firing of the glass-ceramic laminate, sinterability in the thickness direction is further promoted and a dense sintered body is obtained.

【0013】[0013]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】(実施例1)図1において、(a)に示し
たガラス・セラミックグリーンシート1は、低温焼結ガ
ラス・セラミック材料、たとえば無機成分としてホウ珪
酸鉛ガラス粉末にセラミック材料としてのAl23粉末
を重量比で50対50とした組成物(日本電気硝子社製
MLS−19)と、有機バインダとしてポリビニルブ
チラール、可塑剤としてヂ−n−ブチルフタレート、溶
剤としてトルエンとイソプロピルアルコールの混合液
(30対70重量比)を混合しスラリーとしたもので、
このスラリーをドクターブレード法でシート成形した。
次に(b)に示すように、基板焼成時に焼結の起こらな
いAl23(住友アルミ社製 AL−41 平均粒径
1.9μm)粉末のみを用い前記ガラス・セラミックグ
リーンシートと同様の組成で、同様の方法で作製したA
23グリーンシート2を使用した。前記ガラス・セラ
ミックグリーンシート1、Al23グリーンシート2の
厚みは共に約200μmである。(c)に示すように、
ガラス・セラミックグリーンシート1にスクリーン印刷
法によってビア導体3を形成し、ビア導体形成済みガラ
ス・セラミックグリーンシート4を形成した。ビア用導
体ペーストは、Ag粉末(平均粒径1μm)に接着強度
を得るためのガラスフリット(日本電気硝子社製 GA
−9ガラス粉末、平均粒径2.5μm)を5wt%加
え、ガラス・セラミック粉末を15重量%加えたものを
無機成分とし、有機バインダであるエチルセルロースを
ターピネオールに溶かしたビヒクルとともに加えて、3
段ロールにより適度な粘度になるように混合したものを
用いた。
Example 1 In FIG. 1, the glass-ceramic green sheet 1 shown in (a) is a low-temperature sintered glass-ceramic material, for example, lead borosilicate glass powder as an inorganic component and Al 2 as a ceramic material. O 3 powder 50 to 50 and the composition in a weight ratio (manufactured by Nippon Electric Glass Co., Ltd. MLS-19), polyvinyl butyral as an organic binder, mixed diethylene -n- butyl phthalate, as a solvent of toluene and isopropyl alcohol as a plasticizer Liquid (30:70 weight ratio) was mixed to form a slurry.
This slurry was formed into a sheet by the doctor blade method.
Next, as shown in (b), only the Al 2 O 3 (AL-41 average particle size 1.9 μm manufactured by Sumitomo Aluminum Co., Ltd.) powder that does not sinter during firing of the substrate was used, and the same procedure as the glass / ceramic green sheet was performed. A prepared by the same method as the composition
l 2 O 3 green sheet 2 was used. The glass / ceramic green sheet 1 and the Al 2 O 3 green sheet 2 each have a thickness of about 200 μm. As shown in (c),
A via conductor 3 was formed on the glass / ceramic green sheet 1 by a screen printing method to form a glass / ceramic green sheet 4 on which the via conductor was formed. The via conductor paste is a glass frit (made by Nippon Electric Glass Co., Ltd. GA for obtaining adhesive strength to Ag powder (average particle size 1 μm)).
-9 glass powder, average particle size 2.5 μm) was added in an amount of 5 wt% and glass ceramic powder was added in an amount of 15 wt% as an inorganic component, and an organic binder, ethyl cellulose, was added together with a vehicle in which terpineol was dissolved.
A mixture obtained by corrugating rolls so as to have an appropriate viscosity was used.

【0015】一方、(d)に示すように、ポリアクリロ
ニトリルを熱可塑性樹脂層5として形成した高分子フィ
ルム6上にCu箔7を温度が80℃、圧力は200kg
/cm2で貼り付け、メッキ法により導体パターン8を
形成した後、酸化処理してCuOにした。(e)に示す
ように、前記ビア導体形成済みガラス・セラミックグリ
ーンシート4に高分子フィルム6上に形成した導体パタ
ーン8が接するようにして平面方向に熱・圧力を加えて
ガラス・セラミックグリーンシート上に導体パターン8
を転写した。前記転写条件は温度が80℃、圧力は10
0kg/cm2であった。(f)に示すように前記導体
パターン形成したガラス・セラミックグリーンシートを
所定の枚数積み重ね、さらにその両面に前記Al23
リーンシート2を重ね合わせて積層体9を形成した。こ
の状態で熱圧着して積層体9を形成した。熱圧着条件
は、温度が80℃、圧力は200kg/cm2であった。
On the other hand, as shown in (d), a Cu foil 7 is placed on a polymer film 6 having polyacrylonitrile as a thermoplastic resin layer 5 at a temperature of 80 ° C. and a pressure of 200 kg.
/ Cm 2 and the conductor pattern 8 was formed by the plating method and then oxidized to CuO. As shown in (e), the glass / ceramic green sheet 4 is formed by applying heat and pressure in the plane direction so that the conductor pattern 8 formed on the polymer film 6 is in contact with the glass / ceramic green sheet 4 on which the via conductor has been formed. Conductor pattern 8 on top
Was transcribed. The transfer conditions are a temperature of 80 ° C. and a pressure of 10
It was 0 kg / cm 2 . As shown in (f), a predetermined number of the glass-ceramic green sheets having the conductor pattern formed thereon were stacked, and the Al 2 O 3 green sheets 2 were further stacked on both sides thereof to form a laminate 9. In this state, thermocompression bonding was performed to form a laminated body 9. The thermocompression bonding conditions were a temperature of 80 ° C. and a pressure of 200 kg / cm 2 .

【0016】次に前記積層体9を空気雰囲気、500℃
で有機バインダを分解、除去し、水素雰囲気、200℃
でCuOをCuに還元する。さらに、窒素雰囲気で焼成
する。条件はベルト炉によって空気注の900℃で1時
間焼成で行った。(900℃の保持時間は約12分であ
る。)この時基板の反りと厚み方向の焼結収縮を助ける
ためAl23焼結基板を乗せて加圧するようにして焼成
を行った。
Next, the laminate 9 is placed in an air atmosphere at 500 ° C.
The organic binder is decomposed and removed with a hydrogen atmosphere at 200 ° C.
CuO is reduced to Cu. Further, it is fired in a nitrogen atmosphere. The conditions were firing in a belt furnace at 900 ° C. for 1 hour by air injection. (The holding time at 900 ° C. is about 12 minutes.) At this time, in order to assist the warp of the substrate and the sintering shrinkage in the thickness direction, the Al 2 O 3 sintered substrate was placed and pressed to perform firing.

【0017】焼成後の積層体10の表面には未焼結のA
23層が存在するため、酢酸ブチル溶剤中で超音波洗
浄を行ったところAl23層がきれいに取り除くことが
できた。この焼成後の基板の収縮率を測定すると、収縮
率が0.1%以下であった。この結果、平面方向の収縮
が起こらない多層基板11が作製できた。さらにこの多
層基板にAg−Pdペーストによって最上層パターンを
スクリーン印刷し、乾燥の後焼成を前記と同様の方法で
行った。内層基板の収縮が極めて小さいため、最上層パ
ターンの印刷ズレがなかった。
On the surface of the laminated body 10 after firing, unsintered A
Because of the existence of the l 2 O 3 layer, ultrasonic cleaning in a butyl acetate solvent successfully removed the Al 2 O 3 layer. When the shrinkage rate of the substrate after firing was measured, the shrinkage rate was 0.1% or less. As a result, the multi-layer substrate 11 in which the shrinkage in the planar direction did not occur could be manufactured. Furthermore, the uppermost layer pattern was screen-printed on this multilayer substrate with an Ag-Pd paste, and drying and baking were performed in the same manner as described above. Since the shrinkage of the inner layer substrate was extremely small, there was no print displacement of the uppermost layer pattern.

【0018】(実施例2)図2において(a)に示した
基板材料のガラス・セラミックグリーンシート1は実施
例1と同様の組成の物を用いた。次に(b)に示した焼
結の起こらないAl23グリーンシート2は無機成分と
してAl23粉末(住友アルミ社製 AL−41 平均
粒径1.9μm)のみを用い前記ガラス・セラミックグ
リーンシート1と同様のグリーンシート組成で、同様の
方法で作製した。前記ガラス・セラミックグリーンシー
ト1の厚みは約200μm、Al23グリーンシート2
は約300μmである。
(Embodiment 2) The glass-ceramic green sheet 1 of the substrate material shown in FIG. 2 (a) had the same composition as in Embodiment 1. Next, the Al 2 O 3 green sheet 2 shown in (b) where sintering does not occur uses only Al 2 O 3 powder (AL-41 average particle size 1.9 μm manufactured by Sumitomo Aluminum Co., Ltd.) as an inorganic component. A green sheet composition similar to that of the ceramic green sheet 1 was used and a similar method was used. The glass / ceramic green sheet 1 has a thickness of about 200 μm, and the Al 2 O 3 green sheet 2 has a thickness of about 200 μm.
Is about 300 μm.

【0019】(c)に示すように、ガラス・セラミック
グリーンシート1にスクリーン印刷法によってビア導体
3を形成し、ビア導体形成済みガラス・セラミックグリ
ーンシート4を形成した。(d)に示すように表層にB
N12層を有する焼結済みセラミック基板13上にAg
導体ペーストで印刷し焼成して導体パターン8を形成し
た。(e)に示すように、前記ビア導体形成済みガラス
・セラミックグリーンシート4に焼結済みセラミック基
板上の導体パターン8を熱・圧力を加えてガラス・セラ
ミックグリーンシート上に転写した。(f)に示すよう
に前記導体パターンを形成したガラス・セラミックグリ
ーンシートを所定の枚数積み重ね、さらにその両面に前
記Al23グリーンシート2を重ね合わせる。この状態
で熱圧着して積層体9を形成した。熱圧着条件は、温度
が80℃、圧力は200kg/cm2であった。(g)
に示すように、有機バインダの分解、焼成を行った。
As shown in (c), a via conductor 3 was formed on the glass / ceramic green sheet 1 by a screen printing method to form a via conductor-formed glass / ceramic green sheet 4. As shown in (d), B is on the surface
Ag on the sintered ceramic substrate 13 with N12 layer
A conductor pattern 8 was formed by printing with a conductor paste and firing. As shown in (e), the conductor pattern 8 on the sintered ceramic substrate was transferred to the glass / ceramic green sheet 4 on which the via conductor was formed by applying heat and pressure. As shown in (f), a predetermined number of glass-ceramic green sheets having the conductor pattern formed thereon are stacked, and the Al 2 O 3 green sheets 2 are further stacked on both sides thereof. In this state, thermocompression bonding was performed to form a laminated body 9. The thermocompression bonding conditions were a temperature of 80 ° C. and a pressure of 200 kg / cm 2 . (G)
As shown in, the organic binder was decomposed and fired.

【0020】以上のようにして作製した焼成後の積層体
10の両面のAl23層を実施例1と同様超音波洗浄に
て取り除き多層基板11を作製した。本実施例において
も最上層にCuペーストを用いて印刷、焼成を行ったと
ころ、良好な低温焼結多層基板が得られた。
The Al 2 O 3 layers on both sides of the fired laminate 10 produced as described above were removed by ultrasonic cleaning in the same manner as in Example 1 to produce a multilayer substrate 11. Also in this example, when the uppermost layer was printed with Cu paste and fired, a good low temperature sintered multilayer substrate was obtained.

【0021】[0021]

【発明の効果】本発明は、多孔質セラミック焼結板、ま
たは基板焼成温度では焼結しない無機組成物によるグリ
ーンシートをガラス・セラミックグリーンシート積層体
の両面に配して加圧、焼成してガラス・セラミック基板
の焼結による収縮を平面方向には抑制する多層セラミッ
ク基板の製造方法において、電極形成方法は金属導体を
使用する。このため、低抵抗値の導体を有し、基板ワレ
のない信頼性の高い多層セラミック基板を製造できる。
Industrial Applicability According to the present invention, a porous ceramic sintered plate or a green sheet made of an inorganic composition which does not sinter at the substrate sintering temperature is placed on both sides of a glass / ceramic green sheet laminate and pressed and sintered. In the method of manufacturing a multilayer ceramic substrate that suppresses shrinkage due to sintering of the glass-ceramic substrate in the planar direction, the electrode forming method uses a metal conductor. Therefore, it is possible to manufacture a highly reliable multilayer ceramic substrate having a conductor with a low resistance value and free from substrate cracking.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施例1の多層セラミック基
板の製造工程図 (b)は本発明の実施例1の多層セラミック基板の製造
工程図 (c)は本発明の実施例1の多層セラミック基板の製造
工程図 (d)は本発明の実施例1の多層セラミック基板の製造
工程図 (e)は本発明の実施例1の多層セラミック基板の製造
工程図 (f)は本発明の実施例1の多層セラミック基板の製造
工程図 (g)は本発明の実施例1の多層セラミック基板の製造
工程図 (h)は本発明の実施例1の多層セラミック基板の製造
工程図
1A is a manufacturing process diagram of a multilayer ceramic substrate according to a first embodiment of the present invention, FIG. 1B is a manufacturing process diagram of a multilayer ceramic substrate according to a first embodiment of the present invention, and FIG. 1C is a first embodiment of the present invention. (D) is a manufacturing process diagram of the multilayer ceramic substrate of Example 1 of the present invention. (E) is a manufacturing process diagram of the multilayer ceramic substrate of Example 1 of the present invention. (G) is a manufacturing process diagram of the multilayer ceramic substrate of Example 1 of the present invention. (H) is a manufacturing process diagram of the multilayer ceramic substrate of Example 1 of the present invention.

【図2】(a)は本発明の実施例2の多層セラミック基
板の製造工程図 (b)は本発明の実施例2の多層セラミック基板の製造
工程図 (c)は本発明の実施例2の多層セラミック基板の製造
工程図 (d)は本発明の実施例2の多層セラミック基板の製造
工程図 (e)は本発明の実施例2の多層セラミック基板の製造
工程図 (f)は本発明の実施例2の多層セラミック基板の製造
工程図 (g)は本発明の実施例2の多層セラミック基板の製造
工程図 (h)は本発明の実施例2の多層セラミック基板の製造
工程図
2A is a manufacturing process diagram of a multilayer ceramic substrate according to a second embodiment of the present invention. FIG. 2B is a manufacturing process diagram of a multilayer ceramic substrate according to a second embodiment of the present invention. (D) is a manufacturing process drawing of the multilayer ceramic substrate of the second embodiment of the present invention. (E) is a manufacturing process drawing of the multilayer ceramic substrate of the second embodiment of the present invention. (G) is a manufacturing process diagram of the multilayer ceramic substrate of Example 2 of the present invention. (H) is a manufacturing process diagram of the multilayer ceramic substrate of Example 2 of the present invention.

【図3】(a)は従来の多層セラミック基板の製造工程 (b)は従来の多層セラミック基板の製造工程 (c)は従来の多層セラミック基板の製造工程3A is a manufacturing process of a conventional multilayer ceramic substrate, FIG. 3B is a manufacturing process of a conventional multilayer ceramic substrate, and FIG. 3C is a manufacturing process of a conventional multilayer ceramic substrate.

【符号の説明】[Explanation of symbols]

1 ガラス・セラミックグリーンシート 2 Al23 3 ビア導体 4 ビア導体形成済みガラス・セラミックグリーンシ
ート 5 熱可塑性樹脂層 6 高分子フィルム 7 Cu箔 8 導体パターン 9 積層体 10 焼成後の積層体 11 多層基板 12 BN層 13 焼結済みセラミック基板
1 Glass / ceramic green sheet 2 Al 2 O 3 3 Via conductor 4 Glass / ceramic green sheet with via conductor formed 5 Thermoplastic resin layer 6 Polymer film 7 Cu foil 8 Conductor pattern 9 Laminated body 10 Laminated body after firing 11 Multilayered Substrate 12 BN layer 13 Sintered ceramic substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大谷 博之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Otani 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 ガラス・セラミック材料と有機バインダ
と可塑剤からなるグリーンシートを作製し、電極パター
ンを形成し、前記グリーンシートと別の電極パターン形
成済みグリーンシートとを所望枚数積層し、低温焼結ガ
ラス・セラミックよりなる第1の積層体の両面に、基板
の焼成温度では焼結しない無機組成物によるグリーンシ
ートを積層して第2の積層体を形成し、前記第2の積層
体を焼成する多層セラミック基板の製造方法において、
電極形成は金属導体を使用することを特徴とする多層セ
ラミック基板の製造方法。
1. A green sheet made of a glass / ceramic material, an organic binder and a plasticizer is prepared, an electrode pattern is formed, and a desired number of the green sheet and another green sheet having an electrode pattern formed thereon are laminated, followed by low temperature firing. A green sheet of an inorganic composition that does not sinter at the firing temperature of the substrate is laminated on both surfaces of the first laminated body made of glass-ceramic to form a second laminated body, and the second laminated body is fired. In the method of manufacturing a multilayer ceramic substrate,
A method for manufacturing a multilayer ceramic substrate, characterized in that a metal conductor is used for electrode formation.
【請求項2】 金属導体が、Ag,Ag−Pd,Ag−
Pt,Cuのいずれかを主成分とすることを特徴とする
請求項1記載の多層セラミック基板の製造方法。
2. The metal conductor is Ag, Ag-Pd, Ag-
The method for producing a multilayer ceramic substrate according to claim 1, wherein one of Pt and Cu is a main component.
【請求項3】 金属導体の表面を粗化することを特徴と
する請求項1記載の多層セラミック基板の製造方法。
3. The method for producing a multilayer ceramic substrate according to claim 1, wherein the surface of the metal conductor is roughened.
【請求項4】 金属導体が、CuOを主成分とすること
を特徴とする請求項1に記載の多層セラミック基板の製
造方法。
4. The method for manufacturing a multilayer ceramic substrate according to claim 1, wherein the metal conductor contains CuO as a main component.
【請求項5】 第2の積層体を空気雰囲気で熱処理して
有機バインダを分解、除去した後、還元雰囲気中で熱処
理してCuO箔をCuに還元することを特徴とする請求
項1に記載の多層セラミック基板の製造方法。
5. The CuO foil is reduced to Cu by heat treating the second laminate in an air atmosphere to decompose and remove the organic binder, and then heat treating in a reducing atmosphere. Manufacturing method of multilayer ceramic substrate.
【請求項6】 ガラス・セラミック低温焼結基板材料の
焼成温度で焼結しない無機組成物は、Al23、Mg
O,ZrO2、MgO,SiO2、AlN、BN、TiO
2を少なくとも1種類以上を含むことを特徴とする請求
項1または2に記載の多層セラミック基板の製造方法。
6. The inorganic composition which does not sinter at the firing temperature of the glass / ceramic low temperature sintering substrate material is Al 2 O 3 , Mg.
O, ZrO 2 , MgO, SiO 2 , AlN, BN, TiO
3. The method for manufacturing a multilayer ceramic substrate according to claim 1, wherein at least one kind of 2 is included.
【請求項7】 第2の積層体の焼成が800℃〜100
0℃の範囲で行なうことを特徴とする請求項1記載の多
層セラミック基板の製造方法。
7. The firing of the second laminate is 800 ° C. to 100 ° C.
The method for producing a multilayer ceramic substrate according to claim 1, wherein the temperature is 0 ° C.
【請求項8】 ガラス・セラミック積層体の焼成時に前
記ガラス・セラミック積層体を加圧して焼成を行なうこ
とを特徴とする請求項1記載の多層セラミック基板の製
造方法。
8. The method for manufacturing a multilayer ceramic substrate according to claim 1, wherein the glass-ceramic laminate is pressed and fired when firing the glass-ceramic laminate.
【請求項9】 金属導体による導体パターン形成は、高
分子フィルム上に形成した導体パターンをガラス・セラ
ミックグリーンシートへ転写することによって行なうこ
とを特徴とする請求項1記載の多層セラミック基板の製
造方法。
9. The method for producing a multilayer ceramic substrate according to claim 1, wherein the formation of the conductor pattern by the metal conductor is performed by transferring the conductor pattern formed on the polymer film to a glass / ceramic green sheet. .
【請求項10】 高分子フィルム上に熱可塑性樹脂層を
有することを特徴とする請求項9記載の多層セラミック
基板の製造方法。
10. The method for producing a multilayer ceramic substrate according to claim 9, further comprising a thermoplastic resin layer on the polymer film.
【請求項11】 導体パターンの転写は加熱しながら行
なうことを特徴とする請求項9記載の多層セラミック基
板の製造方法。
11. The method for manufacturing a multilayer ceramic substrate according to claim 9, wherein the transfer of the conductor pattern is performed while heating.
【請求項12】 前記導体パターンの転写温度は前記熱
可塑性樹脂の融点付近の温度であることを特徴とする請
求項9記載の多層セラミック基板の製造方法。
12. The method for manufacturing a multilayer ceramic substrate according to claim 9, wherein the transfer temperature of the conductor pattern is a temperature near the melting point of the thermoplastic resin.
【請求項13】 導体パターンの高分子フィルム上への
形成は、フィルム上に金属導体を圧着した後、メッキ法
によって導体パターン形成することを特徴とする請求項
9記載の多層セラミック基板の製造方法。
13. The method for producing a multilayer ceramic substrate according to claim 9, wherein the conductor pattern is formed on the polymer film by forming a conductor pattern by a plating method after pressing a metal conductor on the film. .
【請求項14】 導体パターンの高分子フィルム上への
形成は、フィルム上に蒸着法によって導体パターン形成
することを特徴とする請求項9記載の多層セラミック基
板の製造方法。
14. The method for producing a multilayer ceramic substrate according to claim 9, wherein the conductor pattern is formed on the polymer film by forming a conductor pattern on the film by a vapor deposition method.
【請求項15】 金属導体による導体パターン形成は、
焼結済みセラミック上に形成した導体パターンをガラス
・セラミックグリーンシートへ転写することによって行
なうことを特徴とする請求項1に記載の多層セラミック
基板の製造方法。
15. The conductor pattern formation using a metal conductor comprises:
The method for producing a multilayer ceramic substrate according to claim 1, wherein the conductive pattern formed on the sintered ceramic is transferred to a glass-ceramic green sheet.
【請求項16】 導体パターンは焼結済みセラミック上
に導体ペーストを印刷・焼成して形成することを特徴と
する請求項15記載の多層セラミック基板の製造方法。
16. The method for manufacturing a multilayer ceramic substrate according to claim 15, wherein the conductor pattern is formed by printing and firing a conductor paste on a sintered ceramic.
【請求項17】 焼結済みセラミック基板の表面に、焼
成時に導体ペーストと反応しない、かつ前記焼結済みセ
ラミック基板と反応しない層を有することを特徴とする
請求項15記載の多層セラミック基板の製造方法。
17. The production of a multilayer ceramic substrate according to claim 15, wherein the surface of the sintered ceramic substrate has a layer which does not react with the conductor paste during firing and does not react with the sintered ceramic substrate. Method.
【請求項18】 焼成時に導体ペーストと反応しない層
はAl23、MgO,ZrO2、MgO,SiO2、Al
N、BN、TiO2を少なくとも1種類以上を含む粉体
層であることを特徴とする請求項17記載の多層セラミ
ック基板の製造方法。
18. The layer that does not react with the conductor paste during firing is Al 2 O 3 , MgO, ZrO 2 , MgO, SiO 2 , Al.
The method for producing a multilayer ceramic substrate according to claim 17, wherein the powder layer is a powder layer containing at least one of N, BN, and TiO 2 .
JP22550193A 1993-09-10 1993-09-10 Method for manufacturing multilayer ceramic substrate Expired - Fee Related JP3351043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22550193A JP3351043B2 (en) 1993-09-10 1993-09-10 Method for manufacturing multilayer ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22550193A JP3351043B2 (en) 1993-09-10 1993-09-10 Method for manufacturing multilayer ceramic substrate

Publications (2)

Publication Number Publication Date
JPH0786743A true JPH0786743A (en) 1995-03-31
JP3351043B2 JP3351043B2 (en) 2002-11-25

Family

ID=16830314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22550193A Expired - Fee Related JP3351043B2 (en) 1993-09-10 1993-09-10 Method for manufacturing multilayer ceramic substrate

Country Status (1)

Country Link
JP (1) JP3351043B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178713A2 (en) * 2000-07-21 2002-02-06 Murata Manufacturing Co., Ltd. Multilayered board and method for fabricating the same
WO2002043455A1 (en) * 2000-11-27 2002-05-30 Murata Manufacturing Co.,Ltd. Method of manufacturing ceramic multi-layer substrate, and unbaked composite laminated body
US6413620B1 (en) 1999-06-30 2002-07-02 Kyocera Corporation Ceramic wiring substrate and method of producing the same
KR100447032B1 (en) * 2002-12-02 2004-09-07 전자부품연구원 Resistor-buried multilayer low-temperature-cofired-ceramic substrate with flat surface and fabrication method thereof
KR100451949B1 (en) * 2001-06-29 2004-10-08 가부시키가이샤 무라타 세이사쿠쇼 Method for manufacturing multilayer ceramic substrates
US6891109B2 (en) 2001-04-04 2005-05-10 Murata Manufacturing Co., Ltd. Monolithic ceramic substrate and method for making the same
JP2006100361A (en) * 2004-09-28 2006-04-13 Kyocera Corp High-frequency module
JP2008034860A (en) * 2007-08-20 2008-02-14 Murata Mfg Co Ltd Manufacturing method of stacked ceramic electronic component
US7352105B2 (en) 2005-02-24 2008-04-01 Kyocera Corporation Surface-acoustic-wave-device mount substrate, high-frequency module using the same, and communication apparatus
CN103681593A (en) * 2013-12-02 2014-03-26 江苏省宜兴电子器件总厂 Leadless ceramic chip carrier packaging structure and process for manufacturing same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413620B1 (en) 1999-06-30 2002-07-02 Kyocera Corporation Ceramic wiring substrate and method of producing the same
EP1178713A2 (en) * 2000-07-21 2002-02-06 Murata Manufacturing Co., Ltd. Multilayered board and method for fabricating the same
EP1178713A3 (en) * 2000-07-21 2005-01-26 Murata Manufacturing Co., Ltd. Multilayered board and method for fabricating the same
US7569177B2 (en) 2000-11-27 2009-08-04 Murata Manufacturing Co., Ltd. Method of producing ceramic multilayer substrates, and green composite laminate
WO2002043455A1 (en) * 2000-11-27 2002-05-30 Murata Manufacturing Co.,Ltd. Method of manufacturing ceramic multi-layer substrate, and unbaked composite laminated body
US7001569B2 (en) 2000-11-27 2006-02-21 Murata Manufacturing Co., Ltd. Method of manufacturing ceramic multi-layer substrate, and unbaked composite laminated body
US6891109B2 (en) 2001-04-04 2005-05-10 Murata Manufacturing Co., Ltd. Monolithic ceramic substrate and method for making the same
KR100451949B1 (en) * 2001-06-29 2004-10-08 가부시키가이샤 무라타 세이사쿠쇼 Method for manufacturing multilayer ceramic substrates
KR100447032B1 (en) * 2002-12-02 2004-09-07 전자부품연구원 Resistor-buried multilayer low-temperature-cofired-ceramic substrate with flat surface and fabrication method thereof
JP2006100361A (en) * 2004-09-28 2006-04-13 Kyocera Corp High-frequency module
JP4583123B2 (en) * 2004-09-28 2010-11-17 京セラ株式会社 High frequency module
US7352105B2 (en) 2005-02-24 2008-04-01 Kyocera Corporation Surface-acoustic-wave-device mount substrate, high-frequency module using the same, and communication apparatus
JP2008034860A (en) * 2007-08-20 2008-02-14 Murata Mfg Co Ltd Manufacturing method of stacked ceramic electronic component
JP4535098B2 (en) * 2007-08-20 2010-09-01 株式会社村田製作所 Manufacturing method of multilayer ceramic electronic component
CN103681593A (en) * 2013-12-02 2014-03-26 江苏省宜兴电子器件总厂 Leadless ceramic chip carrier packaging structure and process for manufacturing same

Also Published As

Publication number Publication date
JP3351043B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
JP2785544B2 (en) Method for manufacturing multilayer ceramic substrate
JP2004134806A (en) Ceramic capacitor baked at same time, and method for forming ceramic capacitor to use in printed circuit board
JP3351043B2 (en) Method for manufacturing multilayer ceramic substrate
JPH0697656A (en) Production of ceramic multilayered board
JP3003413B2 (en) Method for manufacturing multilayer ceramic substrate
JPH05327218A (en) Manufacture of multilayer ceramic base
JP2803414B2 (en) Method for manufacturing multilayer ceramic substrate
JP3082475B2 (en) Method for manufacturing multilayer ceramic substrate
JP2803421B2 (en) Method for manufacturing multilayer ceramic substrate
JPH0730253A (en) Method of manufacturing multilayer ceramic board
JP3100796B2 (en) Method for manufacturing multilayer ceramic substrate
JPH0786739A (en) Manufacture of multilayer ceramic board
JPH11224984A (en) Production of ceramic multilayered substrate
JP2812605B2 (en) Method for manufacturing multilayer ceramic substrate
JPH05327220A (en) Manufacture of multilayer ceramic base
JP3112258B2 (en) Circuit board and its manufacturing method
JP2855959B2 (en) Method for manufacturing multilayer ceramic substrate
JPH08134388A (en) Electrically conductive ink
JPS63239999A (en) Manufacture of ceramic multilayer laminated unit
JP3197147B2 (en) Method for manufacturing multilayer ceramic substrate
JP3850243B2 (en) Manufacturing method of glass ceramic substrate
JPH05343851A (en) Manufacture of multilayer ceramic substrate
JPH0661649A (en) Production of multilayer ceramic board
JP2515165B2 (en) Method for manufacturing multilayer wiring board
JP2000138309A (en) Conductor paste, ceramic multilayer board and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees