JPS6321353B2 - - Google Patents

Info

Publication number
JPS6321353B2
JPS6321353B2 JP2457279A JP2457279A JPS6321353B2 JP S6321353 B2 JPS6321353 B2 JP S6321353B2 JP 2457279 A JP2457279 A JP 2457279A JP 2457279 A JP2457279 A JP 2457279A JP S6321353 B2 JPS6321353 B2 JP S6321353B2
Authority
JP
Japan
Prior art keywords
crystal
layer
type
semiconductor
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2457279A
Other languages
Japanese (ja)
Other versions
JPS55117281A (en
Inventor
Takeshi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2457279A priority Critical patent/JPS55117281A/en
Publication of JPS55117281A publication Critical patent/JPS55117281A/en
Publication of JPS6321353B2 publication Critical patent/JPS6321353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は、動作速度が早く、且つしきい電圧の
低い―V族化合物半導体ヘテロ構造MOSFET
を提供するものである。
Detailed Description of the Invention The present invention provides a V group compound semiconductor heterostructure MOSFET with high operating speed and low threshold voltage.
It provides:

従来のMOSFETは第1図に示したように構成
されている。第1図において、1はソース、2は
ドレイン、3は半導体結晶、4は酸化膜、5はゲ
ート、6はチヤネルである。
A conventional MOSFET is configured as shown in FIG. In FIG. 1, 1 is a source, 2 is a drain, 3 is a semiconductor crystal, 4 is an oxide film, 5 is a gate, and 6 is a channel.

このノーマリオフインバージヨン形FETは集
積化に極めて有用であるが、以下のような問題が
ある。即ち、このインバージヨン形FETはゲー
ト、5の真下にある半導体3の表面部をゲート電
圧で反転させ、チヤネル6を形成してキヤリヤを
ソース1からドレイン2へ流すものである。この
とき、チヤネル6は結晶表面の酸化膜4との界面
付近に出来るので、結晶品質が完全にならず、そ
こを流れるキヤリヤの移動度は結晶内奥の移動度
に比べて低下しており、FETの高速動作に支障
を来たすという欠点があつた。一方、結晶表面の
安定化と良質なゲート酸化膜の作製はMOSFET
の製作には不可欠であるが、現状では、任意の結
晶材料で得られるものではない。従つて、動作速
度を高めるために、移動度の大きな結晶材料を用
いようとしても、その材料が良質の表面特性をも
つ可能性が少ないので、従来からMOSFET用材
料としてはシリコンにほゞ限定されているという
問題があつた。またチヤネル形成に必要なゲート
電圧、即ちしきい電圧を低減するためには、結晶
材料の禁止帯幅の小さいことが望ましい訳である
が、上記の理由で任意の選択性が無いという問題
があつた。
Although this normally-off inversion type FET is extremely useful for integration, it has the following problems. That is, in this inversion type FET, the surface portion of the semiconductor 3 located directly below the gate 5 is inverted by a gate voltage to form a channel 6 to allow a carrier to flow from the source 1 to the drain 2. At this time, the channel 6 is formed near the interface with the oxide film 4 on the crystal surface, so the crystal quality is not perfect, and the mobility of the carrier flowing there is lower than that deep inside the crystal. The drawback was that it interfered with the high-speed operation of the FET. On the other hand, stabilizing the crystal surface and creating a high-quality gate oxide film is necessary for MOSFETs.
However, at present, it cannot be obtained from any crystalline material. Therefore, even if an attempt is made to use a crystalline material with high mobility in order to increase the operating speed, it is unlikely that the material will have good surface characteristics, so silicon has traditionally been the only material used for MOSFETs. There was a problem that In addition, in order to reduce the gate voltage, that is, the threshold voltage, required for channel formation, it is desirable that the forbidden band width of the crystal material be small, but for the reasons mentioned above, there is a problem that there is no arbitrary selectivity. Ta.

本発明は、上記従来例の問題を解決するため
に、ゲート酸化膜と接する半導体層とチヤネルが
形成される半導体層を分離した―V族化合物ヘ
テロ構造MOSFETを提供するものであり、格子
整合などのヘテロ接合が優れた―V族化合物半
導体を用いることを特徴としている。以下、図面
により実施例を詳細に説明する。
In order to solve the problems of the conventional example described above, the present invention provides a group V compound heterostructure MOSFET in which the semiconductor layer in contact with the gate oxide film and the semiconductor layer in which the channel is formed are separated, and the semiconductor layer is separated from the semiconductor layer in contact with the gate oxide film and the semiconductor layer in which the channel is formed. It is characterized by the use of a -V group compound semiconductor with excellent heterojunctions. Hereinafter, embodiments will be described in detail with reference to the drawings.

第2図は、本発明の実施例を示したもので、7
は第1層の基板、8は第2層、9は第3層、10
はソース、11はドレイン、12はゲート酸化
膜、13はゲート電極、14,15はオーミツク
電極である。
FIG. 2 shows an embodiment of the present invention.
is the first layer substrate, 8 is the second layer, 9 is the third layer, 10
1 is a source, 11 is a drain, 12 is a gate oxide film, 13 is a gate electrode, and 14 and 15 are ohmic electrodes.

次に、本実施例の作成法を示す。まず、第3図
に示したような三層結晶基板をエピタキシヤル成
長で作成する。基板7はp形InPで、不純物濃度
は任意であり、第2層8はp形In1-xGaxAsyP1-y
(0<x<1、0<y≦1、なお本実施例ではx
=0.47、y=1としている)で、不純物濃度は
1016/cm3であり、第3層9はp形InPで、不純物
濃度は1016/cm3である。この第2層8は第1層
7、第3層9のInPと極力整合させ、また第2層
8の禁止帯幅Eg2を第1、第3層7,9の禁止帯
幅Eg1より小さくし、その範囲をEg1−Eg2
0.2eVとする。このエネルギー差Eg1−Eg2
0.2eV以下となつた場合には、ゲート電圧で誘起
した電子が表面半導体層9の表面と半導体層8の
両方に同時に分配してあらわれることが計算より
明らかになつており、本発明の意図するゲート酸
化膜と接する半導体層とチヤンネルが形成される
半導体層を分離する効果が失われることになる。
また第3層9の厚みを0.1μmとするが、第1、第
2層7,8については特別な制限はない。この三
層結晶基板のエネルギーバンドを第3図bに示す
が、各結晶層7〜9がともにp形であるために、
伝導帯のエネルギー分布が第2層8′で小さくな
り、第1、第3層7′,9′に比べて第2層8′が
くぼんでいる。また、第2図に示したように、ソ
ース10、ドレイン12をn形不純物の拡散でタ
イプ変換することにより作り、拡散フロントが第
2層8に到達するか、あるいは第1層7へ侵入す
るようにしている。またゲート部の作製は、まず
第3層9の表面にAl2O3をCVD法で作つてゲート
酸化膜12とし、ゲート電極13をAlで作る。
Next, a manufacturing method of this example will be described. First, a three-layer crystal substrate as shown in FIG. 3 is formed by epitaxial growth. The substrate 7 is p-type InP, the impurity concentration is arbitrary, and the second layer 8 is p-type In 1-x Ga x As y P 1-y
(0<x<1, 0<y≦1, and in this example, x
= 0.47, y = 1), and the impurity concentration is
The third layer 9 is p -type InP and has an impurity concentration of 10 16 / cm 3 . This second layer 8 is made to match the InP of the first layer 7 and third layer 9 as much as possible, and the forbidden band width Eg 2 of the second layer 8 is made smaller than the forbidden band width Eg 1 of the first and third layers 7 and 9. reduce the range to Eg 1 −Eg 2
Set to 0.2eV. This energy difference Eg 1 −Eg 2 is
Calculations have revealed that when the voltage is 0.2 eV or less, electrons induced by the gate voltage are distributed and appear simultaneously on both the surface of the surface semiconductor layer 9 and the semiconductor layer 8, which is the purpose of the present invention. The effect of separating the semiconductor layer in contact with the gate oxide film and the semiconductor layer in which the channel is formed will be lost.
Further, the thickness of the third layer 9 is set to 0.1 μm, but there is no particular restriction on the first and second layers 7 and 8. The energy band of this three-layer crystal substrate is shown in FIG. 3b, and since each crystal layer 7 to 9 are both p-type,
The energy distribution of the conduction band becomes smaller in the second layer 8', and the second layer 8' is depressed compared to the first and third layers 7' and 9'. In addition, as shown in FIG. 2, the source 10 and drain 12 are made by type conversion by diffusion of n-type impurities, and the diffusion front reaches the second layer 8 or invades the first layer 7. That's what I do. Further, in the production of the gate portion, first, Al 2 O 3 is formed on the surface of the third layer 9 by the CVD method to form the gate oxide film 12, and the gate electrode 13 is formed of Al.

次に、第4図は、本実施例の動作時のゲート部
のエネルギーバンドを示し、チヤネルが如何に形
成されるかを示したもので、第4図aは、ゲート
電圧が、VG=0のときである。第4図において、
Ei(一点鎖線)は禁止帯中央のレベル、EF(破線)
はフエルミレベルであり、VG=0で半導体側の
エネルギーが傾いているのは、Al電極11と表
面半導体層9の仕事関数に差があるためである。
一般に、Ei>EFでは、p形であり、Ei<EFでは、
n形となることから、VG=0では、半導体側全
体がp形で反転層がない。しかし、|VG|>|VT
|(VTは反転層(チヤネル)が現われるゲート電
圧であり、0.8Vと低かつた。)では、第2層8に
おいてEi<EFとなり、他はEi>EFであることか
ら、第2層8に電子の伝導をおこすn―チヤネル
が出来たことがわかる。即ち、第2図の
MOSFETのソース10とドレイン11が第2層
8に生じたn―チヤネルで導通したからである。
Next, FIG. 4 shows the energy band of the gate part during operation of this embodiment and shows how a channel is formed. FIG. 4a shows that the gate voltage is V G = This is when the value is 0. In Figure 4,
E i (dashed line) is the level of the center of the forbidden zone, E F (dashed line)
is the Fermi level, and the reason why the energy on the semiconductor side is tilted when V G =0 is because there is a difference in the work function of the Al electrode 11 and the surface semiconductor layer 9.
Generally, when E i > EF , it is p-type, and when E i < EF ,
Since it is n-type, when V G =0, the entire semiconductor side is p-type and there is no inversion layer. However, |V G |>|V T
| (V T is the gate voltage at which an inversion layer (channel) appears, and it was as low as 0.8 V.) In the second layer 8, E i < EF , and elsewhere E i >E F , so , it can be seen that an n-channel that causes electron conduction is formed in the second layer 8. That is, in Figure 2
This is because the source 10 and drain 11 of the MOSFET are electrically connected through the n-channel generated in the second layer 8.

本実施例を第1図に示した従来のMOSFETと
比較すると、前述の結晶表面で減少する移動度の
問題がなくなり、本実施例では、スイツチの速度
が2倍以上にあがる。また第2層8に使つた
InGaAsPの電子の走行速度はInPよりも大きくと
れることから、動作速度を大きくとれる。更に、
第4図からわかるように、第3層9が反転する以
前に第2層でチヤネルが出来ているので、しきい
電圧VTを低下させることができる。
Comparing this embodiment with the conventional MOSFET shown in FIG. 1, the above-mentioned problem of reduced mobility at the crystal surface is eliminated, and the switching speed is more than doubled in this embodiment. Also used for the second layer 8
Since the electron traveling speed of InGaAsP can be higher than that of InP, the operating speed can be increased. Furthermore,
As can be seen from FIG. 4, since a channel is formed in the second layer before the third layer 9 is inverted, the threshold voltage V T can be lowered.

なお、本発明は、高周波MOSFET、高速論理
素子、高速シフトレジスタなどに有効に利用でき
る。
Note that the present invention can be effectively used in high-frequency MOSFETs, high-speed logic elements, high-speed shift registers, and the like.

以上説明したように、本発明によれば、表面結
晶をチヤネルとせず、内部の層をチヤネルとする
ために、移動度の低下がおこらず、高速動作を行
わせることができ、現状では安定な界面特性が得
られずとも、移動度さえ大きければ、チヤネルと
して使えるために、高速動作が可能であり、更に
しきい電圧VTを下げることができるなどの利点
がある。
As explained above, according to the present invention, since the surface crystal is not used as a channel but the internal layer is used as a channel, there is no decrease in mobility, high-speed operation can be performed, and currently stable operation is possible. Even if the interface characteristics are not obtained, as long as the mobility is high, it can be used as a channel, so high-speed operation is possible, and the threshold voltage V T can be lowered, among other advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のMOSFETの構成を示した
図、第2図は、本発明の実施例の構成図、第3図
は、本発明に用いる結晶基板エネルギーバンドを
示した図、第4図は、本発明の実施例の動作時の
エネルギーバンドを示した図である。 7…基板、8,9…結晶層、10…ソース、1
1…ドレイン、12…ゲート酸化膜、13…ゲー
ト電極、14,15…オーミツク電極。
Figure 1 is a diagram showing the configuration of a conventional MOSFET, Figure 2 is a diagram showing the configuration of an embodiment of the present invention, Figure 3 is a diagram showing the crystal substrate energy band used in the present invention, and Figure 4 is a diagram showing the configuration of a conventional MOSFET. FIG. 2 is a diagram showing energy bands during operation of an embodiment of the present invention. 7...Substrate, 8,9...Crystal layer, 10...Source, 1
DESCRIPTION OF SYMBOLS 1...Drain, 12...Gate oxide film, 13...Gate electrode, 14, 15...Ohmic electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 p形(またはn形)―V族化合物半導体か
らなる第1の結晶(エネルギー禁止帯幅Eg1)上
に第1の結晶より禁止帯幅の小なるp形(または
n形)―V族半導体からなる第2の結晶(Eg1
―Eg20.2eV;但し、Eg2は第2結晶のエネルギ
ー禁止帯幅)を設け、この第2の結晶上に第1の
結晶と同一組成の第3の結晶を順にエピタキシヤ
ル成長させた三層からなる結晶基板上で、第2の
結晶層へ到達するように、第3の結晶表面からn
形(またはp形)半導体のドレイン、ソース領域
を設け、このドレインとソース領域間の第3の結
晶表面に酸化膜―金属からなるゲート部を設け
て、禁止帯幅の小なる第2の結晶層をチヤネルと
して作用させることを特徴とする―V族化合物
半導体ヘテロ構造MOSFET。
1 A p-type (or n-type)-V group compound semiconductor having a smaller band gap than the first crystal (energy gap E g1 ) is formed on the first crystal (energy gap E g1 ) made of a p-type (or n-type)-V group compound semiconductor. A second crystal consisting of a semiconductor (E g1
-E g2 0.2eV; however, E g2 is the energy forbidden band width of the second crystal), and a third crystal having the same composition as the first crystal is epitaxially grown on this second crystal in order. On a crystal substrate consisting of layers, n from the third crystal surface reaches the second crystal layer.
A drain and a source region of a type (or p-type) semiconductor are provided, and a gate portion made of an oxide film and metal is provided on a third crystal surface between the drain and source regions to form a second crystal with a small forbidden band width. A group V compound semiconductor heterostructure MOSFET characterized by having layers act as channels.
JP2457279A 1979-03-05 1979-03-05 3[5 group compound semiconductor hetero structure mosfet Granted JPS55117281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2457279A JPS55117281A (en) 1979-03-05 1979-03-05 3[5 group compound semiconductor hetero structure mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2457279A JPS55117281A (en) 1979-03-05 1979-03-05 3[5 group compound semiconductor hetero structure mosfet

Publications (2)

Publication Number Publication Date
JPS55117281A JPS55117281A (en) 1980-09-09
JPS6321353B2 true JPS6321353B2 (en) 1988-05-06

Family

ID=12141873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2457279A Granted JPS55117281A (en) 1979-03-05 1979-03-05 3[5 group compound semiconductor hetero structure mosfet

Country Status (1)

Country Link
JP (1) JPS55117281A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188165A (en) * 1982-04-28 1983-11-02 Nec Corp Semiconductor device
JPS599971A (en) * 1982-07-08 1984-01-19 Matsushita Electric Ind Co Ltd Insulated gate field effect transistor
JPS6012775A (en) * 1983-07-02 1985-01-23 Agency Of Ind Science & Technol Field effect transistor
JPS6127681A (en) * 1984-07-17 1986-02-07 Res Dev Corp Of Japan Field effect transistor having channel part of superlattice construction
JP2720153B2 (en) * 1987-05-15 1998-02-25 セイコーインスツルメンツ株式会社 Insulated gate field effect transistor and method of manufacturing the same
JP2571296B2 (en) * 1990-04-04 1997-01-16 旭化成工業株式会社 High reliability and high sensitivity InAs Hall element
US7781801B2 (en) 2006-09-25 2010-08-24 Alcatel-Lucent Usa Inc. Field-effect transistors whose gate electrodes are over semiconductor heterostructures and parts of source and drain electrodes
JP2011082332A (en) * 2009-10-07 2011-04-21 National Chiao Tung Univ Structure of high electron mobility transistor, device including structure of the same, and method of manufacturing the same

Also Published As

Publication number Publication date
JPS55117281A (en) 1980-09-09

Similar Documents

Publication Publication Date Title
JPH024140B2 (en)
JP3604502B2 (en) High electron mobility transistor
JPS6321353B2 (en)
JPH0324782B2 (en)
US5294818A (en) MISFET including GaAs substrate and a Group II-VI gate insulator
JPH023937A (en) Field effect transistor
JP2500459B2 (en) Heterojunction field effect transistor
JP3588988B2 (en) Semiconductor device
JP3085376B2 (en) Field effect transistor
JP2578745B2 (en) Field effect transistor
JP2921835B2 (en) Heterojunction field effect transistor
JPS6321354B2 (en)
JP2655594B2 (en) Integrated semiconductor device
JP2687937B2 (en) Field effect transistor
JP3054216B2 (en) Semiconductor device
JPS5891681A (en) Field-effect type transistor
JPS594085A (en) Semiconductor device
JPS59210672A (en) Semiconductor device
JPS60136380A (en) Semiconductor device
JPH01257372A (en) Insulated gate field effect transistor
JPH06252175A (en) Transistor having high electron mobility
JP2738690B2 (en) Heterojunction field effect transistor
JPH0669241A (en) Semiconductor device
JPH077152A (en) Gallium antimonide field effect transistor
JPH05102190A (en) Compound-semiconductor heterojunction-gate field-effect transistor