JP2571296B2 - High reliability and high sensitivity InAs Hall element - Google Patents

High reliability and high sensitivity InAs Hall element

Info

Publication number
JP2571296B2
JP2571296B2 JP2088189A JP8818990A JP2571296B2 JP 2571296 B2 JP2571296 B2 JP 2571296B2 JP 2088189 A JP2088189 A JP 2088189A JP 8818990 A JP8818990 A JP 8818990A JP 2571296 B2 JP2571296 B2 JP 2571296B2
Authority
JP
Japan
Prior art keywords
layer
inas
hall element
active layer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2088189A
Other languages
Japanese (ja)
Other versions
JPH03288482A (en
Inventor
一郎 柴▲崎▼
孝志 吉田
伊藤  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2088189A priority Critical patent/JP2571296B2/en
Publication of JPH03288482A publication Critical patent/JPH03288482A/en
Application granted granted Critical
Publication of JP2571296B2 publication Critical patent/JP2571296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製造工程中に特性の劣化が起こりにくく、か
つ良好な温度特性、信頼性をもち、オフセット電圧の小
さい構造をもつ高感度InAsホール素子に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high-sensitivity InAs hole having a structure in which characteristics are unlikely to deteriorate during a manufacturing process, has good temperature characteristics and reliability, and has a small offset voltage. It relates to an element.

〔従来の技術〕[Conventional technology]

従来単結晶基板を用いたInAsホール素子は第2図のよ
うに半絶縁性GaAs基板1上にエピタキシャル成長させた
n型InAs層2をホール素子感磁部として用いていた。そ
して表面のn型InAs層上には、パッシベーション層とし
て、Si3N4やSiO2等の絶縁膜5が直接接して形成されて
いた。このためSi3N4やSiO2等のパッシーベーション用
の絶縁膜をスパッタリングやプラズマCVD等の方法で形
成するが、このときの成膜条件によってホール素子の出
力や抵抗値等の基本特性が大きく変わり、製造上大きな
問題となっていた。つまり表面の絶縁膜は形成されると
きInAsとの界面でInAsの結晶特性を大きく変化させてし
まう性質があり、その結果製作されたホール素子の特性
が低下してしまうという問題があった。特に高電子移動
度をもつInAs薄膜をホール素子化し高感度ホール素子を
作ろうとすると、InAs薄膜の活性層が薄く、この特性低
下も大きく大きな問題であった。
Conventionally, an InAs Hall element using a single crystal substrate uses an n-type InAs layer 2 epitaxially grown on a semi-insulating GaAs substrate 1 as a Hall element magnetic sensing part as shown in FIG. On the n-type InAs layer on the surface, an insulating film 5 such as Si 3 N 4 or SiO 2 was formed as a passivation layer in direct contact. For this reason, an insulating film for passivation such as Si 3 N 4 or SiO 2 is formed by a method such as sputtering or plasma CVD, but the basic characteristics such as the output and the resistance value of the Hall element are large depending on the film forming conditions at this time. Instead, it was a major problem in manufacturing. In other words, when the insulating film on the surface is formed, it has the property of changing the crystal characteristics of InAs at the interface with InAs, and as a result, there is a problem that the characteristics of the manufactured Hall element deteriorate. In particular, when an InAs thin film having a high electron mobility is converted into a Hall element to produce a high-sensitivity Hall element, the active layer of the InAs thin film is thin, and this characteristic deterioration is a serious problem.

ところがこの絶縁膜はInAsホール素子の信頼性を得る
上で必ず必要であり、特に長期的な信頼性を付与する保
護膜として必須である。このため、高感度のInAsホール
素子を作る上で解決されるべき大きな問題であった。
However, this insulating film is indispensable for obtaining the reliability of the InAs Hall element, and is particularly necessary as a protective film for providing long-term reliability. Therefore, this is a major problem to be solved in fabricating a high-sensitivity InAs Hall element.

〔本発明が解決しようとする課題〕[Problems to be solved by the present invention]

従来のホール素子の構造を第2図に示す。この場合は
表面にn型InAsの活性層2があり、該層が直接Si3N4やS
iO2等の絶縁膜5に接している構造である。このため、S
i3N4やSiO2等の絶縁膜を表面に形成する工程で活性層の
表面、すなわち絶縁層と活性層の界面に転位、点欠陥が
発生し、さらにその後のアニールなどの加熱工程で不純
物と異常拡散、あるいは活性層の表面の熱変性が生じ、
素子特性が低下するという工程変動があった。また活性
層が薄い場合、活性層そのものを変えてしまう場合があ
った。この結果、製作するInAsホール素子の入力抵抗、
出力抵抗の大きな変化や、ホール出力電圧の低下を生じ
た。特にInAsの活性層へSi、SやGe等のドナー不純物を
ドープし、抵抗値の温度変化を少なくし、かつ活性層の
厚さを0.1〜0.7μmと薄くした場合に大きな特性の低下
が生じた。そこで、本発明は薄いn型InAs活性層を有す
るInAsホール素子で、かつSi、S、SnやGe等をドナー不
純物として活性層にドープされたものについて製造プロ
セスで特性の劣化のない、かつ歩留まりと良いオフセッ
トの少ない構造をもつ高感度、高品質、高信頼性をもつ
InAsホール素子を提供するものである。
FIG. 2 shows the structure of a conventional Hall element. In this case there are n-type InAs active layer 2 on the surface, said layer directly Si 3 N 4 and S
This is a structure in contact with an insulating film 5 such as iO 2 . Therefore, S
In the process of forming an insulating film such as i 3 N 4 or SiO 2 on the surface, dislocations and point defects are generated on the surface of the active layer, that is, at the interface between the insulating layer and the active layer, and impurities are generated in a subsequent heating process such as annealing. And abnormal diffusion, or thermal denaturation of the active layer surface,
There was a process variation in which the element characteristics deteriorated. When the active layer is thin, the active layer itself may be changed. As a result, the input resistance of the InAs Hall element
The output resistance greatly changed and the Hall output voltage dropped. In particular, when the active layer of InAs is doped with a donor impurity such as Si, S, or Ge to reduce the temperature change of the resistance value and reduce the thickness of the active layer to 0.1 to 0.7 μm, a large decrease in characteristics occurs. Was. Therefore, the present invention provides an InAs Hall element having a thin n-type InAs active layer, in which the active layer is doped with Si, S, Sn, Ge, or the like as a donor impurity, without any deterioration in characteristics in a manufacturing process and at a high yield. High sensitivity, high quality, and high reliability with a structure with less offset
An InAs Hall element is provided.

〔課題を解決するための手段〕[Means for solving the problem]

本発明のInAsホール素子は、このような課題を解決す
るためになされたものである。導電性の小さい半導体層
からなる表面層と、該表面層の下部に接して厚さ0.1〜
0.7μmのn型導電層を有し、更に該導電層に接してい
る電気的に絶縁性の基板層からなり、n型InAsの導電層
にオーミック電極が形成され、該表面層に絶縁層が形成
されてなるInAsホール素子であり、特に該導電層のドナ
ー不純物としてSi、S、SnまたはGeがドープされ、室温
での電子濃度が4×1016〜1×1018/cm3の範囲にあるよ
うに形成されていることを特徴とするものである。
The InAs Hall element of the present invention has been made to solve such a problem. A surface layer made of a semiconductor layer having small conductivity, and a thickness of 0.1 to
It has an n-type conductive layer of 0.7 μm, further comprises an electrically insulating substrate layer in contact with the conductive layer, an ohmic electrode is formed on the n-type InAs conductive layer, and an insulating layer is formed on the surface layer. An InAs Hall element formed, in which Si, S, Sn or Ge is doped as a donor impurity of the conductive layer, and the electron concentration at room temperature is in a range of 4 × 10 16 to 1 × 10 18 / cm 3 . It is characterized in that it is formed as such.

即ち、第1図に示すように絶縁膜5を、ホール素子の
感磁部を構造するInAs活性層2に直接接して形成しない
構造をとる。活性層と絶縁膜の中間に電気的不活性でIn
As活性層となじみのよい、導電性と小さい半導体層3を
形成した構造をとる。
That is, as shown in FIG. 1, a structure is employed in which the insulating film 5 is not formed directly in contact with the InAs active layer 2 constituting the magnetic sensing part of the Hall element. Electrically inactive In between the active layer and the insulating film.
A structure in which a conductive and small semiconductor layer 3 having good compatibility with the As active layer is formed.

〔作 用〕(Operation)

従来の構造では、Si3N4やSiO2等の絶縁膜を形成した
時の薄いInAs活性層2そのものがいたんでしまい、電気
的特性が変化してしまう。ところが、第1図に示す本発
明のような素子構造にしておくと、Si3N4やSiO2等の絶
縁膜を形成した時、いためられるのは電気的に不活性な
層3であり、この層はInAsホール素子の電気的特性に寄
与しない。したがって、この工程で製作するInAsホール
素子の特性劣化が極めて少なくなり、安定し、特性のそ
ろった高感度のInAsホール素子が再現よく量産可能とな
った。
In the conventional structure, the thin InAs active layer 2 itself when the insulating film such as Si 3 N 4 or SiO 2 is formed is damaged, and the electrical characteristics are changed. However, if an element structure like the present invention shown in FIG. 1 is used, when an insulating film such as Si 3 N 4 or SiO 2 is formed, the electrically inactive layer 3 can be damaged, This layer does not contribute to the electrical characteristics of the InAs Hall element. Accordingly, the deterioration of the characteristics of the InAs Hall element manufactured in this step was extremely reduced, and a stable, high-sensitivity InAs Hall element with uniform characteristics could be mass-produced with good reproducibility.

〔実施例〕〔Example〕

第3図には、本発明の高感度InAsホール素子の実施例
を示す。すなわち、感磁部形成のために半絶縁性の基板
の表面にSi、S、SnやGe等のn型の不純物が2×1016
1×1018/cm3ドープされたInAs層0.10〜0.60μmの厚さ
で形成し、ついでドナー不純物をドープしないGaAs層
や、InGaAs、AlAs層などの電気的に導電性のない層を0.
20μm以下の厚さで形成し、表面の不活性半導体層とす
る。この層はn型の不純物がドープされたInAs活性層と
なじみがよく、絶縁層と違い格子のミスマッチも少なく
活性層の電気的特性に大きた影響を与えない。またこの
ような構造では、絶縁膜の形成した時直接接しいためら
れるのは電気的に不活性な層であり、この層はInAsホー
ル素子の電気的特性に寄与しない。すなわち、表面に形
成された電気的に不活性な半導体層は、表面に絶縁膜を
形成する工程で下部のInAs活性層を保護する層として働
き、製造工程でのInAs薄膜の特性の劣化が極めて小さく
なり、その結果製作するInAsホール素子の特性低下が極
めて小さくなり、安定し、特性のそろった実用的に高感
度のInAsホール素子が再現よく量産可能である。
FIG. 3 shows an embodiment of the high-sensitivity InAs Hall element of the present invention. That is, n-type impurities such as Si, S, Sn, and Ge are added to the surface of the semi-insulating substrate to form a magnetically sensitive portion in an amount of 2 × 10 16 to
A 1 × 10 18 / cm 3 -doped InAs layer is formed with a thickness of 0.10 to 0.60 μm, and then a GaAs layer not doped with a donor impurity and a layer having no electrical conductivity such as an InGaAs or AlAs layer are formed.
It is formed with a thickness of 20 μm or less to form an inactive semiconductor layer on the surface. This layer is well compatible with an InAs active layer doped with an n-type impurity, and unlike an insulating layer, has little lattice mismatch and does not significantly affect the electrical characteristics of the active layer. Further, in such a structure, what is directly contacted when the insulating film is formed is an electrically inactive layer, and this layer does not contribute to the electrical characteristics of the InAs Hall element. That is, the electrically inactive semiconductor layer formed on the surface acts as a layer for protecting the underlying InAs active layer in the process of forming an insulating film on the surface, and the characteristics of the InAs thin film are extremely deteriorated in the manufacturing process. As a result, the deterioration of the characteristics of the manufactured InAs Hall element is extremely small, and a stable and practically sensitive InAs Hall element with uniform characteristics can be mass-produced with good reproducibility.

また本発明のInAsホール素子の表面に形成される絶縁
膜は、一般に半導体のパッシベーションに用いられてい
る材料は何でもよい。特にSi3N4、SiO2やAl2O3などは中
でもより好ましいものである。また該絶縁層は通常は1.
0μm以下、好ましくは0.15〜0.40μmの厚さで形成さ
れる。
The insulating film formed on the surface of the InAs Hall element of the present invention may be any material generally used for passivation of a semiconductor. Particularly, Si 3 N 4 , SiO 2 , Al 2 O 3 and the like are more preferable. The insulating layer is usually 1.
It is formed with a thickness of 0 μm or less, preferably 0.15 to 0.40 μm.

試作例1 MBE法を用い、表面層としてアンドープGaAs層を用い
た場合の試作例を第3図に示す。まず半絶縁性GaAs基板
1上にMBE法により0.4μmのシリコンをドープしたn型
InAs活性層2を成長させ、その後0.1μmのアンドープG
aAs層3を基板温度400℃で形成し、第1図に示す素子構
成を得るための半導体層を形成した〔第3図(a)〕。
Prototype Example 1 FIG. 3 shows a prototype example in which the MBE method is used and an undoped GaAs layer is used as the surface layer. First, an n-type semiconductor doped with 0.4 μm silicon by MBE on a semi-insulating GaAs substrate 1
An InAs active layer 2 is grown and then 0.1 μm undoped G
An aAs layer 3 was formed at a substrate temperature of 400 ° C., and a semiconductor layer for obtaining the element configuration shown in FIG. 1 was formed (FIG. 3A).

次にフォトレジスト6を塗布し、フォトリソグラフィ
ー工程により十字型の所定のパターンを作り〔第3図
(b)〕、これをマスクとしてInAs活性層及び表面のGa
As層をエッチングした。その後レジスト剥離液によりレ
ジストを除去しホール素子の感磁部を形成した〔第3図
(c)〕。
Next, a photoresist 6 is applied, and a predetermined cross-shaped pattern is formed by a photolithography process (FIG. 3 (b)).
The As layer was etched. Thereafter, the resist was removed with a resist stripper to form a magnetically sensitive portion of the Hall element [FIG. 3 (c)].

この基板の上にプラズマCVD法により0.3μmの膜厚を
有するSi3N4の絶縁膜5を300℃で全面に形成した〔第3
図(d)〕。
On this substrate, an insulating film 5 of Si 3 N 4 having a thickness of 0.3 μm was formed on the entire surface at 300 ° C. by a plasma CVD method [third.
Figure (d).

次にフォトリソグラフィー工程により、電極部を形成
するため、所要のレジストパターンを形成した。しかる
後このレジストをマスクとしてCF4ガスとO2ガスを用い
た反応性ドライエッチングにより電極部のSi3N4をエッ
チング除去した〔第3図(e)〕。
Next, a required resist pattern was formed by photolithography to form an electrode portion. Thereafter, the resist was used as a mask to remove the Si 3 N 4 of the electrode portion by reactive dry etching using CF 4 gas and O 2 gas (FIG. 3E).

つづいて表面のGaAs層をエッチング除去した。こうし
てInAsの表面を露出させた。その後、Cu、Ni、Auを各々
0.25μm、0.05μm、0.35μmの厚さで蒸着し、ついで
リフトオフ法によりフォトレジスト及びフォトレジスト
上の金属を除去し、電極パターン4を形成した。次に電
極金属とInAs層とのオーミック性接触を完全に得るため
に、加熱炉中で400℃5分間N2ガス雰囲気下の合金化処
理を行った。こうして一枚の基板上に多数のInAsホール
素子を形成した〔第3図(f)〕。
Subsequently, the GaAs layer on the surface was removed by etching. Thus, the surface of InAs was exposed. Then, Cu, Ni, Au
An electrode pattern 4 was formed by vapor deposition with a thickness of 0.25 μm, 0.05 μm, and 0.35 μm, and then removing the photoresist and the metal on the photoresist by a lift-off method. Next, in order to completely obtain ohmic contact between the electrode metal and the InAs layer, an alloying treatment was performed in a heating furnace at 400 ° C. for 5 minutes in an N 2 gas atmosphere. Thus, a large number of InAs Hall elements were formed on one substrate [FIG. 3 (f)].

この後、ダイシングを行い個々のInAsホール素子ペレ
ットに切り離した。ついでリードフレーム上にダイボン
ドし、トランスファーモールドを行い、エポキシ樹脂に
よって全体をモールドされたホール素子を製作した。
Thereafter, dicing was performed to separate the individual InAs Hall element pellets. Next, die bonding was performed on a lead frame, transfer molding was performed, and a Hall element entirely molded with epoxy resin was manufactured.

第1表、従来の方法と本発明による方法でInAsホール
素子を作った場合の特性示す。従来の方法にくらべ本発
明の素子では、ホール素子特性がばらつかないととも
に、不平衡電圧も小さくなっており、また膜特性からの
設計値をよく再現しており高感度である。信頼性につい
ては、PCT試験(プレッシャー・クッカー・テスト)の
結果を第2表に示す。本発明では素子特性の変化がなく
高信頼性を示している。
Table 1 shows the characteristics when an InAs Hall element is manufactured by the conventional method and the method according to the present invention. Compared with the conventional method, in the device of the present invention, the Hall device characteristics do not vary, the unbalanced voltage is small, and the design value from the film characteristics is well reproduced, and the sensitivity is high. As for reliability, Table 2 shows the results of the PCT test (pressure cooker test). In the present invention, there is no change in element characteristics, and high reliability is shown.

試作例2 MBE法を用い、表面層としてアンドープAlGaAs層を用
いた場合の試作例を第3図に示す。まず半絶縁性GaAs基
板1上にMBE法により0.4μmのシリコンをドープしたn
型InAs活性層2を成長させ、その後0.1μmのアンドー
プAlGaAs層3を基板温度600℃で形成し、第1図に示す
素子構成を得るための半導体層を形成した〔第3図
(a)〕。
Prototype Example 2 FIG. 3 shows a prototype example in which the MBE method is used and an undoped AlGaAs layer is used as the surface layer. First, n doped with 0.4 μm silicon on the semi-insulating GaAs substrate 1 by MBE method.
A type InAs active layer 2 was grown, and then a 0.1 μm undoped AlGaAs layer 3 was formed at a substrate temperature of 600 ° C. to form a semiconductor layer for obtaining the device configuration shown in FIG. 1 (FIG. 3A). .

次にフォトレジスト6を塗布し、所定のパターンを作
り〔第3図(b)〕、これをマスクとして表面のInAs層
とAlGaAs層をエッチングした。その後O2プラズマを用い
た灰化法によりレジストを除去しホール素子の感磁部を
形成した〔第3図(c)〕。
Next, a photoresist 6 was applied to form a predetermined pattern (FIG. 3 (b)), and the InAs layer and the AlGaAs layer on the surface were etched using this as a mask. Thereafter, the resist was removed by an ashing method using O 2 plasma to form a magnetically sensitive portion of the Hall element [FIG. 3 (c)].

この基板の上にプラズマCVD法により0.3μmの膜厚を
有するSi3N4の絶縁膜5を300℃で全面に形成した〔第3
図(c)〕。次にフォトレジスト7を塗布し電極を形成
する部分に穴が開くようにフォトリソグラフィー工程に
よりパターンを形成した。しかる後このレジストをマス
クとしてCF4ガスとO2ガスを用いた反応性ドライエッチ
ングにより電極上のSi3N4をエッチングして除去した
〔第3図(e)〕。ついで表面のAlGaAs層をエッチング
し除去した。その後、Cu、Ni、Auを各々0.25μm、0.05
μm、0.35μmの厚さで蒸着し、ついでリフトオフ法に
より、フォトレジスト及びフォトレジスト上の金属を除
去し、電極パターン4を形成した。そして電極金属とIn
As層とのオーミック性接触を完全に得るために加熱炉中
で400℃5分間N2ガス雰囲気下の合金化処理を行った。
こうして一枚の基板上に多数のInAsホール素子を形成し
た〔第3図(f)〕。
On this substrate, an insulating film 5 of Si 3 N 4 having a thickness of 0.3 μm was formed on the entire surface at 300 ° C. by a plasma CVD method [third.
Figure (c)]. Next, a photoresist 7 was applied and a pattern was formed by a photolithography process so that a hole was formed in a portion where an electrode was to be formed. Thereafter, Si 3 N 4 on the electrode was removed by reactive dry etching using CF 4 gas and O 2 gas using this resist as a mask [FIG. 3 (e)]. Next, the AlGaAs layer on the surface was etched and removed. Thereafter, Cu, Ni, and Au were respectively 0.25 μm, 0.05
Then, the photoresist and the metal on the photoresist were removed by a lift-off method to form an electrode pattern 4. And electrode metal and In
In order to completely obtain ohmic contact with the As layer, alloying treatment was performed in a heating furnace at 400 ° C. for 5 minutes under an N 2 gas atmosphere.
Thus, a large number of InAs Hall elements were formed on one substrate [FIG. 3 (f)].

この後、ダイシングを行い個々のInAsホール素子ペレ
ットに切り離した。ついでリードフレーム上にダイボン
ドし、トランスファーモールドを行い、エポキシ樹脂に
よって全体をモールドされたホール素子を製作した。
Thereafter, dicing was performed to separate the individual InAs Hall element pellets. Next, die bonding was performed on a lead frame, transfer molding was performed, and a Hall element entirely molded with epoxy resin was manufactured.

第3表に、従来の方法と本発明による方法でInAsホー
ル素子を作った場合の特性を示す(25素子の平均値)。
従来の方法にくらべ本発明によれば、ホール素子特性が
ばらつかないとともに、不平衡電圧も小さくなってお
り、また膜特性からの設計値をよく再現しており高感度
である。信頼性については、PCTテストと結果を第4表
に示す(25素子の平均値)。本発明では素子特性の変化
がなく高信頼性を示している。
Table 3 shows the characteristics when an InAs Hall element was produced by the conventional method and the method according to the present invention (average value of 25 elements).
According to the present invention, as compared with the conventional method, the Hall element characteristics do not vary, the unbalance voltage is reduced, and the design value based on the film characteristics is well reproduced, and the sensitivity is high. The reliability is shown in Table 4 with the PCT test and the results (average value of 25 elements). In the present invention, there is no change in element characteristics, and high reliability is shown.

〔効 果〕 以上説明したように、本発明によれば、絶縁膜を形成
する工程で素子特性の劣化が起こりにくく、高品質のホ
ール素子を再現よく作ることができる。またこのため安
定した量産が可能である。
[Effects] As described above, according to the present invention, deterioration of element characteristics hardly occurs in the step of forming an insulating film, and a high-quality Hall element can be produced with good reproducibility. Therefore, stable mass production is possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるInAsホール素子の概略断面図、第
2図は従来の方法による素子の概略断面図、第3図はMB
E法による本発明の試作例を説明する図である。 1:半絶縁性GaAs基板、2:n型InAs活性層、3:電気的に導
電性が小さく、不活性な半導体層、4:電極、4:絶縁膜、
6および7:フォトレジスト。
FIG. 1 is a schematic sectional view of an InAs Hall element according to the present invention, FIG. 2 is a schematic sectional view of an element according to a conventional method, and FIG.
It is a figure explaining the example of trial manufacture of the present invention by the E method. 1: semi-insulating GaAs substrate, 2: n-type InAs active layer, 3: electrically small and inert semiconductor layer, 4: electrode, 4: insulating film,
6 and 7: photoresist.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性の小さい半導体層からなる表面層
と、該表面層の下部に接して厚さ0.1〜0.7μmのn型導
電層を有し、更に該導電層に接している電気的に絶縁性
の基板層からなり、n型InAsの導電層にオーミック電極
が形成され、該表面層に絶縁層が形成されてなるInAsホ
ール素子。
1. An electric device comprising: a surface layer made of a semiconductor layer having low conductivity; an n-type conductive layer having a thickness of 0.1 to 0.7 μm in contact with a lower portion of the surface layer; An InAs Hall element comprising an insulating substrate layer, an ohmic electrode formed on an n-type InAs conductive layer, and an insulating layer formed on the surface layer.
【請求項2】請求項(1)において、該導電層のドナー
不純物としてSi、S、SnまたはGeがドープされ、室温で
の電子濃度が4×1016〜1×1018/cm3の範囲にあるよう
に形成されていることを特徴とする高信頼性高感度InAs
ホール素子。
2. The conductive layer according to claim 1, wherein said conductive layer is doped with Si, S, Sn or Ge as a donor impurity, and has an electron concentration at room temperature in the range of 4 × 10 16 to 1 × 10 18 / cm 3 . Highly reliable and sensitive InAs characterized by being formed as described in
Hall element.
JP2088189A 1990-04-04 1990-04-04 High reliability and high sensitivity InAs Hall element Expired - Lifetime JP2571296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088189A JP2571296B2 (en) 1990-04-04 1990-04-04 High reliability and high sensitivity InAs Hall element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088189A JP2571296B2 (en) 1990-04-04 1990-04-04 High reliability and high sensitivity InAs Hall element

Publications (2)

Publication Number Publication Date
JPH03288482A JPH03288482A (en) 1991-12-18
JP2571296B2 true JP2571296B2 (en) 1997-01-16

Family

ID=13935956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088189A Expired - Lifetime JP2571296B2 (en) 1990-04-04 1990-04-04 High reliability and high sensitivity InAs Hall element

Country Status (1)

Country Link
JP (1) JP2571296B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855189B2 (en) * 2006-09-08 2012-01-18 旭化成エレクトロニクス株式会社 InAs Hall element
JP5165901B2 (en) * 2007-01-26 2013-03-21 旭化成エレクトロニクス株式会社 Compound semiconductor laminate
TWI619280B (en) * 2014-04-01 2018-03-21 友達光電股份有限公司 Sensing device
CN115295719A (en) * 2022-10-08 2022-11-04 苏州矩阵光电有限公司 Epitaxial layer structure of indium arsenide thin film, hall device and preparation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117281A (en) * 1979-03-05 1980-09-09 Nippon Telegr & Teleph Corp <Ntt> 3[5 group compound semiconductor hetero structure mosfet

Also Published As

Publication number Publication date
JPH03288482A (en) 1991-12-18

Similar Documents

Publication Publication Date Title
US4789643A (en) Method of manufacturing a heterojunction bipolar transistor involving etch and refill
US5198795A (en) Magnetoelectric transducer and process for producing the same
JPH0353563A (en) Semiconductor device composed of heterojunction bipolar transistor and manufacturing method of the same
US4584552A (en) Hall element with improved composite substrate
US4926154A (en) Indium arsenide magnetoresistor
JP2571296B2 (en) High reliability and high sensitivity InAs Hall element
KR940009999B1 (en) Magnetoelectric transducer and process for producing the same
US4872040A (en) Self-aligned heterojunction transistor
JP2589393B2 (en) GaAs Hall element
JP2606805B2 (en) Preparation of emitter-based composites.
JP2618539B2 (en) Method for manufacturing semiconductor device
JP2662039B2 (en) Bipolar transistor
US5117543A (en) Method of making indium arsenide magnetoresistor
JP6055596B2 (en) Hall element
JP3006274B2 (en) GaAs Hall element and method of manufacturing the same
JPH08222526A (en) P-type and n-type identical ohmic material and its manufacture
JP3332417B2 (en) Hall element and method of manufacturing the same
JP2597105Y2 (en) Hall element
JPH08274385A (en) Magnetoelectric transducer element
JPH08241896A (en) Hetero-junction bipolar transistor(hbt)
JP2597774Y2 (en) Hall element
JPH05251461A (en) Manufacture of semiconductor device electrode
JP2862705B2 (en) Heterojunction semiconductor device and method of manufacturing the same
JPH01265573A (en) Manufacture of semiconductor device
EP0375108B1 (en) Indium arsenide magnetoresistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14