JPS599971A - Insulated gate field effect transistor - Google Patents

Insulated gate field effect transistor

Info

Publication number
JPS599971A
JPS599971A JP11945282A JP11945282A JPS599971A JP S599971 A JPS599971 A JP S599971A JP 11945282 A JP11945282 A JP 11945282A JP 11945282 A JP11945282 A JP 11945282A JP S599971 A JPS599971 A JP S599971A
Authority
JP
Japan
Prior art keywords
substrate
type
field effect
effect transistor
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11945282A
Other languages
Japanese (ja)
Inventor
Hiromitsu Takagi
弘光 高木
Kota Kano
加納 剛太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11945282A priority Critical patent/JPS599971A/en
Publication of JPS599971A publication Critical patent/JPS599971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain an FET which is operated at a very high speed, by using a substrate, wherein an N<+> type GaAlAs epitaxial layer is laminated on N<-> type GaAs, and providing N<+> source and drain regions reaching the substrate and also metallic insulated gates. CONSTITUTION:An N type AlxGa1-xAs layer 12 is epitaxially grown to the thickness of about 100Angstrom on an N<-> GaAs substrate 11. Holes are provided in a field oxide film 13 and a gate oxide film 14 is provided. Thus an Mo gate electrode 15 is formed. Si ions are implanted, and the surface is coated by CVD Si3N4. Then, heat treatment is performed and N<+> layers 16 reaching the substrate 11 are formed. Finally ohmic electrodes 18 made of Au-Ge alloy are attached to the N+ layers 16. In an enhancement type MISFET formed in this way, the N type AlxGa1-xAs 12 performs the function of supplying electrons to the N<-> GaAs substrate 11, and said electrons flow in the N<-> substrate 11. Therefore, when the FET is operated at a low temperature, mobility becomes very large because there is no impurity scattering, and very high frequency operation can be performed.

Description

【発明の詳細な説明】 本発明は、絶縁ゲート電界効果トランジスタに関するも
のであり、特にモジュレーション・ドーピングされた砒
化ガリウムとガリウム・アルミ砒素の同形へテロ接合を
導電チャネルとして用いる絶縁ゲート電界効果トランジ
スタ(以下MISFETとよぶ)を提供するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to insulated gate field effect transistors, and more particularly to insulated gate field effect transistors using modulation-doped gallium arsenide and gallium aluminum arsenide isomorphic heterojunctions as conducting channels. (hereinafter referred to as MISFET).

モジュレーション・ドーピングされたヘテロ接合は良く
知られているように、低温における電子移動度が極めて
大きい。この特長をいかして、従来、n形ガリウム・ア
ルミ・砒素(以下、n形GaxAz、、 As  と記
す)表面に金属ンヨノトキー電極を形成し、このショッ
トキー電極に印加する電圧によってn形砒素ガリウム層
(以下、n形GaAs  と記す)に誘起される電子の
数を制御し、電界効果トランジスタとして動作させるも
のが考えられている。このショットキーゲートの電界効
果トランジスタの移動度は77”Kにおいて、1o5c
rl/V−8程度と極めて高く、超高周波デバイスとし
て有用である。しかし、ゲート部がショノ1〜キー接合
であるため、正の電圧が印加できないということや、ゲ
ート部とソース電(jとを隔離せねばならないというこ
とのために、ソース抵抗が増大し、高周波化のさまたげ
になる等の欠点を有している。
As is well known, modulation-doped heterojunctions have extremely high electron mobility at low temperatures. Taking advantage of this feature, conventionally, a metal Schottky electrode is formed on the surface of n-type gallium aluminum arsenic (hereinafter referred to as n-type GaxAz, As), and a voltage applied to this Schottky electrode is used to form an n-type gallium arsenide layer. It has been considered to control the number of electrons induced in GaAs (hereinafter referred to as n-type GaAs) and operate it as a field effect transistor. The mobility of this Schottky gate field effect transistor is 1o5c at 77"K.
It has an extremely high rl/V-8 or so, and is useful as an ultra-high frequency device. However, since the gate part is a one-key junction, a positive voltage cannot be applied, and the gate part and the source voltage (j) must be isolated, which increases the source resistance and causes high frequency It has disadvantages such as hindering the development of

本発明はこれもの従来の欠点を解決することを目的とす
るものであって、絶縁ゲートと自己整合ソース・ドレイ
ン電極を持った超高周波用の絶縁ケート電界効果トラン
ジスタを提供するものである。
The present invention aims to overcome these conventional drawbacks and provides an insulated gate field effect transistor for very high frequencies having an insulated gate and self-aligned source and drain electrodes.

以下、本発明の絶縁ゲート電界効果トランジスタの詳細
に関し実施例を用いて説明する。
Hereinafter, details of the insulated gate field effect transistor of the present invention will be explained using examples.

図に本発明の一実施例における絶縁ケート電界効果トラ
ンジスタの断面図を示す。まずn形で(100)而を有
するGaAs 基板11を用いる。
The figure shows a cross-sectional view of an insulated gate field effect transistor according to an embodiment of the present invention. First, an n-type GaAs substrate 11 having a (100) structure is used.

このn形GaAs 基板11の不純物濃度は低くなけれ
ばならない。
The impurity concentration of this n-type GaAs substrate 11 must be low.

本実施例では、不純物濃度が1015CTL−6以下の
基板を用いた。次に分子線エピタキシャル法を用いてn
形A4 Ga1. As )fJ 12を厚さ100A
程度のHlみに成長させる。ここで、不純物としてSn
を用い、濃度は1〜3×10 CIrL  であった。
In this example, a substrate with an impurity concentration of 1015 CTL-6 or less was used. Next, using the molecular beam epitaxial method, n
Shape A4 Ga1. As ) fJ 12 with thickness 100A
Grow to about HL size. Here, Sn as an impurity
was used, and the concentration was 1-3 x 10 CIrL.

この様にして票備しだウェハ上に、通常の化学気什成1
q法(cvn法)を用いてフィールド酸化膜数に電界効
果トランジスタ製作領域の5io2膜13を除去し、フ
ィールド酸化膜形成と同様にケート酸化膜14を500
人形成する。この後、グー1−金属16としてモリブデ
ンを3000 A蒸着f ル。
In this way, a normal chemical atmosphere is formed on the wafer prepared.
Using the q method (cvn method), remove the 5io2 film 13 in the field effect transistor fabrication area to reduce the number of field oxide films, and remove the gate oxide film 14 in the same way as in the field oxide film formation.
Form people. After this, molybdenum was vapor-deposited at 3000 A as the metal 16.

次に、ゲート部分をフォト・レジストでマスクし、反応
性イオンエツチングによりゲート部を残してMo  と
ゲート酸化膜14をエツチング除去する。
Next, the gate portion is masked with a photoresist, and the Mo 2 and gate oxide film 14 are etched away, leaving the gate portion, by reactive ion etching.

次に、Si  イオンを注入(加速電圧−160Kl。Next, Si ions were implanted (acceleration voltage -160Kl).

1’−ス−jj(=I Xl 0” ) j、、グー7
 スマOV D 法f用いて、窒化硅素膜Si3N41
7を5000人蒸着し、760’C,20分間熱処理を
施し、注入しだSi  原子の活性化を計る。このよう
にして、高濃度(ND=1 o18cm  ’ ) n
影領域16を形成する。
1'-su-jj (=I Xl 0'') j,, goo 7
Silicon nitride film Si3N41 using SmaOVD method
7 was deposited by 5000 people and heat treated at 760'C for 20 minutes to activate the implanted Si atoms. In this way, high concentration (ND=1 o18cm') n
A shadow area 16 is formed.

最後にn影領域1θにコンタクト窓をあけオーミック電
極18をAu −Ge合金を用いて形成する。
Finally, a contact window is opened in the n-shaded region 1θ and an ohmic electrode 18 is formed using an Au-Ge alloy.

以上のようにして作製して得られた電界効果トランジス
タは、n影領域16をソース及びドレインとするエンハ
ンスメント形のMISFETである。ゲート電極15直
下のAノxGa1. As 層12は常に空乏化してお
りソース・ドレイン間を流れる電流には寄与しない。ソ
ース・ドレイン間電流は、GaAs 4%板11とn形
AノXGa1. As層1.2のへテロ接合界面で、G
aAs基板11側に誘起される電子によって流れる。す
なわち、n形AノxGa1.ン1輌12は電子をn形G
a As  爪板11に供給する働きをし、この電子が
不純物濃度の低いn形GaAs基板11を流れる。した
がって、このMISFETを低温で動作させると、不純
物散乱がないので移動度は(”枳めて大きくなり、超高
周波動作が可能である。
The field effect transistor manufactured as described above is an enhancement type MISFET in which the n-shaded region 16 serves as a source and a drain. AnoxGa1. directly below the gate electrode 15. The As layer 12 is always depleted and does not contribute to the current flowing between the source and drain. The source-drain current is between the GaAs 4% plate 11 and the n-type A-XGa1. At the heterojunction interface of As layer 1.2, G
The flow is caused by electrons induced on the aAs substrate 11 side. That is, n-type AnoxGa1. 1 car 12 converts electrons into n-type G
a As serves to supply the nail plate 11, and these electrons flow through the n-type GaAs substrate 11 with a low impurity concentration. Therefore, when this MISFET is operated at a low temperature, the mobility is significantly increased because there is no impurity scattering, and ultra-high frequency operation is possible.

また、n形Aj!−xGal−x AS 層12の厚さ
を厚く(=1000人)すればデプレッション形動作の
MISFETを実現できる、。
Also, n-type Aj! -xGal-x AS If the thickness of the layer 12 is increased (=1000 layers), a MISFET with depression mode operation can be realized.

以]−に述べたように本発明の絶縁ゲート電界効果トラ
ンジスタを用いると、ゲートの入力インピータンスが高
く、かつソース・ゲート抵抗が極めて小さなFETを実
現することができる。しだがって、従来になく高速動作
が可能であるのみならず、集積化という点でも優れた効
果を発揮する。
As described above, by using the insulated gate field effect transistor of the present invention, it is possible to realize an FET with high gate input impedance and extremely low source-gate resistance. Therefore, not only is it possible to operate at a higher speed than ever before, but it also exhibits excellent effects in terms of integration.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例における絶縁ゲート電界効果トラン
ジスタの断面図を示す。 11・・・・・・n形低濃度GaAs 基板、12・・
・・・n719j 高濃度A4 Ga1. As  エ
ピタキシャル層、13・・・・・フィールド酸化膜層、
14・・・・・ゲート酸化膜層、15・・・・・・ゲー
ト金属、16・・・・・高濃度n形拡散層、17・・・
・・・層間絶縁膜、18・・・・・・オーミック電極。
The figure shows a cross-sectional view of an insulated gate field effect transistor in an embodiment of the invention. 11...N-type low concentration GaAs substrate, 12...
...n719j High concentration A4 Ga1. As epitaxial layer, 13... field oxide film layer,
14...Gate oxide film layer, 15...Gate metal, 16...High concentration n-type diffusion layer, 17...
...Interlayer insulating film, 18...Ohmic electrode.

Claims (1)

【特許請求の範囲】[Claims] n形低濃度砒化ガリウム基板上にn形高濃度ガリウム−
アルミー砒素のエピタキシャル層が形成され、前記n形
高濃度ガリウム・アルミ・砒素層の上に、開孔部を有す
る第1の絶縁膜が形成され、前記開孔部の前記ガリウム
・アルミ・砒素層の上に金属膜が漬1・Δされた第2の
絶縁膜が形成されることによって前記開孔部が2つに分
割され、この分割された開化部を通して不純物が導入さ
れた前記基板に達する深さの高濃度n影領域が形成され
、1)1■記金属膜をゲート電極、011記2つの高濃
度n影領域をソース・ドレインとすることを特徴とする
絶縁グー1〜電界効果トランジスタ。
N-type high concentration gallium arsenide on n-type low concentration gallium arsenide substrate
An epitaxial layer of aluminum arsenic is formed, a first insulating film having an opening is formed on the n-type high concentration gallium-aluminum-arsenic layer, and the gallium-aluminum-arsenic layer is located in the opening. By forming a second insulating film on which a metal film is dipping 1·Δ, the opening is divided into two parts, and the impurity is introduced into the substrate through the divided opening. Insulating goo 1 to field effect transistor characterized in that a deep high concentration n shadow region is formed, 1) the metal film 1) is used as a gate electrode, and the two high concentration n shadow regions 011 are used as a source/drain .
JP11945282A 1982-07-08 1982-07-08 Insulated gate field effect transistor Pending JPS599971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11945282A JPS599971A (en) 1982-07-08 1982-07-08 Insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11945282A JPS599971A (en) 1982-07-08 1982-07-08 Insulated gate field effect transistor

Publications (1)

Publication Number Publication Date
JPS599971A true JPS599971A (en) 1984-01-19

Family

ID=14761729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11945282A Pending JPS599971A (en) 1982-07-08 1982-07-08 Insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS599971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220194A (en) * 1989-11-27 1993-06-15 Motorola, Inc. Tunable capacitor with RF-DC isolation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117281A (en) * 1979-03-05 1980-09-09 Nippon Telegr & Teleph Corp <Ntt> 3[5 group compound semiconductor hetero structure mosfet
JPS56104472A (en) * 1980-01-24 1981-08-20 Sumitomo Electric Ind Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117281A (en) * 1979-03-05 1980-09-09 Nippon Telegr & Teleph Corp <Ntt> 3[5 group compound semiconductor hetero structure mosfet
JPS56104472A (en) * 1980-01-24 1981-08-20 Sumitomo Electric Ind Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220194A (en) * 1989-11-27 1993-06-15 Motorola, Inc. Tunable capacitor with RF-DC isolation

Similar Documents

Publication Publication Date Title
JPH10209434A (en) Heterojunction field effect transistor, and its manufacturing method
US5895929A (en) Low subthreshold leakage current HFET
JPH05299441A (en) Manufacture of field effect transistor
JPS5932173A (en) Manufacture of field effect transistor
JPS599971A (en) Insulated gate field effect transistor
JP3653652B2 (en) Semiconductor device
JPH0328062B2 (en)
JPH0810701B2 (en) Method for manufacturing junction field effect transistor
JPS59165460A (en) Semiconductor device and manufacture thereof
JPS60136380A (en) Semiconductor device
JPH03280552A (en) Manufacture of field effect transistor
JPS63228762A (en) Manufacture of semiconductor device
JP3710613B2 (en) Semiconductor device
JP2889240B2 (en) Compound semiconductor device and method of manufacturing the same
JPS6143443A (en) Manufacture of semiconductor device
JPH02105425A (en) Manufacture of semiconductor device
JPH01268070A (en) Heterojunction type field-effect transistor
JPS6251268A (en) Semiconductor device
JPH0758717B2 (en) Method for manufacturing field effect transistor
JPH0352238A (en) Manufacture of compound semiconductor device
JPS59193063A (en) Manufacture of field effect transistor
JPH02232940A (en) Manufacture of semiconductor device
JPS6021572A (en) Semiconductor device
JPS63283126A (en) Manufacture of semiconductor device
Hirayama et al. GaAs ICs for Digital