JPS6320387B2 - - Google Patents

Info

Publication number
JPS6320387B2
JPS6320387B2 JP56134751A JP13475181A JPS6320387B2 JP S6320387 B2 JPS6320387 B2 JP S6320387B2 JP 56134751 A JP56134751 A JP 56134751A JP 13475181 A JP13475181 A JP 13475181A JP S6320387 B2 JPS6320387 B2 JP S6320387B2
Authority
JP
Japan
Prior art keywords
film
layer
composition
nitride film
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56134751A
Other languages
Japanese (ja)
Other versions
JPS5834978A (en
Inventor
Kazuo Sato
Motoki Hidaka
Ichizo Kamei
Harumi Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP13475181A priority Critical patent/JPS5834978A/en
Publication of JPS5834978A publication Critical patent/JPS5834978A/en
Publication of JPS6320387B2 publication Critical patent/JPS6320387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 本発明は半導体記憶装置に関し、とくにMIOS
(Metal−Insulator−Oxide−Semiconductor)
形の電界効果トランジスタからなる半導体記憶装
置における不揮発性能、例えば繰返し書き込み、
消去回数に伴う電気的特性劣化などの防止を図
り、信頼性の向上した半導体記憶装置を提供する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory device, and particularly to a MIOS
(Metal−Insulator−Oxide−Semiconductor)
Non-volatile performance in semiconductor memory devices consisting of field effect transistors, such as repeated writing,
The present invention aims to prevent deterioration of electrical characteristics due to the number of times of erasure, and provides a semiconductor memory device with improved reliability.

MIOS形の半導体記憶装置は、例えば半導体基
板上の薄い二酸化シリコン膜(O層)の上に、他
の絶縁部(I層)例えば窒化シリコン膜、酸化ア
ルミニウム膜あるいは他の高誘電体膜を積層し、
その上に金属電極を形成した構造を有している。
このような構造からなる半導体記憶装置は、O層
とI層の境界面あるいはその近傍のI層中に生じ
たトラツプ準位に、半導体側からトンネリング媒
体となる薄膜(O層)を介して行なわれる電気的
な電荷の注入あるいは放出とその蓄積状態をかえ
ることによりトランジスタのしきい値電圧
(Vth)を変化させ、情報を記憶させるものであ
る。このような半導体記憶装置のO層、I層すな
わちゲート絶縁膜には、 (a) ゲート印加電圧に対して、O層とI層の境界
面もしくはその近傍のI層中に蓄積される電荷
量が大きく、電荷蓄積と非蓄積状態に対応する
ヒステリシス曲線の上下の幅ΔVth(しきい値
電圧の窓の大きさ)が大きい。
In a MIOS type semiconductor memory device, for example, on a thin silicon dioxide film (O layer) on a semiconductor substrate, another insulating layer (I layer) such as a silicon nitride film, an aluminum oxide film, or another high dielectric constant film is laminated. death,
It has a structure in which a metal electrode is formed on top of it.
In a semiconductor memory device having such a structure, a trap level generated in the I layer at or near the interface between the O layer and I layer is accessed from the semiconductor side through a thin film (O layer) that serves as a tunneling medium. The threshold voltage (Vth) of the transistor is changed by injecting or ejecting electrical charge and changing its storage state, thereby storing information. In the O layer and I layer, that is, the gate insulating film of such a semiconductor memory device, (a) the amount of charge accumulated in the I layer at or near the interface between the O layer and the I layer in response to the gate applied voltage; is large, and the vertical width ΔVth (the size of the threshold voltage window) of the hysteresis curve corresponding to the charge accumulation and non-accumulation states is large.

(b) 蓄積非蓄積状態の電荷がより長時間保持でき
る。
(b) Charges in the accumulated and non-accumulated state can be retained for a longer period of time.

(c) 比較的高ゲート電圧を印加する繰返し書き込
み消去を行つても、(a)、(b)項の特性劣化が少な
い。などの性質が要求されている。
(c) Characteristic deterioration in terms (a) and (b) is small even when repeated write/erase operations are performed by applying a relatively high gate voltage. Such characteristics are required.

従来、MIOS形半導体記憶装置の欠点として、
電荷の蓄積保持時間が短い、又前記の繰返し書き
込み、消去に伴う特性劣化の問題が指摘されてい
ることは周知の事実である。繰返し書き込み、消
去により特性劣化が起こる原因として、トラツプ
準位密度及びその分布の変化あるいは半導体基板
−絶縁膜界面の表面準位密度の増加が指摘されて
いる。例えば、PチヤンネルMNOS(Metal−
Nitride−Oxide−Semiconductor)トランジス
タにおいては、繰返し書き込み消去に伴いヒステ
リシス曲線が負方向にシフトし、しきい値電圧の
窓の大きさが小さくなり、これに関連してシリコ
ン基板とO層との界面準位密度が増加する事実
を、本発明者らは実験的に認めているところであ
る。又、他の大きさ原因として、トラツプの分
散、消失などの現象も認めている。
Conventionally, the disadvantages of MIOS type semiconductor storage devices are:
It is a well-known fact that the problem of short charge accumulation and retention time and characteristic deterioration due to the above-mentioned repeated writing and erasing has been pointed out. Changes in the trap level density and its distribution or an increase in the surface state density at the semiconductor substrate-insulating film interface have been pointed out as causes of characteristic deterioration due to repeated writing and erasing. For example, P channel MNOS (Metal-
In Nitride-Oxide-Semiconductor (Nitride-Oxide-Semiconductor) transistors, the hysteresis curve shifts in the negative direction with repeated writing and erasing, and the size of the threshold voltage window becomes smaller. The present inventors have experimentally confirmed the fact that the level density increases. In addition, phenomena such as dispersion and disappearance of traps are also recognized as other causes of size.

従来から、MNOSメモリ装置のゲート構造に
おいて、窒化シリコン膜と酸化シリコン膜の境界
面もしくは窒化シリコン膜中に、特に金属および
半導体の薄膜あるいはクラスタと称する高密度ト
ラツプセンタ領域を含む多層膜を形成させ、有効
なトラツプセンタとして利用することにより、し
きい値電圧Vthを制御することがたとえば特公昭
52−29156号、特公昭52−23534号等にて公知であ
る。又、窒化シリコン膜の製造条件をかえた2〜
3層構造とし、電荷トラツプ量が大とされた電気
伝導度の高い窒化シリコン膜と電気伝導度の低い
窒化シリコン膜とを積層した構造とし、電荷トラ
ツプを封じこめ、トラツプ部分を局在化させるこ
とにより、記憶保持特性を改善することが提案さ
れている。
Conventionally, in the gate structure of an MNOS memory device, a multilayer film including a high-density trap center region called a metal and semiconductor thin film or cluster is formed at the interface between a silicon nitride film and a silicon oxide film or in a silicon nitride film. For example, it is possible to control the threshold voltage Vth by using it as an effective trap center.
It is known from Japanese Patent Publication No. 52-29156, Japanese Patent Publication No. 52-23534, etc. In addition, the manufacturing conditions of the silicon nitride film were changed.
It has a three-layer structure in which a silicon nitride film with high electrical conductivity and a silicon nitride film with low electrical conductivity are laminated to have a large amount of charge traps, thereby confining charge traps and localizing the trap portions. It has been proposed to improve memory retention properties by

しかし、本発明者らの研究によれば、金属、半
導体クラスタ構造は、高密度トラツプセンタの形
成をはるかにしてもその安定化については不十分
である。又、電荷トラツプ量が大きい領域を局在
化し封じ込みのできる窒化シリコン膜構成とした
ゲート構造においては、記憶保持特性の改善がな
されるが、不揮発性メモリ装置として重要な書き
込み、消去電圧および繰返し書き込み、消去回数
に伴う耐劣化特性などの改善は必ずしも十分でな
い。
However, according to the research conducted by the present inventors, metal and semiconductor cluster structures are not sufficient in stabilizing trap centers even though they are capable of forming high-density trap centers. In addition, in a gate structure using a silicon nitride film that can localize and confine a region with a large amount of charge trapping, memory retention characteristics are improved, but the write and erase voltages and repetition rate, which are important for nonvolatile memory devices, are improved. Improvements in resistance to deterioration due to the number of times of writing and erasing are not necessarily sufficient.

本発明は、他のメモリ電気特性を損うことな
く、かかる耐劣化特性の改善できる新規な構造を
提供するものである。本発明者らは、MIOS形半
導体記憶装置の耐劣化特性には、ゲート構造にお
いて、I層がO層に接する側の絶縁物膜の電気的
性質に関係する化学的組成等が特に大きな影響が
あり、非金属元素過剰組成膜が必要であることを
見い出した。本発明はたとえばこのような非金属
元素過剰組成の薄膜上に、金属元素過剰組成膜を
設け、さらに通常のほぼ化学量論比組成膜を重ね
ることを原理とするものである。
The present invention provides a novel structure that can improve such degradation resistance characteristics without impairing other memory electrical characteristics. The present inventors have discovered that the chemical composition related to the electrical properties of the insulator film on the side where the I layer is in contact with the O layer in the gate structure has a particularly large influence on the degradation resistance characteristics of MIOS semiconductor memory devices. It was found that a film with an excess of non-metallic elements is required. The principle of the present invention is, for example, to provide a film with an excess composition of metal elements on such a thin film with an excess composition of non-metal elements, and to further overlay an ordinary film with a nearly stoichiometric composition.

本発明者らの研究によれば、I層がO層に接す
る側に、たとえばI層の化学量論比に対し、非金
属元素過剰組成である厚さ30Å以下の層と、金属
元素過剰組成である厚さ300Å以下の層を順次設
ける構造により、他のメモリ電気特性を損うこと
なく、繰返し書き込み、消去に伴うしきい値電圧
の変動、電荷保持などの特性劣化がとくに改善さ
れ、又繰返し書き込み、消去後の半導体基板とO
層の界面準位密度の増加がほとんど見られないこ
とを見い出した。繰返し書き込み消去に伴う特性
劣化の要因の1つとして、ゲート絶縁膜への約
107V/cm以上の強電界の繰返し印加による酸化
膜又は界面付近での絶縁破壊が考えられている
が、本発明のゲート構造にすると、前記の局所的
な絶縁破壊が起こりにくくなり、その効果にI層
がO層に接する側に設けられた非金属元素過剰組
成膜が大きく影響していることも明らかになつ
た。
According to the research of the present inventors, on the side where the I layer is in contact with the O layer, for example, there is a layer with a thickness of 30 Å or less with a non-metal element excess composition relative to the stoichiometric ratio of the I layer, and a layer with a metal element excess composition. By using a structure in which layers with a thickness of 300 Å or less are sequentially provided, deterioration of characteristics such as threshold voltage fluctuations and charge retention due to repeated writing and erasing is particularly improved without impairing other memory electrical characteristics. Semiconductor substrate and O after repeated writing and erasing
We found that there was almost no increase in the interface state density of the layer. One of the causes of characteristic deterioration due to repeated writing and erasing is the approximately
It is thought that dielectric breakdown occurs in the oxide film or near the interface due to repeated application of a strong electric field of 10 7 V/cm or more, but with the gate structure of the present invention, the above-mentioned local dielectric breakdown is less likely to occur, and It has also become clear that the non-metal element-rich composition film provided on the side where the I layer is in contact with the O layer has a large influence on the effect.

以下、本発明を具体的な実施例を図面を用いて
説明する。第1図は本発明の一実施例にかかる半
導体記憶装置の構造の一部を示すもので、前述し
たMIOS絶縁ゲート形電界効果トランジスタのI
層とO層の接する側に、I層の化学量論比に対し
非金属元素過剰組成膜と金属元素過剰組成膜とを
有する半導体記憶装置の断面図である。第1図に
おいて、1はたとえば一導電形のシリコン半導体
基板、2および3はそれぞれ反対導電形のソース
およびドレイン領域、4はトンネリング媒体とな
りうる薄い酸化シリコン膜、5は高誘電体膜より
なるゲートの絶縁膜、6はゲートの絶縁膜5の化
学量論比に対し非金属元素過剰組成である膜、7
はゲートの絶縁膜5の化学量論比に対し金属元素
過剰組成である膜、8はゲート電極である。
Hereinafter, specific embodiments of the present invention will be described using the drawings. FIG. 1 shows a part of the structure of a semiconductor memory device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a semiconductor memory device including a film with a non-metal element excess composition and a metal element excess composition film with respect to the stoichiometric ratio of the I layer on the side where the O layer and the O layer are in contact. In FIG. 1, 1 is a silicon semiconductor substrate of one conductivity type, 2 and 3 are source and drain regions of opposite conductivity type, 4 is a thin silicon oxide film that can serve as a tunneling medium, and 5 is a gate made of a high dielectric constant film. An insulating film 6 is a film having an excess composition of non-metallic elements relative to the stoichiometric ratio of the gate insulating film 5, 7
8 is a film having an excess composition of metal elements relative to the stoichiometric ratio of the gate insulating film 5, and 8 is a gate electrode.

第1図におけるトンネリング媒体となる酸化シ
リコン膜4は公知のシリコン基板の酸素による酸
化により形成される二酸化シリコン膜を用いた。
トンネリング効果を有効に利用するためには、こ
の酸化シリコン膜4の厚さは10〜50Åにする必要
がある。ゲートの絶縁膜5は窒化シリコン膜、酸
化アルミニウム膜(Al2O3)、酸化タンタル膜
(Ta2O5)、窒化アルミニウム(AlN)のような高
誘電体膜であれば何をもちいてもよいが、ここで
は窒化シリコン膜を気相成長法により200Å〜500
Å形成した。そして酸化シリコン膜4に接する側
に非金属元素過剰組成である膜6と金属元素過剰
組成である膜7を作製する方法として、例えば、
窒化シリコン膜をCVD(Chemical Vapor
Deposition)法によつて形成する際の堆積温度、
反応ガスの流量比等の生成条件を変化させて作製
する。すなわち、CVD法で窒化シリコン膜を形
成する際、堆積温度およびシラン(SiH4)ある
いはジクロシラン(SiH2Cl2)とアンモニア
(HN3)の流量比等の生成条件の違いにより、通
常の窒化シリコン(Si3N4)膜の化学量論比に対
し、Siリツチ又はNリツチになることが知られて
おり、NH3/SiH4又はSiH2Cl2比が小さいほどSi
リツチの金属元素過剰組成(Si3N4-x)となり、
NH3/SiH4又はSiH2Cl2比が大きいほどNリツチ
の非金属元素過剰組成(Si3N4+y)となることが、
本発明者らの実験においても判明した。従つて、
CVD法の窒化シリコン膜の生成条件の違いを利
用することにより、酸化シリコン膜上に非金属元
素過剰組成膜と金属元素過剰組成膜を順次形成さ
せることができ、本発明の如き構造をうることが
できる。本発明の実施例においては、ジクロルシ
ラン又はシランとアンモニアによるCVD法を用
い、ゲートの絶縁膜5を形成する途中の過程に、
以下のような生成条件を組合せて作製した既ち、
非金属元素過剰組成膜6を作製するため、堆積温
度700〜900℃、NH3/SiH4又はSiH2Cl2比1000以
上の条件のCVD法により、30Å以下の窒化シリ
コン膜を形成させた。金属元素過剰組成膜7を作
製するため、堆積温度700〜900℃、NH3/SiH4
又はSiH2Cl2比を、非金属元素過剰組成膜作製の
際の流量比の1/100〜1/1000とする条件下の
CVD法により、300Å以下の窒化シリコン膜を形
成させた。このようにしてゲート絶縁膜を形成し
た後、ゲート電極8としてアルミニウム電極を通
常の真空蒸着法により被着した。
As the silicon oxide film 4 serving as the tunneling medium in FIG. 1, a known silicon dioxide film formed by oxidizing a silicon substrate with oxygen was used.
In order to effectively utilize the tunneling effect, the thickness of this silicon oxide film 4 must be 10 to 50 Å. The gate insulating film 5 may be made of any high dielectric constant film such as silicon nitride film, aluminum oxide film (Al 2 O 3 ), tantalum oxide film (Ta 2 O 5 ), or aluminum nitride (AlN). However, here the silicon nitride film is grown to a thickness of 200 Å to 500 Å using the vapor phase growth method.
A was formed. As a method for producing a film 6 having an excessive composition of non-metal elements and a film 7 having an excessive composition of metal elements on the side in contact with the silicon oxide film 4, for example,
CVD (Chemical Vapor)
Deposition temperature when forming by
It is manufactured by changing the generation conditions such as the flow rate ratio of the reaction gas. In other words, when forming a silicon nitride film using the CVD method, due to differences in production conditions such as deposition temperature and flow rate ratio of silane (SiH 4 ) or dichlorosilane (SiH 2 Cl 2 ) to ammonia (HN 3 ), it is difficult to form a silicon nitride film using normal silicon nitride. (Si 3 N 4 ) is known to become Si-rich or N-rich relative to the stoichiometric ratio of the film, and the smaller the NH 3 /SiH 4 or SiH 2 Cl 2 ratio, the more Si
Rich metal element excess composition (Si 3 N 4-x ),
The larger the NH 3 /SiH 4 or SiH 2 Cl 2 ratio, the more N-rich the nonmetallic element excess composition (Si 3 N 4+y ).
This was also found in experiments conducted by the present inventors. Therefore,
By utilizing the difference in the formation conditions of silicon nitride films using the CVD method, it is possible to sequentially form a film with an excessive composition of non-metal elements and a film with an excessive composition of metal elements on a silicon oxide film, thereby obtaining the structure of the present invention. Can be done. In the embodiment of the present invention, a CVD method using dichlorosilane or silane and ammonia is used, and during the process of forming the gate insulating film 5,
Already produced by combining the following production conditions,
In order to fabricate the non-metallic element-excessive composition film 6, a silicon nitride film of 30 Å or less was formed by a CVD method under conditions of a deposition temperature of 700 to 900° C. and an NH 3 /SiH 4 or SiH 2 Cl 2 ratio of 1000 or more. In order to produce the metal element-excessive composition film 7, the deposition temperature was 700 to 900°C, NH 3 /SiH 4
Or under the condition that the SiH 2 Cl 2 ratio is 1/100 to 1/1000 of the flow rate ratio when producing a nonmetallic element excess composition film.
A silicon nitride film with a thickness of less than 300 Å was formed using the CVD method. After forming the gate insulating film in this way, an aluminum electrode was deposited as the gate electrode 8 by a normal vacuum deposition method.

以上のようにして得られたMIOS形不揮発性メ
モリ装置の記憶保持特性の一例を第2図に示して
いる。横軸は保持時間、縦軸はしきい値電圧であ
る。従来の半導体記憶装置の記憶保持特性は、し
きい値電圧が時間の対数に対して直線的に減少す
ることは、よく知られているところであるが、第
2図に示す如く本発明の一実施例の装置では直線
ではなく、折れ曲つた特性を示している。このこ
とは、本発明にかかる構造では、MIOS構造にお
けるI層がO層に接する側に、非金属元属過剰組
成膜と金属元素過剰組成膜を設けているために、
トラツプ準位密度の異なる二つの領域が生じた結
果と考えられる。
FIG. 2 shows an example of the memory retention characteristics of the MIOS nonvolatile memory device obtained as described above. The horizontal axis is the retention time, and the vertical axis is the threshold voltage. It is well known that the memory retention characteristic of conventional semiconductor memory devices is that the threshold voltage decreases linearly with respect to the logarithm of time. The example device shows curved characteristics rather than straight lines. This is because, in the structure according to the present invention, a non-metal element-excessive composition film and a metal element-excess composition film are provided on the side where the I layer is in contact with the O layer in the MIOS structure.
This is thought to be the result of two regions with different trap level densities.

第3図AおよびBは本発明の効果を示す図であ
り、本発明にかかる装置(第3図B)と従来の半
導体記憶装置(第3図A)の106回繰返し書き込
み、消去に伴うヒステリシス曲線の変化の一例で
ある。この図から明らかなごとく、本発明の装置
においては、106回の繰返し書き込み、消去後も、
ほとんどその特性劣化が見られず、非常に著しい
信頼性の向上が見られる。
FIGS. 3A and 3B are diagrams showing the effects of the present invention, in which the device according to the present invention (FIG. 3B) and the conventional semiconductor memory device (FIG. 3A) are repeatedly programmed and erased 106 times. This is an example of a change in the hysteresis curve. As is clear from this figure, in the device of the present invention, even after repeated writing and erasing 106 times,
Almost no characteristic deterioration is observed, and a very significant improvement in reliability is observed.

なお、非金属元素過剰膜、金属元素過剰膜とし
ては、水素を含有する窒化シリコン膜であつても
よいし、酸化アルミニウム、窒化アルミニウム、
酸化ニオビウム、酸化タンタルあるいは窒化シリ
コンと他の金属元素の酸化物、窒化物または酸素
化窒化物などの化合物を用いてもよい。
Note that the non-metal element-excess film and the metal element-excess film may be a silicon nitride film containing hydrogen, aluminum oxide, aluminum nitride,
Compounds such as oxides, nitrides, or oxynitrides of niobium oxide, tantalum oxide, or silicon nitride and other metal elements may also be used.

さらに、非金属元素過剰膜として窒素過剰の窒
化シリコン、金属元素過剰膜としてAl過剰組成
の酸化アルミニウム等の組合せでもよい。また、
絶縁膜として酸化膜に対してメモリ作用を有する
ZnO等を用い、ZnOの組成比等を異ならせてもよ
い。
Furthermore, a combination of silicon nitride with an excess of nitrogen as the non-metal element-excess film and aluminum oxide with an Al-excess composition as the metal element-excess film may be used. Also,
As an insulating film, it has a memory effect on oxide films.
ZnO or the like may be used and the composition ratio of ZnO may be varied.

以上のように、本発明はMIOS構造のゲートを
有する絶縁ゲート形電界効果トランジスタからな
る半導体記憶装置において、I層がO層に接する
側にI層の化学量論比に対し、化学組成比あるい
は化学組成の異なる絶縁物膜たとえば非金属元素
過剰組成である膜と金属元素過剰組成である膜と
を、それぞれ少なくとも1つ設けることにより、
他のメモリ特性を損うことなく、繰返し書き込
み、消去に伴う劣化を著しく小さくさせることが
可能となり、MIOS形ゲート構造を有する電界効
果トランジスタからなる半導体記憶装置の高信頼
化に大きく寄与するものである。
As described above, the present invention provides a semiconductor memory device comprising an insulated gate field effect transistor having a gate of MIOS structure, in which the I layer has a chemical composition ratio or By providing at least one insulating film having different chemical compositions, for example, a film with an excessive composition of non-metal elements and a film with an excessive composition of metal elements,
This makes it possible to significantly reduce the deterioration caused by repeated writing and erasing without damaging other memory characteristics, and greatly contributes to increasing the reliability of semiconductor memory devices made of field effect transistors with MIOS gate structures. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる半導体記憶
装置の概略断面図、第2図は本発明にかかる同装
置の記憶保持特性を示す図、第3図A,Bはそれ
ぞれ従来の記憶装置と本発明にかかる装置におけ
るヒステリシス曲線の変化を示す図である。 1……半導体基板、4……酸化シリコン膜、5
……ゲート絶縁膜、6……非金属元素過剰組成
膜、7……金属元素過剰組成膜。
FIG. 1 is a schematic cross-sectional view of a semiconductor memory device according to an embodiment of the present invention, FIG. 2 is a diagram showing the memory retention characteristics of the same device according to the present invention, and FIGS. 3A and 3B are each a conventional memory device. FIG. 3 is a diagram showing changes in hysteresis curves in the device according to the present invention. 1... Semiconductor substrate, 4... Silicon oxide film, 5
. . . gate insulating film, 6 . . . non-metal element excess composition film, 7 . . . metal element excess composition film.

Claims (1)

【特許請求の範囲】 1 金属−絶縁物−酸化膜−半導体構造を有し、
前記絶縁物が前記酸化膜と接する非金属元素過剰
組成の第1窒化膜と、この上に形成された金属元
素過剰組の第2窒化膜とを少くとも有する構成で
あることを特徴とする半導体記憶装置。 2 第1窒化膜が窒素過剰な窒化シリコン膜であ
り、第2窒化膜がシリコン過剰な窒化シリコン膜
であることを特徴とする特許請求の範囲第1項に
記載の半導体記憶装置。
[Claims] 1. Having a metal-insulator-oxide film-semiconductor structure,
A semiconductor characterized in that the insulator has at least a first nitride film in contact with the oxide film with a non-metallic element-rich composition, and a second nitride film with a metallic element-rich composition formed thereon. Storage device. 2. The semiconductor memory device according to claim 1, wherein the first nitride film is a silicon nitride film containing excess nitrogen, and the second nitride film is a silicon nitride film containing excess silicon.
JP13475181A 1981-08-26 1981-08-26 Semiconductor memory unit Granted JPS5834978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13475181A JPS5834978A (en) 1981-08-26 1981-08-26 Semiconductor memory unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13475181A JPS5834978A (en) 1981-08-26 1981-08-26 Semiconductor memory unit

Publications (2)

Publication Number Publication Date
JPS5834978A JPS5834978A (en) 1983-03-01
JPS6320387B2 true JPS6320387B2 (en) 1988-04-27

Family

ID=15135714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13475181A Granted JPS5834978A (en) 1981-08-26 1981-08-26 Semiconductor memory unit

Country Status (1)

Country Link
JP (1) JPS5834978A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2747556B2 (en) * 1986-03-31 1998-05-06 株式会社 半導体エネルギー研究所 Method for manufacturing insulated gate field effect semiconductor memory device
JPH0642550B2 (en) * 1987-08-10 1994-06-01 山形日本電気株式会社 MIS type nonvolatile memory and method of manufacturing the same
JPH0779138B2 (en) * 1987-08-31 1995-08-23 工業技術院長 Non-volatile semiconductor memory device
JP2512589Y2 (en) * 1992-11-09 1996-10-02 工業技術院長 Semiconductor non-volatile memory device
JP4492930B2 (en) * 2004-02-10 2010-06-30 日本電信電話株式会社 Charge storage memory and manufacturing method thereof
KR100594266B1 (en) * 2004-03-17 2006-06-30 삼성전자주식회사 SONOS type memory device
JP2006319082A (en) * 2005-05-12 2006-11-24 Sony Corp Nonvolatile semiconductor memory device
JP4853893B2 (en) * 2005-05-17 2012-01-11 日本電信電話株式会社 Charge storage memory
JP2007194511A (en) * 2006-01-23 2007-08-02 Renesas Technology Corp Non-volatile semiconductor memory device and method for manufacturing the same
JP5155070B2 (en) 2008-09-02 2013-02-27 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913118A (en) * 1972-06-06 1974-02-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913118A (en) * 1972-06-06 1974-02-05

Also Published As

Publication number Publication date
JPS5834978A (en) 1983-03-01

Similar Documents

Publication Publication Date Title
JP4489359B2 (en) Nonvolatile semiconductor memory device
US6444545B1 (en) Device structure for storing charge and method therefore
US4868632A (en) Nonvolatile semiconductor memory
KR100894098B1 (en) Nonvolatile memory device having fast erase speed and improoved retention charactericstics, and method of fabricating the same
US6127227A (en) Thin ONO thickness control and gradual gate oxidation suppression by b. N.su2 treatment in flash memory
US4939559A (en) Dual electron injector structures using a conductive oxide between injectors
KR100890040B1 (en) Non-volatile memory device having charge trapping layer and method of fabricating the same
US7579646B2 (en) Flash memory with deep quantum well and high-K dielectric
KR100652402B1 (en) Non-volatile memory device, and method of fabricating the same
KR100843229B1 (en) Flash memory device including hybrid structure of charge trap layer and method of manufacturing the same
KR20080062739A (en) Non-volatile memory device having charge trapping layer and method of fabricating the same
KR101146589B1 (en) Charge trap semiconductor memory device and manufacturing method the same
EP2166571B1 (en) Memory device and its reading method
JP4792620B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JPS6320387B2 (en)
US5122847A (en) Non-volatile semiconductor memory with CVD tunnel oxide
JP4696383B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JP4853893B2 (en) Charge storage memory
JP2002261175A (en) Nonvolatile semiconductor memory and its manufacturing method
US6518617B1 (en) Nonvolatile semiconductor memory device
JP2006196643A (en) Nonvolatile semiconductor memory device
JPH0259632B2 (en)
JPS6357945B2 (en)
KR100685742B1 (en) Non-volatile memory device and Method of manufacturing the same
JPH061839B2 (en) Method of manufacturing nonvolatile memory device