JPH0422031B2 - - Google Patents

Info

Publication number
JPH0422031B2
JPH0422031B2 JP16555883A JP16555883A JPH0422031B2 JP H0422031 B2 JPH0422031 B2 JP H0422031B2 JP 16555883 A JP16555883 A JP 16555883A JP 16555883 A JP16555883 A JP 16555883A JP H0422031 B2 JPH0422031 B2 JP H0422031B2
Authority
JP
Japan
Prior art keywords
silicon nitride
oxide film
silicon oxide
nitride film
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16555883A
Other languages
Japanese (ja)
Other versions
JPS6057674A (en
Inventor
Kanji Hirano
Kazuo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP16555883A priority Critical patent/JPS6057674A/en
Publication of JPS6057674A publication Critical patent/JPS6057674A/en
Publication of JPH0422031B2 publication Critical patent/JPH0422031B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はMONOS(金属−酸化シリコン膜−窒
化シリコン膜−酸化シリコン膜−半導体)型の電
界効果トランジスタからなる半導体記憶装置に関
し、不揮発性能、特に記憶保持特性にすぐれた高
性能の半導体記憶装置を実現するための製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor memory device consisting of a MONOS (metal-silicon oxide film-silicon nitride film-silicon oxide film-semiconductor) type field effect transistor, and relates to a semiconductor memory device comprising a MONOS (metal-silicon oxide film-silicon nitride film-silicon oxide film-semiconductor) type field effect transistor. The present invention relates to a manufacturing method for realizing a high-performance semiconductor memory device with excellent retention characteristics.

従来例の構成とその問題点 従来より半導体記憶装置の1つとして、薄い酸
化シリコン膜上に窒化シリコン膜を成長させ、そ
の上に金属電極を形成したMNOS(金属−窒化シ
リコン膜−酸化シリコン膜−半導体)構造の半導
体装置がよく知られている。近年、このMNOS
型半導体記憶装置のプログラム電圧の低電圧化を
実現するために、ゲート絶縁膜のうち窒化シリコ
ン膜を薄膜化すると同時に、窒化シリコン膜表面
の熱酸化を行ない、窒化シリコン膜上に酸化シリ
コン膜を有するMONOS(金属−酸化シリコン膜
−窒化シリコン膜−酸化シリコン膜−半導体)構
造の半導体記憶装置が知られている。
Conventional structure and its problems Traditionally, as one of the semiconductor memory devices, MNOS (metal-silicon nitride film-silicon oxide film), in which a silicon nitride film is grown on a thin silicon oxide film and a metal electrode is formed on the silicon nitride film, has been used as a semiconductor memory device. - Semiconductor devices with a semiconductor structure are well known. In recent years, this MNOS
In order to reduce the programming voltage of type semiconductor memory devices, the silicon nitride film of the gate insulating film is made thinner, and at the same time, the surface of the silicon nitride film is thermally oxidized to form a silicon oxide film on the silicon nitride film. A semiconductor memory device having a MONOS (metal-silicon oxide film-silicon nitride film-silicon oxide film-semiconductor) structure is known.

しかしながら、このMONOS構造の半導体記
憶装置の製造方法において、窒化シリコン膜を熱
酸化する際に、通常、900℃以上の高温を必要と
するので窒化シリコンの膜質の変化が起こり、メ
モリ特性、特に記憶保持特性の悪化をまねく問題
点を有していた。
However, in the manufacturing method of semiconductor memory devices with this MONOS structure, when thermally oxidizing the silicon nitride film, a high temperature of 900°C or higher is usually required, which causes changes in the film quality of the silicon nitride, which may affect memory characteristics, especially memory storage. This had a problem that led to deterioration of retention characteristics.

MONOS型の半導体記憶装置は、従来の
MNOS型の半導体記憶装置と同様、窒化シリコ
ン膜と極薄の酸化シリコン膜の界面、又は窒化シ
リコン膜バルク中に分布するトラツプに、半導体
側から極薄の酸化シリコン膜を介して行なわれる
電荷のトンネリング注入と、その蓄積によりトラ
ンジスタのしきい値電圧(Vth)を変化させ、情
報を記憶させるものであり、その記憶保持特性の
確保が最大の課題であり、窒化シリコン膜上を熱
酸化する場合の記憶保持特性の悪化は実用上の最
大の問題となつている。
MONOS type semiconductor storage devices are
Similar to MNOS type semiconductor memory devices, charge transfer from the semiconductor side through the ultra-thin silicon oxide film is applied to the interface between the silicon nitride film and the ultra-thin silicon oxide film, or to the traps distributed in the bulk of the silicon nitride film. Tunneling injection and its accumulation change the threshold voltage (Vth) of the transistor to store information, and ensuring the memory retention characteristics is the biggest challenge when thermally oxidizing a silicon nitride film. The deterioration of the memory retention properties of memory has become the biggest practical problem.

発明の目的 本発明の目的は、かかる問題に鑑み、
MONOS型電界トランジスタからなる半導体記
憶装置における不揮発性能、特に記憶保持特性の
すぐれた高性能を実現するための半導体記憶装置
の製造方法を提供することにある。
Purpose of the invention In view of the above problems, the purpose of the present invention is to
It is an object of the present invention to provide a method for manufacturing a semiconductor memory device that achieves high performance with excellent non-volatile performance, especially memory retention characteristics, in a semiconductor memory device comprising a MONOS field transistor.

発明の構成 本発明は、要約すると、一導電型半導体基板面
に第1の酸化シリコン膜を形成する工程、前記第
1の酸化シリコン膜上に窒化シリコン膜を形成す
る工程、前記窒化シリコン膜上に第2の酸化シリ
コン膜を形成し、ついで、水素イオンを注入する
工程をそなえた半導体記憶装置の製造方法であ
り、これにより、安定性のすぐれた記憶保持特性
を実現することができる。
Structure of the Invention To summarize, the present invention includes a step of forming a first silicon oxide film on the surface of a semiconductor substrate of one conductivity type, a step of forming a silicon nitride film on the first silicon oxide film, and a step of forming a silicon nitride film on the silicon nitride film. This method of manufacturing a semiconductor memory device includes the steps of forming a second silicon oxide film and then implanting hydrogen ions, thereby achieving highly stable memory retention characteristics.

実施例の説明 本発明者の研究によれば、窒化シリコン膜の熱
酸化による記憶保持特性の悪化は、窒化シリコン
膜中に含まれる水素、特にSi−H結合の含有量に
関係があり、Si−H結合の多い窒化シリコン膜は
900℃以上の温度で熱酸化を行なうことにより、
Si−H結合が少なくなり、不安定なトラツプが附
加増大され、記憶保持特性の悪化がおこることを
見い出した。すなわち、窒化シリコン膜の熱酸化
による記憶保持特性の悪化は、主に窒化シリコン
膜形成の際の水素含有量に大きく依存しているこ
とが明らかとなつた。
DESCRIPTION OF EMBODIMENTS According to research conducted by the present inventors, deterioration in memory retention characteristics due to thermal oxidation of a silicon nitride film is related to hydrogen contained in the silicon nitride film, particularly the content of Si-H bonds. - Silicon nitride film with many H bonds
By performing thermal oxidation at a temperature of 900℃ or higher,
It has been found that the number of Si--H bonds decreases, the number of unstable traps increases, and memory retention characteristics deteriorate. In other words, it has become clear that the deterioration in memory retention characteristics due to thermal oxidation of a silicon nitride film largely depends on the hydrogen content during the formation of the silicon nitride film.

本発明は、上記の事実に基づいてなされたもの
で、トンネリング媒体となりうる極薄の第1の酸
化シリコン膜上に窒化シリコン膜、続いて第2の
酸化シリコン膜を形成した後に、水素イオンを注
入することにより、優れた記憶保持特性を得るこ
とができるものである。
The present invention has been made based on the above fact, and after forming a silicon nitride film and then a second silicon oxide film on an extremely thin first silicon oxide film that can serve as a tunneling medium, hydrogen ions are By injection, excellent memory retention characteristics can be obtained.

次に本発明の具体的な実施例を図面を用いて説
明する。
Next, specific embodiments of the present invention will be described using the drawings.

第1図は、本発明の製造方法の一実施例を示す
工程順断面図であり、まず第1図aに示すように
N型のシリコン基板1に、ソース領域2、ドレイ
ン領域3を周知の選択拡散技術で形成し、その選
択拡散処理時に形成した二酸化シリコン膜4の所
定の部分を、既知のフオトエツチングで開孔した
後、この開孔部分に20Å程度の薄い酸化シリコン
膜5を、800℃、酸素雰囲気中で酸化処理した、
形成した。
FIG. 1 is a step-by-step sectional view showing an embodiment of the manufacturing method of the present invention. First, as shown in FIG. After opening a predetermined portion of the silicon dioxide film 4 formed by the selective diffusion technique by known photo etching, a thin silicon oxide film 5 of approximately 20 Å is deposited on the opening portion at a thickness of 800 Å. ℃, oxidized in an oxygen atmosphere,
Formed.

次いで、第1図bに示すように、酸化シリコン
膜5上に、シラン(SiH4)とアンモニア(NH3
の化学反応にもとづく気相成長法によつて、
NH3/SiH4=100,750℃の条件下で窒化シリコ
ン膜6を約200Å程度形成させる。
Next, as shown in FIG. 1b, silane (SiH 4 ) and ammonia (NH 3 ) are deposited on the silicon oxide film 5.
Through the vapor phase growth method based on the chemical reaction of
A silicon nitride film 6 is formed to a thickness of about 200 Å under the condition of NH 3 /SiH 4 =100.750°C.

次いで、窒化シリコン膜6の上を900℃、水蒸
気雰囲気中で約60分酸化処理し、約25Åの酸化シ
リコン膜7を形成させる。
Next, the silicon nitride film 6 is oxidized at 900° C. in a steam atmosphere for about 60 minutes to form a silicon oxide film 7 with a thickness of about 25 Å.

次いで、第1図cに示すように、アルミニウム
電極8を通常の真空蒸着法により被着させる。
Then, as shown in FIG. 1c, an aluminum electrode 8 is deposited by a conventional vacuum deposition method.

次いで、第1図dに示すように、周知の気相成
長法により、酸化シリコン膜9を全面に被着後、
水素イオン10を全面に注入する。本実施例では
水素イオン10としてH2 +イオンを用い、加速エ
ネルギー10KeV、注入量5×1015cm-2とした。さ
らに、注入イオンの活性化のために、本実施例で
は400℃で約30分、N2雰囲気中で熱処理を行なつ
た。以上のようにして、第1図dに示すPチヤネ
ルアルミゲートMONOS型不揮発性半導体記憶
装置を作製することができる。
Next, as shown in FIG. 1d, a silicon oxide film 9 is deposited on the entire surface by a well-known vapor phase growth method.
Hydrogen ions 10 are implanted into the entire surface. In this example, H 2 + ions were used as the hydrogen ions 10, the acceleration energy was 10 KeV, and the implantation amount was 5×10 15 cm −2 . Furthermore, in order to activate the implanted ions, heat treatment was performed at 400° C. for about 30 minutes in a N 2 atmosphere in this example. In the manner described above, the P-channel aluminum gate MONOS type nonvolatile semiconductor memory device shown in FIG. 1d can be manufactured.

第2図に、上述の実施例で得られたMONOS
型半導体記憶装置の記憶保持特性の一例を、従来
例装置の特性と対比して示す。横軸は書き込み消
去直後のしきい値電圧、縦軸はその時に蓄積され
た電荷の減衰率(∂Vth/logt,Vth:しきい値電
圧、t:時間)を示している。この図において直
線の傾きが小さいほど記憶保持特性が優れている
ことを示している。第2図に示すように、本発明
の製造方法により作製した半導体記憶装置の記憶
保持特性(直線11)は、水素イオン注入を実施
していないMONOS型半導体記憶装置の記憶保
持特性(直線12)よりもはるかに優れ、また、
従来のアルミゲートMNOS型半導体記憶装置の
うち最も良い記憶保持特性(直線13)と比較し
ても直線の傾きにほとんど差がなく、同程度の記
憶能力を有するものを作製することができた。
Figure 2 shows the MONOS obtained in the above example.
An example of the memory retention characteristics of a type semiconductor memory device will be shown in comparison with the characteristics of a conventional device. The horizontal axis shows the threshold voltage immediately after writing and erasing, and the vertical axis shows the decay rate of the charges accumulated at that time (∂Vth/logt, Vth: threshold voltage, t: time). In this figure, the smaller the slope of the straight line, the better the memory retention characteristics are. As shown in FIG. 2, the memory retention characteristics (straight line 11) of the semiconductor memory device manufactured by the manufacturing method of the present invention are different from the memory retention characteristics (straight line 12) of the MONOS type semiconductor memory device without hydrogen ion implantation. much better than, and also
Even when compared with the best memory retention characteristics (straight line 13) among conventional aluminum gate MNOS type semiconductor memory devices, there is almost no difference in the slope of the straight line, and it was possible to fabricate one having the same level of memory capacity.

本実施例では、N型基板を用い、Pチヤネル型
半導体記憶装置を形成する場合について説明を行
なつてきたが、nチヤネル型MONOS構造でも
使用できることはもちろんであり、またゲート電
極としてポリシリコン等の高融点金属を用いても
よいことは言うまでもない。
In this embodiment, a case has been described in which a P-channel type semiconductor memory device is formed using an N-type substrate, but it is of course possible to use an n-channel type MONOS structure, and polysilicon etc. can be used as the gate electrode. Needless to say, a high melting point metal may also be used.

発明の効果 本発明の方法によれば、MONOS型半導体記
憶装置の製造方法において、窒化シリコン膜上に
酸化シリコン膜を形成した後に、水素イオン注入
を行なうことにより、記憶保持特性の優れた半導
体記憶装置を作製することができ、MONOS型
半導体記憶装置の高性能化に大きく寄与するもの
である。
Effects of the Invention According to the method of the present invention, in the method of manufacturing a MONOS type semiconductor memory device, hydrogen ions are implanted after forming a silicon oxide film on a silicon nitride film, thereby achieving a semiconductor memory device with excellent memory retention characteristics. The device can be fabricated, and it will greatly contribute to improving the performance of MONOS type semiconductor memory devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜dは本発明実施例の工程順断面図、
第2図は特性図である。 1……N型シリコン基板、2,3……ソースお
よびドレイン領域、4,5……酸化シリコン膜、
6……窒化シリコン膜、7……酸化シリコン膜、
8……アルミニウム電極、9……酸化シリコン
膜、10……水素イオン。
1A to 1D are cross-sectional views in order of steps of the embodiment of the present invention,
FIG. 2 is a characteristic diagram. 1... N-type silicon substrate, 2, 3... Source and drain region, 4, 5... Silicon oxide film,
6...Silicon nitride film, 7...Silicon oxide film,
8...Aluminum electrode, 9...Silicon oxide film, 10...Hydrogen ion.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板面に、第1の酸化シリコ
ン膜を選択形成する工程、前記第1の酸化シリコ
ン膜上に窒化シリコン膜を形成する工程、前記窒
化シリコン膜上に第2の酸化シリコン膜を形成し
た後に、水素イオンを注入する工程をそなえた半
導体記憶装置の製造方法。
1. A step of selectively forming a first silicon oxide film on a surface of a semiconductor substrate of one conductivity type, a step of forming a silicon nitride film on the first silicon oxide film, and a step of forming a second silicon oxide film on the silicon nitride film. A method for manufacturing a semiconductor memory device comprising a step of implanting hydrogen ions after forming a semiconductor memory device.
JP16555883A 1983-09-08 1983-09-08 Manufacture of semiconductor memory device Granted JPS6057674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16555883A JPS6057674A (en) 1983-09-08 1983-09-08 Manufacture of semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16555883A JPS6057674A (en) 1983-09-08 1983-09-08 Manufacture of semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS6057674A JPS6057674A (en) 1985-04-03
JPH0422031B2 true JPH0422031B2 (en) 1992-04-15

Family

ID=15814639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16555883A Granted JPS6057674A (en) 1983-09-08 1983-09-08 Manufacture of semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6057674A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665232B2 (en) * 1984-07-30 1994-08-22 松下電子工業株式会社 Method of manufacturing semiconductor memory device
JPH0319286A (en) * 1989-06-15 1991-01-28 Matsushita Electron Corp Manufacture of nonvolatile semiconductor memory
KR100490293B1 (en) * 2000-12-08 2005-05-17 주식회사 하이닉스반도체 Method of manufacturing a flash memory cell
KR100691960B1 (en) 2004-12-30 2007-03-09 동부일렉트로닉스 주식회사 Method for forming SONOS device

Also Published As

Publication number Publication date
JPS6057674A (en) 1985-04-03

Similar Documents

Publication Publication Date Title
JP4151229B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
US6319775B1 (en) Nitridation process for fabricating an ONO floating-gate electrode in a two-bit EEPROM device
JP2551595B2 (en) Semiconductor non-volatile memory device
US20090032861A1 (en) Nonvolatile memories with charge trapping layers containing silicon nitride with germanium or phosphorus
JPH08255878A (en) Floating gate transistor and fabrication thereof
JP2004221448A (en) Non-volatile semiconductor memory device and its manufacturing method
JP2002261175A (en) Nonvolatile semiconductor memory and its manufacturing method
JP3288796B2 (en) Semiconductor device
JPH0964205A (en) Si nitride film forming method
JPS6320387B2 (en)
JPH0422031B2 (en)
US4305086A (en) MNOS Memory device and method of manufacture
JPH061839B2 (en) Method of manufacturing nonvolatile memory device
JPH0665232B2 (en) Method of manufacturing semiconductor memory device
JP4734799B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JPH06350093A (en) Manufacture of nonvolatile semiconductor memory
JP3272007B2 (en) Method for manufacturing charge trapping film
JPH02277269A (en) Manufacture of nonvolatile memory
JPH0259632B2 (en)
JPH0259631B2 (en)
JPH0888286A (en) Manufacture of semiconductor memory device
JPS6170763A (en) Manufacture of semiconductor memory storage
JPS59188977A (en) Manufacture of semiconductor non volatile memory device
JPH0334672B2 (en)
JPS61288471A (en) Manufacture of semiconductor memory device