JPS63174A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63174A
JPS63174A JP14380486A JP14380486A JPS63174A JP S63174 A JPS63174 A JP S63174A JP 14380486 A JP14380486 A JP 14380486A JP 14380486 A JP14380486 A JP 14380486A JP S63174 A JPS63174 A JP S63174A
Authority
JP
Japan
Prior art keywords
semiconductor layer
semiconductor
impurity concentration
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14380486A
Other languages
Japanese (ja)
Inventor
Teruo Yokoyama
横山 照夫
Tomonori Ishikawa
石川 知則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14380486A priority Critical patent/JPS63174A/en
Publication of JPS63174A publication Critical patent/JPS63174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To connect input/output electrodes and two-dimensional electrons easily, and to simplify the formation of the electrodes and two-dimensional electrons by specifying the mixed crystal ratio (x) of AlxGa1-xAs shaping second and third semiconductor layers while specifying the impurity concentration of the third semiconductor layer and the thickness of the second semiconductor layer respectively. CONSTITUTION:The (x) value of second and third semiconductor layers 2, 3 consisting of AlxGa1-xAs is brought to a value to 0.23 from 0.15, and the impurity concentration of the semiconductor layer 3 is brought to a value to 5X10<17>cm<-3> from 1X10<16>cm<-3> so as not to shape a deep level. The thickness of the semiconductor layer 2 is brought to thickness (d) shown in formula from the necessity of the depletion of the semiconductor 2. In formula, epsilon represents the dielectric constant of the semiconductor layer 2, e the quantity of charges of electrons, ND the impurity concentration of the semiconductor layer 2 and phiapproximately 0.1V. Accordingly, the temperature change of threshold voltage and the variation of performance characteristics by optical irradiation at a low temperature are eliminated, an ohmic contact is removed easily, and the lowering of mutual conductance is prevented.

Description

【発明の詳細な説明】 〔概 要〕 ヘテd接合FETにおいて、電子供給層の中性領域には
深い不純物準位を形成しない範囲で不純物を添加したこ
とによシ、閾値電圧の温度変化を減少させ、オーミック
コンタクトを容易にした。
[Detailed Description of the Invention] [Summary] In a heterogeneous d-junction FET, by adding impurities to the neutral region of the electron supply layer within a range that does not form a deep impurity level, temperature changes in threshold voltage can be suppressed. reduced and facilitated ohmic contact.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置に係シ、特に、異なる電子親和力を
有する半導体のへテロ接合界面例生じる2次元電子ガス
を用いた電解効果型トランジスタ所謂HEMI”(高電
子移動度トランジスタ)の改良に関する。
The present invention relates to semiconductor devices, and in particular to improvements in so-called HEMI (high electron mobility transistors) field effect transistors that use two-dimensional electron gas generated at heterojunction interfaces of semiconductors having different electron affinities.

HEMTは高速コンピュータ素子、高遮断周波数トラン
ジスタとして期待され、特に低温(例えば77K)にお
いて、より高速動作することが知られている。
HEMTs are expected to be used as high-speed computer elements and high cut-off frequency transistors, and are known to operate at higher speeds, especially at lower temperatures (eg, 77K).

〔従来の技術〕[Conventional technology]

従来のHEMTのエネルギバンド図を第4図に示す。図
中1は実質的に不純物を含まないGaAs  層(チャ
ネル層)、14はn型不純物Siを含む(AflzAa
 I−2As ’I層(電子供給層)、4は制御電極金
pA1.5は中性領域、6は2次元電子ガス、7北 はフェ牟ミ準位である。ところが、Siを添加したAf
lxGa+−エAs  Kは深い不純物準位が形成され
、このため閾値電圧が温度で変化することや、低温(約
150に以下)においては、光照射によって動作特性が
変化するという問題があうた。この問題点を解決するた
めに、HEMTの改良も試みられている。第5図は以上
の問題点を改良しようとしてなされたHEMTのエネル
ギバンド図を示したものである。
FIG. 4 shows an energy band diagram of a conventional HEMT. In the figure, 1 is a GaAs layer (channel layer) that does not substantially contain impurities, and 14 is a layer containing n-type impurity Si (AflzAa
I-2As'I layer (electron supply layer), 4 is the control electrode gold pA1.5 is a neutral region, 6 is a two-dimensional electron gas, and 7 north is the Femmi level. However, Si-doped Af
A deep impurity level is formed in lxGa+-AsK, which causes the problem that the threshold voltage changes with temperature and that the operating characteristics change due to light irradiation at low temperatures (approximately 150 ℃ or less). In order to solve this problem, attempts have been made to improve HEMT. FIG. 5 shows an energy band diagram of a HEMT designed to improve the above problems.

第5図(a)は、電子供給層のへテロ界面付近の空乏化
している範囲16にのみ、不純物を添加したものである
。17は無添加AflzGat−zA’である。
In FIG. 5(a), impurities are added only to the depleted region 16 near the hetero interface of the electron supply layer. No. 17 is additive-free AflzGat-zA'.

第5図Cb’)は、電子供給層をヘテロ界面付近の空乏
化している範囲18とし、その上に、比較的電子親和力
の大きな半導体層(AftzGa t −z As又は
GaAs)(図中19の部分)を有したものである。
In Fig. 5Cb'), the electron supply layer is a depleted region 18 near the hetero interface, and a semiconductor layer (AftzGa t -z As or GaAs) with a relatively large electron affinity (19 in the figure) is formed on top of the depleted region 18 near the hetero interface. part).

第5図(1)は不純物を添加しないAftAs 20と
不純物を添加したGaAa 21による超格子構造を電
子供給層としたものである。
FIG. 5(1) shows an electron supply layer having a superlattice structure of AftAs 20 to which no impurities are added and GaAa 21 to which impurities are added.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記従来のHEMTの改良においては、々お
下記の点で不十分である。
However, the improvements to the conventional HEMT described above are insufficient in the following points.

第5図(α)の装置では、不純物の添加していない領域
のため、2次元電子と出力電極を接続させることが困難
であった。また、ヘテロ界面と制御電極の距離が大きく
なるため相互コンダクタンスが小さくなるといった欠点
が生じていた。
In the device shown in FIG. 5(α), it was difficult to connect the two-dimensional electrons and the output electrode because the region was not doped with impurities. In addition, since the distance between the heterointerface and the control electrode becomes large, there is a drawback that the mutual conductance becomes small.

第5図(b)の装置では、半導体18と19の界面にお
いても、電流が流れるという問題点があった。
The device shown in FIG. 5(b) has a problem in that current flows also at the interface between the semiconductors 18 and 19.

第5図(1)の装置は、超格子構造を有しているため、
製造が複雑になるという欠点があった。
Since the device in FIG. 5(1) has a superlattice structure,
The drawback was that manufacturing was complicated.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、半絶縁性GaAs基板上に実質的に不純を含
ま表いGa Asよりなる第1の半導体層と、該半導体
層上にAnzGa+−zAs  よりなる第2および第
3の半導体層を積層し、第1の半導体層の第2の半導体
層との界面近傍に2次元電子ガスが形成される層構造を
有し、第3の半導体層上に該2次元電子ガスのキャリア
濃度を制御する制御電極と、該制御電極を挾んで設けら
れ、該2次元電子ガスにオーミックに接触する複数個の
電極を有する半導体装置において、第3の半導体層の不
純物濃度が深い不純物準位を形成しない範囲内で決定さ
れるとともに、第2の半導体層の厚さが第2の半導体層
内に中性領域を生じない範囲で決定されることを特徴と
する半導体装置を提供するものである。
The present invention includes laminating a first semiconductor layer made of GaAs substantially containing impurities on a semi-insulating GaAs substrate, and second and third semiconductor layers made of AnzGa+-zAs on the semiconductor layer. and has a layer structure in which a two-dimensional electron gas is formed near the interface between the first semiconductor layer and the second semiconductor layer, and controls the carrier concentration of the two-dimensional electron gas on the third semiconductor layer. In a semiconductor device having a control electrode and a plurality of electrodes provided across the control electrode and in ohmic contact with the two-dimensional electron gas, a range in which the impurity concentration of the third semiconductor layer does not form a deep impurity level. The present invention provides a semiconductor device characterized in that the thickness of the second semiconductor layer is determined within a range that does not create a neutral region within the second semiconductor layer.

C1合つ 以下に第6図および第7図を用いて本発明の原理と作用
を詳細に説明する。
The principle and operation of the present invention will be explained in detail below using FIGS. 6 and 7.

第6図は本発明のへテロ界面近くのバンド図である。実
線は伝導帯の底を表しており、半導体層1はチャネル層
、半導体層2,3は電子供給層である。第6図において
、各部の記号は次の通りである。
FIG. 6 is a band diagram near the hetero interface of the present invention. The solid line represents the bottom of the conduction band, the semiconductor layer 1 is a channel layer, and the semiconductor layers 2 and 3 are electron supply layers. In FIG. 6, the symbols of each part are as follows.

φS二半導体層1(例えばノンドープaaAtt )の
へテロ界面での伝導帯底と7工ルミーm位のエネルギ差 φF:フェルミ準位と半導体層3(例えばn型AllG
aAs層)中の中性領域での伝導帯底とのエネルギ差 φ: 半導体層3中の中性領域での伝導帯底と、半導体
層2のへテロ界面での伝導帯底とのエネルギ差 ΔE6:へテロ界面での伝導帯底の不連続エネルギさて
、本発明では、半導体層2中に中性領域が生じないこと
が要件であるから、半導体層2の厚さdは以下の範囲で
あることが必要である。
φS Energy difference between the bottom of the conduction band at the hetero interface of the two semiconductor layer 1 (for example, non-doped aaAtt) and about 7 Lumiem φF: the Fermi level and the semiconductor layer 3 (for example, n-type AllG
Energy difference φ between the conduction band bottom in the neutral region in the semiconductor layer 3 and the conduction band bottom in the neutral region in the semiconductor layer 3 and the conduction band bottom at the hetero interface of the semiconductor layer 2 ΔE6: Discontinuous energy at the bottom of the conduction band at the hetero interface Since the present invention requires that no neutral region occur in the semiconductor layer 2, the thickness d of the semiconductor layer 2 is within the following range. It is necessary that there be.

ただし、 −は電子の比電荷(電子の電荷量) aは半導体層2の誘電率 NO2は半導体層2のドナー濃度 dは半導体層2の厚さ 上記φとしては、第6図よシ、 φ=ΔE6−φ、−φ、     ・・・・・−・・・
(2)である。
where - is the specific charge of electrons (amount of charge of electrons) a is the dielectric constant of the semiconductor layer 2 NO2 is the donor concentration of the semiconductor layer 2 d is the thickness of the semiconductor layer 2 The above φ is as shown in Fig. 6, φ =ΔE6−φ, −φ, ・・・・・・−・・・
(2).

ここで、半導体1をノンドープGaAa 、半導体2゜
3をAftzGa+−2Aa (Z−0,2)で構成し
た場合、ΔEe 〜0.2 V         ・=
= (31が知られている。
Here, when the semiconductor 1 is made of non-doped GaAa and the semiconductor 2°3 is made of AftzGa+-2Aa (Z-0,2), ΔEe ~0.2 V ・=
= (31 are known.

また、半導体層3中のドナーレベルは、伝導帯底よシ約
5m5Vでちるから、φ、はほとんど無視でき、 φ、〜OV           ・・・・・・・・・
(4)φ8は、2次元電子濃度figと関係しておシ、
例えば、Fujtts=Set、Taah、J、Vol
、19.No、3rpp243〜27B中の図12に示
してあシ、これを第7図に示している。
Also, since the donor level in the semiconductor layer 3 falls at about 5m5V below the conduction band bottom, φ can be almost ignored, and φ, ~OV...
(4) φ8 is related to the two-dimensional electron concentration fig, and
For example, Fujitts=Set, Taah, J, Vol.
, 19. No. 3rpp243-27B is shown in FIG. 12, and this is shown in FIG.

ngは本発明等が調べた結果、半導体層2のドナー濃度
が1.5X 1×1016ctn−’程度だと、旬〜1
X 1Q” cm−” であるから、第7図によシ、 φ8〜0.1V          ・・・・・・・・
・(5)が得られる。
As a result of research conducted by the present invention, ng is approximately 1.5 x 1 x 1016 ctn-' when the donor concentration of the semiconductor layer 2 is approximately 1.5 x 1 x 1016 ctn-'.
Since X 1Q"cm-", according to Figure 7, φ8~0.1V...
-(5) is obtained.

(31(4) (5)の各式を(2)に代入して、φ〜
0.1V が得られる。
(31(4) Substituting each equation (5) into (2), φ~
0.1V is obtained.

以上の解析によシ、φは約0.1Vなる条件が求められ
た。
According to the above analysis, the condition that φ is approximately 0.1V was determined.

次に、第2図の不純物添加濃度と深い準位を形成する割
合のグラフから、AkGα+−xAs混晶比2がz =
 0.3だとどんなに不純物濃度をおとしても、深い不
純物準位(DXセンター)が発生することがわかる。そ
して、ya =0.2位だと不純物浸度が1Q ” c
tn−’程度以下では深い不純物準位が発生しないこと
がわかる。実用上、深い不純物準位を作る割合が10俤
程度は許容できることを考慮して詳細に検討した結果、
AftzGat−2As の混晶比2が0.15以上ま
た、先の(11式をもとにして1を第2の半導体層の誘
電率、−を電子の電荷量、NOを第2の半導体層の不純
物濃度、φを約0.1Vとするとき、前記第2の半導体
層の厚さdが、 〔実施例〕 第1図は本発明の実施例の半導体装置のエネルギバンド
図である。第1図中、1は実質的に不純物を含まないG
aAs層(チャネル層)、2は第2の半導体層、3は第
3の半導体層で5の中性領域が生じている。4は制御電
極金属であり、これに引加される電圧により、1のGa
A、sチャネル層に形成される6と指示する2次元電子
濃度n8を制御する。
Next, from the graph of the impurity doping concentration and the ratio of forming deep levels in Fig. 2, we can see that the AkGα+-xAs mixed crystal ratio 2 is z =
It can be seen that when the value is 0.3, a deep impurity level (DX center) is generated no matter how much the impurity concentration is reduced. Then, when ya = 0.2, the impurity penetration degree is 1Q” c
It can be seen that deep impurity levels are not generated below about tn-'. As a result of detailed study, taking into consideration that in practical terms, it is acceptable to create a deep impurity level at a rate of about 10 yen.
If the mixed crystal ratio 2 of AftzGat-2As is 0.15 or more, based on the above formula (11), 1 is the dielectric constant of the second semiconductor layer, - is the amount of electron charge, and NO is the second semiconductor layer. When the impurity concentration and φ are approximately 0.1 V, the thickness d of the second semiconductor layer is: [Embodiment] FIG. 1 is an energy band diagram of a semiconductor device according to an embodiment of the present invention. 1 In the figure, 1 is G that does not substantially contain impurities.
In the aAs layer (channel layer), 2 is a second semiconductor layer, 3 is a third semiconductor layer, and a neutral region 5 is generated. 4 is a control electrode metal, and by the voltage applied to it, the Ga of 1
A, s The two-dimensional electron concentration n8 designated as 6 formed in the channel layer is controlled.

7はフェルミ準位を指示するものである。また、φは半
導体層3中の中性領域での伝導帯底と、半導体層2のへ
テロ界面での伝導帯底とのエネルギ差を表す。
7 indicates the Fermi level. Further, φ represents the energy difference between the conduction band bottom at the neutral region in the semiconductor layer 3 and the conduction band bottom at the hetero interface of the semiconductor layer 2.

第2図KSi添加A1zGa1−2Asにおける深い不
純物の割合の添加濃度依存性を示している。第2図のよ
うに、AflzGα1−2 As中にStを添加した場
合、2値と添加量によシ、深い不純物準位を形成する割
合が決まる。2次元電子濃度と相互コンダクタンスを大
きくえもつために、第2の半導体層2は1X 1Q”a
m−’程度に添加されることが必要であり、2次元電子
の移動度を高く保ため、x値は0.15以上であること
が必要である。−方、2値が大きくなると、深い準位を
形成する割合が増大するため、0.23以下であること
が必要である。これらの要請によシ、2値と不純物濃度
の範囲が決定される。
FIG. 2 shows the doping concentration dependence of the deep impurity ratio in KSi-doped A1zGa1-2As. As shown in FIG. 2, when St is added to AflzGα1-2 As, the rate at which deep impurity levels are formed is determined depending on the binary value and the amount added. In order to maintain a large two-dimensional electron concentration and mutual conductance, the second semiconductor layer 2 is 1X 1Q"a
The x value needs to be 0.15 or more in order to maintain high two-dimensional electron mobility. - On the other hand, as the binary value increases, the ratio of forming deep levels increases, so it is necessary that it be 0.23 or less. Based on these requirements, the range of binary values and impurity concentrations is determined.

また、第3の半導体層に形成され深い準位が形成されな
いように、その不純物濃度は5 x 1Q” am−’
以下I X 1×1016c−n%−3以上であること
が必要である。さらに、第2の半導体が空乏化する必要
性から、上記した式 から第2の半導体層の厚さdが決定される。
Further, in order to prevent the formation of a deep level in the third semiconductor layer, the impurity concentration is 5 x 1Q"am-'
Below, it is necessary that I x 1×10 16 c-n%-3 or more. Furthermore, since the second semiconductor needs to be depleted, the thickness d of the second semiconductor layer is determined from the above equation.

第3図は本発明の実施例を素子断面要部図で示している
。図中、各部の記号は第1図と対応部分について統一し
てあり、8はGaAs基板、1は不純物を添加しないG
aAa (チャネル層)、2.3はそれぞれS(を1×
1016cm−’、 1×1016am−” 程度添加
したAftzGal−zAs (z =0.2 )、9
はStを1Q”6m−5程変添加したGaAn、10,
11は入/出力電極、12は制御電極である。半導体層
2の厚さは80Aにすることで半導体層2を完全に空乏
化でき、しかも、z = 0.2としたのでSt濃度1
×1016c、m−’では深い不純物準位は殆ど存在し
ない。このため、閾値電圧の温度変化や、低温での光照
射による動作特性の変化がなくなυ、しかも、オーミッ
クコンタクトが容易にとれ、相互コンダクタンスが低下
しない。
FIG. 3 shows an embodiment of the present invention in a sectional view of the main parts of the device. In the figure, the symbols for each part are the same as those in Figure 1, and 8 is a GaAs substrate, 1 is a GaAs substrate with no impurities added.
aAa (channel layer), 2.3 are each S(1×
AftzGal-zAs (z = 0.2), 9
is GaAn with modified St addition of 1Q"6m-5, 10,
11 is an input/output electrode, and 12 is a control electrode. By setting the thickness of the semiconductor layer 2 to 80A, the semiconductor layer 2 can be completely depleted, and since z = 0.2, the St concentration is 1.
There are almost no deep impurity levels at ×1016c, m-'. Therefore, there is no change in the threshold voltage due to temperature changes or changes in operating characteristics due to light irradiation at low temperatures, υ, and ohmic contact can be easily established and mutual conductance does not decrease.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、閾値電圧の温度変化が小さく、低温で
の動作が安定であり、シかも、入/出力電極と2次元電
子との接続が容易で、電流が2次元電子層を通シ、製造
が複雑でない構造のものが得られる。
According to the present invention, the temperature change in the threshold voltage is small, the operation is stable at low temperatures, the connection between input/output electrodes and two-dimensional electrons is easy, and current flows through the two-dimensional electron layer. , a structure that is not complicated to manufacture can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の素子のエネルギバンド図、 第2図はS(添加A1zGa+−2Aaにおける深い不
純物準位の割合の添加濃度依存性、 第3図は実施例の素子要部断面図、 第4図はHEMTのエネルギバンド図、第5図(、)〜
(6)は従来例を示すエネルギバンド図、 第6図は本発明におけるペテロ界面近くのバンド図、 第7図は二次元電子濃度を示す線図である。 1・・・不純物無添加GaAs 2.14+16.18−n型A1.zGα、−2A11
3・・・比較的添加量が小さいAizGa+−2At4
・・・制御電極金属 5・・・中性領域 6・・・2次元電子ガス 7・・・フェルミ準位 8・・・GaAs基板 9・・・GaAsキャップ層 10.11.12・・・電極 17・・・無添加A2zGtL+−zAj19・・・比
較的電子親和力が大きいA1zGa+−zAa20・・
・無添加A1.As 21−= Si添加GaAs
FIG. 1 is an energy band diagram of a device according to an example of the present invention, FIG. 2 is a doping concentration dependence of the proportion of deep impurity levels in S (doped A1zGa+-2Aa), and FIG. 3 is a cross-section of a main part of a device according to an example. Figure 4 is the HEMT energy band diagram, Figure 5 (, )~
(6) is an energy band diagram showing the conventional example, FIG. 6 is a band diagram near the Peter interface in the present invention, and FIG. 7 is a diagram showing two-dimensional electron concentration. 1... Impurity-free GaAs 2.14+16.18-n type A1. zGα, -2A11
3...AizGa+-2At4 with a relatively small amount added
... Control electrode metal 5 ... Neutral region 6 ... Two-dimensional electron gas 7 ... Fermi level 8 ... GaAs substrate 9 ... GaAs cap layer 10.11.12 ... Electrode 17... Additive-free A2zGtL+-zAj19... A1zGa+-zAa20 with relatively high electron affinity...
・Additive-free A1. As21-=Si-doped GaAs

Claims (1)

【特許請求の範囲】[Claims] (1)半絶縁性GaAs基板上に実質的に不純物を含ま
ないGaAsよりなる第1の半導体層と、該半導体層上
にAl_xGa_1_−_xAsよりなる第2および第
3の半導体層を積層し、第1の半導体層の第2の半導体
層との界面近傍に2次元電子ガス形成されるエピタキシ
ャル層構造を有し、第3の半導体層上に該2次元電子ガ
スのキャリア濃度を制御する制御電極と、該制御電極を
挾んで設けられ、該2次元電子ガスにオーミックに接触
する複数個の電極を有する半導体装置において、 前記第2および第3の半導体層を形成するAl_xGa
_1_−_xAsの混晶比xが0.15以上0.23以
下であり、かつ第3の半導体層の不純物濃度を5×10
^1^7cm^−^3以下1×10^1^6cm^−^
3以上となし、■を第2の半導体層の誘電率、■を電子
の電荷量、N_Dを第2の半導体層の不純物濃度、φを
約0.1Vとするとき、前記第2の半導体層の厚さdを
、 √(2■ψ/■N_D)<d となしたことを特徴とする半導体装置。
(1) A first semiconductor layer made of GaAs substantially free of impurities is laminated on a semi-insulating GaAs substrate, and second and third semiconductor layers made of Al_xGa_1_-_xAs are laminated on the semiconductor layer. The first semiconductor layer has an epitaxial layer structure in which a two-dimensional electron gas is formed near the interface with the second semiconductor layer, and a control electrode for controlling the carrier concentration of the two-dimensional electron gas is provided on the third semiconductor layer. , in a semiconductor device having a plurality of electrodes that are provided to sandwich the control electrode and make ohmic contact with the two-dimensional electron gas, Al_xGa forming the second and third semiconductor layers;
_1_-_xThe mixed crystal ratio x of As is 0.15 or more and 0.23 or less, and the impurity concentration of the third semiconductor layer is 5×10
^1^7cm^-^3 or less 1x10^1^6cm^-^
3 or more, ■ is the dielectric constant of the second semiconductor layer, ■ is the amount of electron charge, N_D is the impurity concentration of the second semiconductor layer, and φ is about 0.1 V, then the second semiconductor layer A semiconductor device characterized in that the thickness d of the semiconductor device satisfies the following: √(2■ψ/■N_D)<d.
JP14380486A 1986-06-19 1986-06-19 Semiconductor device Pending JPS63174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14380486A JPS63174A (en) 1986-06-19 1986-06-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14380486A JPS63174A (en) 1986-06-19 1986-06-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63174A true JPS63174A (en) 1988-01-05

Family

ID=15347365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14380486A Pending JPS63174A (en) 1986-06-19 1986-06-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63174A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828868A (en) * 1987-04-07 1989-05-09 Elescon, Inc. Low calorie peanut spread
JPH02240937A (en) * 1989-03-14 1990-09-25 Matsushita Electron Corp Field-effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828868A (en) * 1987-04-07 1989-05-09 Elescon, Inc. Low calorie peanut spread
JPH02240937A (en) * 1989-03-14 1990-09-25 Matsushita Electron Corp Field-effect transistor

Similar Documents

Publication Publication Date Title
JPS58147169A (en) High electron mobility transistor
JPS6356710B2 (en)
JPS63174A (en) Semiconductor device
JPS61147577A (en) Complementary semiconductor device
JP2655594B2 (en) Integrated semiconductor device
JPH0355978B2 (en)
JPS58147167A (en) High mobility complementary semiconductor device
JPS62211964A (en) Semiconductor device
JPS5891681A (en) Field-effect type transistor
JPS61230379A (en) Semiconductor device
JPH0194676A (en) Semiconductor device and manufacture thereof
JPS63107173A (en) Field effect transistor
JPH05275453A (en) Junction fet and manufacture thereof
JPS6159875A (en) Complementary semiconductor device
JPH01257372A (en) Insulated gate field effect transistor
JPS63155772A (en) Field effect transistor
JPH04101436A (en) Field-effect transistor
KR920009896B1 (en) Ga-as fet and its manufacturing method
JP2768794B2 (en) Semiconductor device
JPS6213080A (en) Semiconductor device with hetero-junction
JPS63185056A (en) Semiconductor device
JPH0260223B2 (en)
JPS60154573A (en) Semiconductor device
JPS6372168A (en) Reversely structured high-mobility transistor
JPH0797633B2 (en) Field effect transistor