JPS63107173A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS63107173A
JPS63107173A JP25418186A JP25418186A JPS63107173A JP S63107173 A JPS63107173 A JP S63107173A JP 25418186 A JP25418186 A JP 25418186A JP 25418186 A JP25418186 A JP 25418186A JP S63107173 A JPS63107173 A JP S63107173A
Authority
JP
Japan
Prior art keywords
layer
alinas
alinas layer
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25418186A
Other languages
Japanese (ja)
Other versions
JPH0312770B2 (en
Inventor
Goro Sasaki
吾朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25418186A priority Critical patent/JPS63107173A/en
Priority to EP87115444A priority patent/EP0264932A1/en
Priority to CA000550121A priority patent/CA1261977A/en
Priority to KR1019870011772A priority patent/KR900008154B1/en
Publication of JPS63107173A publication Critical patent/JPS63107173A/en
Publication of JPH0312770B2 publication Critical patent/JPH0312770B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To provide a high-quality field effect transistor having excellent pinch off characteristics and no lot-by-lot variation of substrates by sequentially forming a first AlInAs layer, a GaInAs layer and a second AlInAs layer on an InP substrate, and providing a control electrode, a source electrode and a drain electrode on the second AlInAs layer. CONSTITUTION:On an InP substrate 1, a first AlInAs layer 2, a GaInAs layer 3 added with no impurity and a second AlInAs layer 5 are sequentially formed. The first AlInAs layer 2 has been added with an N-type impurity which has a very higher density as compared with the density of the impurity diffusing from the InP substrate 1. With the above constitution, a two-dimensional electron layer 4 is formed in the interface of the first AlInAs layer 2 with the GaInAs layer 3. By providing a control electrode 6 on the second AlInAs layer 5, a depletion layer diffuses from the control electrode 6, enabling the current flowing between the source electrode 7 and the drain electrode 8 to be controlled.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高周波増幅回路、高速集積回路、光電子集積
回路等に応用される電界効果トランジスタに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor applied to high frequency amplifier circuits, high speed integrated circuits, optoelectronic integrated circuits, and the like.

[従来の技術] ヘテロ接合界面に形成される2次元電子を用いたトラン
ジスタとしては、従来より、いくつかのものが提案され
ている。たとえば、特公昭59−53714、特開昭5
6−45079およびジャパニーズ拳ジャーナル・オブ
・アプライド・フィジックス(Japanese  J
ournal  orAppliedPl+ysics
 )第19巻、1980年、L225頁などに、このタ
イプのトランジスタが記載されている。これらに記載さ
れたトランジスタでは、基板としてガリウム・砒素が用
いられている。ガリウム・砒素を基板として用いた場合
には、室温での2次元電子の移動度は8000cm2/
V−seC程度である。これに対して、インジウム・リ
ン(以下1nPと記す)を基板として用いた場合には、
室温での2次元電子の移動度としては120000m2
/■・sec程度が得られる。したがって高周波特性や
増幅率の優れた電界効果トランジスタを実現することが
できる。InPを基板として用いる2次元電子トランジ
スタとしては、■EEEφエレクトロン・デバイス・レ
タース(Elcctron Dcvicc Lette
rs ) C,Y、 Ch e n等。
[Prior Art] Several transistors have been proposed in the past that use two-dimensional electrons formed at a heterojunction interface. For example, JP-A-59-53714, JP-A-5
6-45079 and Japanese Journal of Applied Physics (Japanese J
own orAppliedPl+ysics
), Volume 19, 1980, page L225, this type of transistor is described. In the transistors described in these documents, gallium arsenic is used as a substrate. When gallium/arsenic is used as a substrate, the two-dimensional electron mobility at room temperature is 8000 cm2/
It is about V-seC. On the other hand, when indium phosphide (hereinafter referred to as 1nP) is used as a substrate,
The mobility of two-dimensional electrons at room temperature is 120,000 m2
/■·sec can be obtained. Therefore, a field effect transistor with excellent high frequency characteristics and amplification factor can be realized. As a two-dimensional electronic transistor using InP as a substrate, ■EEEφ Electron Device Letters (Elcctron Dcvicc Lette)
rs) C, Y, Chen et al.

EDL−3巻、1982年、152頁に記載されている
ものが知られている。
The one described in EDL-3, 1982, page 152 is known.

第2図は、InPを基板として用いた従来の2次元電子
トランジスタの構成を示す断面図である。
FIG. 2 is a cross-sectional view showing the structure of a conventional two-dimensional electronic transistor using InP as a substrate.

InP基板21の上には、不純物無添加のアルミニウム
・インジウム・砒素混晶半導体層(以下AaInAs層
と=己す)22、ガリウム・インジウム・砒素混晶半導
体層(以下Ga I nAs層と記す)23、n型不純
物が添加されたAlInAslInAs層形4されてい
る。制御電極26は、n型AuInAs層24上に設け
られており、該制御電極260両側にソース電極27お
よびドレイン電極28が設けられている。
On the InP substrate 21, an aluminum-indium-arsenic mixed crystal semiconductor layer (hereinafter referred to as an AaInAs layer) 22 and a gallium-indium-arsenic mixed crystal semiconductor layer (hereinafter referred to as a GaInAs layer) are formed on the InP substrate 21. 23, an AlInAslInAs layer 4 doped with n-type impurities. The control electrode 26 is provided on the n-type AuInAs layer 24, and a source electrode 27 and a drain electrode 28 are provided on both sides of the control electrode 260.

G a’ I n A s層23とn型AllInAs
層24の界面には、2次元電子層25が形成されており
、この2次元電子層25の電子密度を制御することによ
り、ソース電極27とドレイン電極28の間を流れる電
流が制御される。
Ga'InAs layer 23 and n-type AllInAs
A two-dimensional electronic layer 25 is formed at the interface of the layer 24, and by controlling the electron density of the two-dimensional electronic layer 25, the current flowing between the source electrode 27 and the drain electrode 28 is controlled.

[発明が解決しようとする問題点コ しかしながら、以上説明したような従来の電界効果トラ
ンジスタにおいては、意図的には不純物の添加されてい
ないA店InAs層22中にInP基板21中の不純物
が拡散し、得られたトランジスタの特性として、良好な
ピンチオフが得られないという問題点があった。また、
このように基板中の不純物により影響を受けるため、ト
ランジスタ特性が基板のロフトによってばらつきを生じ
るという問題点もあった。
[Problems to be Solved by the Invention] However, in the conventional field effect transistor as described above, impurities in the InP substrate 21 are intentionally diffused into the A-store InAs layer 22 to which impurities are not added. However, the resulting transistor had a problem in that good pinch-off could not be obtained. Also,
Since the transistor characteristics are affected by impurities in the substrate, there is also a problem in that the transistor characteristics vary depending on the loft of the substrate.

それゆえに、本発明の目的は、ピンチオフ特性が優れ、
かつ基板のロットごとにばらつくことのない高品質の電
界効果トランジスタを提供することにある。
Therefore, an object of the present invention is to have excellent pinch-off characteristics,
Another object of the present invention is to provide a high-quality field effect transistor that does not vary from substrate lot to lot.

「問題点を解決するための手段および作用]上記の目的
を達成するための本発明の構成を、実施例に対応する第
1図を用いて説明する。InP基板1上に、n型不純物
が添加された第1のAI I n A s層2が形成さ
れ、該第1のAIInAS層2」二には、不純物が添加
されていないGaInAs層3が形成され、さらに該G
a I nAsAs上に第2のAulnAs層5か形成
される。第1のACjInAs層2には、InP基板1
から拡散する不純物の濃度に比べて非常に高い濃度のn
型不純物が添加される。
"Means and operations for solving the problems" The structure of the present invention for achieving the above object will be explained using FIG. 1 corresponding to the embodiment. A first doped AIInAs layer 2 is formed, a GaInAs layer 3 to which no impurity is added is formed on the first AIInAS layer 2'', and further the GaInAs layer 3 is formed with no impurities added.
A second AlnAs layer 5 is formed on the a I nAsAs. The first ACjInAs layer 2 includes an InP substrate 1
The concentration of n is very high compared to the concentration of impurities diffused from
Type impurities are added.

以上の構成にすることにより、2次元電子層4は、第1
のA(jInAs層2とGaInAs層3との間の界面
に形成され、従来と異なり基板に近い側に形成される。
With the above configuration, the two-dimensional electronic layer 4
A (j is formed at the interface between the InAs layer 2 and the GaInAs layer 3, and unlike the conventional method, it is formed on the side closer to the substrate.

しかし、Ga I nAs層には、一般的にショットキ
ー接触を形成させることか難しい。そこで、本発明では
、Ga InAsnAs層側上電極を直接形成させるの
ではなく、ショットキー接触を形成させることが容易な
材料をその上に形成した後、制御電極を形成させている
。このショットキー接触を形成させることが容易な材料
としてはAlInAsが知られており、この理由から、
本発明において第2のAαInAs層が形成されている
。第1図に示すように、第2のAlInAs層5上に制
御電極6を設けるこにより、制御電極6から空乏層が拡
がり、2次元電子層4の電子密度を制御することが可能
となり、これによってソース電極7とドレイン電極8の
間を流れる電流を制御することができる。
However, it is generally difficult to form Schottky contacts in GaInAs layers. Therefore, in the present invention, instead of directly forming the upper electrode on the Ga InAsnAs layer side, a material with which a Schottky contact can be easily formed is formed thereon, and then the control electrode is formed. AlInAs is known as a material with which this Schottky contact can be easily formed, and for this reason,
In the present invention, a second AαInAs layer is formed. As shown in FIG. 1, by providing the control electrode 6 on the second AlInAs layer 5, a depletion layer expands from the control electrode 6, making it possible to control the electron density of the two-dimensional electron layer 4. Therefore, the current flowing between the source electrode 7 and the drain electrode 8 can be controlled.

また、本発明では、InP基板1上に、不純物濃度の高
いn型の第1のAαInAs層が形成されているため、
InP基板1から拡散する不純物による影響を該第1の
AfLInAs層によって少なくすることができる。
Furthermore, in the present invention, since the n-type first AαInAs layer with high impurity concentration is formed on the InP substrate 1,
The influence of impurities diffused from the InP substrate 1 can be reduced by the first AfLInAs layer.

[実施例] 以下、本発明の一実施例を第1図に基づいて説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.

半絶縁性InP基板1上に、有機金属気相成長法あるい
はガスソースM B E (Molecular−bc
am cpitaxy)法により、基板温度600’C
〜650℃において、n型不純物を添加した第1のAl
lnAs層2を形成する。n型不純物としては、Si、
S、Seなどを水素化物の形で供給し、その密度はlX
l0” 〜5xl 018cm−3程度にし、厚さは5
00A〜2000Aの範囲にする。一般に、InP基板
1から拡散する不純物の密度は、10”cm−3程度で
あり、また拡散深さも300A程度であるので、第1の
AI)、InAsnAs層上述の不純物密度および厚さ
とすることにより、InP基板1から拡散する不純物の
影響をほとんどなくすることができる。次に、不純物無
添加のGalnAs層3を200A〜2000人程度の
厚さで形成し、第2のAαI’nAs層5を200A〜
100OA程度の厚さで形成する。第1のArLlnA
s層2、GaInAs層3および第2のAlInAs層
5の混晶組成は、InP基板1との格子不整が0.1%
以下となるように形成する。
On the semi-insulating InP substrate 1, organic metal vapor phase epitaxy or gas source MBE (Molecular-bc) is applied.
am cpitaxy) method, the substrate temperature is 600'C.
At ~650°C, the first Al doped with n-type impurities
An lnAs layer 2 is formed. As n-type impurities, Si,
S, Se, etc. are supplied in the form of hydrides, whose density is lX
10” to 5xl 018cm-3, and the thickness is 5
Set it in the range of 00A to 2000A. Generally, the density of impurities diffused from the InP substrate 1 is about 10"cm-3, and the diffusion depth is also about 300A. , it is possible to almost eliminate the influence of impurities diffused from the InP substrate 1.Next, an impurity-free GalnAs layer 3 is formed to a thickness of about 200A to 2000A, and a second AαI'nAs layer 5 is formed. 200A~
It is formed to a thickness of about 100 OA. First ArLlnA
The mixed crystal composition of the s-layer 2, the GaInAs layer 3, and the second AlInAs layer 5 has a lattice mismatch with the InP substrate 1 of 0.1%.
Form it as follows.

第2のAILInAs層5は、トランジスタの所要特性
により、不純物無添加、p型またはn型にする。すなわ
ち、高入力耐圧が必要な場合には、不純物無添加とし、
高ドレイン電流が必要な場合にはn型とし、しきい値電
圧を正にする場合にはp型とする。n型はSi、S、S
eなどの不純物を10” cm−3〜10” cm−”
添加し、p型はZn、Mg、Mnなどの不純物を101
10l6 ” 〜10” cm−’程度添加する。
The second AILInAs layer 5 is doped with no impurities and is made p-type or n-type depending on the required characteristics of the transistor. In other words, if high input withstand voltage is required, no impurities should be added.
When a high drain current is required, the n-type is used, and when the threshold voltage is positive, the p-type is used. n-type is Si, S, S
impurities such as 10" cm-3 to 10"cm-"
For p-type, impurities such as Zn, Mg, and Mn are added to 101
Add approximately 10l6'' to 10''cm-'.

さらにAu−Ge合金からなる低抗性接触金属を蒸着し
、たとえば400°Cで合金化することにより、ソース
電極7およびドレイン電極8を形成する。最後に、たと
えばA肛、 P t、 Au、 W。
Further, a low resistance contact metal made of an Au-Ge alloy is deposited and alloyed at, for example, 400°C to form the source electrode 7 and the drain electrode 8. Finally, for example, A anal, P t, Au, W.

WSiなどから選ばれた制御電極6を蒸芒法などの方法
により形成し完成させる。
A control electrode 6 made of WSi or the like is formed and completed by a method such as a steaming method.

[発明の効果コ 本発明の電界効果トランジスタでは、InP基板上に意
図的に高濃度のn型不純物を添加した第1のA仁1nA
s層が形成されているため、InP基板から拡散する不
純物の影響を著しく低減させることができる。したがで
て、本発明によれば、再現性良く、高周波特性・増幅特
性の優れた電界効果トランジスタとすることができる。
[Effects of the Invention] In the field effect transistor of the present invention, the first A layer 1nA is intentionally doped with a high concentration of n-type impurity on the InP substrate.
Since the s-layer is formed, the influence of impurities diffused from the InP substrate can be significantly reduced. However, according to the present invention, a field effect transistor with good reproducibility and excellent high frequency characteristics and amplification characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を説明するための断面図で
ある。第2図は、従来の電界効果トランジスタを示す断
面図である。 図において、1はInP基板、2は第1のAC7nAs
層、3はGa I nAs層、4は2次元電子層、5は
第2のAQlnAs層、6は制御電極、7はソース電極
、8はドレイン電極を示す。 (ほか2名)   ゛、’、、H−+ 第2図 272ど  23
FIG. 1 is a sectional view for explaining one embodiment of the present invention. FIG. 2 is a sectional view showing a conventional field effect transistor. In the figure, 1 is an InP substrate, 2 is a first AC7nAs
3 is a GaInAs layer, 4 is a two-dimensional electronic layer, 5 is a second AQlnAs layer, 6 is a control electrode, 7 is a source electrode, and 8 is a drain electrode. (2 others) ゛,',,H-+ Figure 2 272 etc. 23

Claims (4)

【特許請求の範囲】[Claims] (1)InP基板上に、n型不純物が添加された第1の
AlInAs層を形成し、該第1のAlInAs層上に
不純物が添加されていないGaInAs層を形成し、該
GaInAs層上に第2のAlInAs層を形成し、該
第2のAlInAs層上に制御電極を設け、該制御電極
の両側に前記GaInAs層に対して抵抗性接触となる
ソース電極およびドレイン電極を設けたことを特徴とす
る、電界効果トランジスタ。
(1) A first AlInAs layer doped with an n-type impurity is formed on an InP substrate, a GaInAs layer to which no impurity is added is formed on the first AlInAs layer, and a second AlInAs layer is formed on the GaInAs layer. A second AlInAs layer is formed, a control electrode is provided on the second AlInAs layer, and a source electrode and a drain electrode that are in resistive contact with the GaInAs layer are provided on both sides of the control electrode. field effect transistor.
(2)前記第2のAlInAs層に不純物が添加されて
いないことを特徴とする特許請求の範囲第1項記載の電
界効果トランジスタ。
(2) The field effect transistor according to claim 1, wherein no impurity is added to the second AlInAs layer.
(3)前記第2のAlInAs層の伝導型がp型である
ことを特徴とする、特許請求の範囲第1項記載の電界効
果トランジスタ。
(3) The field effect transistor according to claim 1, wherein the conductivity type of the second AlInAs layer is p-type.
(4)前記第2のAlInAs層の伝導型がn型である
ことを特徴とする、特許請求の範囲第1項記載の電界効
果トランジスタ。
(4) The field effect transistor according to claim 1, wherein the conductivity type of the second AlInAs layer is n-type.
JP25418186A 1986-10-24 1986-10-24 Field effect transistor Granted JPS63107173A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25418186A JPS63107173A (en) 1986-10-24 1986-10-24 Field effect transistor
EP87115444A EP0264932A1 (en) 1986-10-24 1987-10-21 Field effect transistor
CA000550121A CA1261977A (en) 1986-10-24 1987-10-23 Field effect transistor
KR1019870011772A KR900008154B1 (en) 1986-10-24 1987-10-23 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25418186A JPS63107173A (en) 1986-10-24 1986-10-24 Field effect transistor

Publications (2)

Publication Number Publication Date
JPS63107173A true JPS63107173A (en) 1988-05-12
JPH0312770B2 JPH0312770B2 (en) 1991-02-21

Family

ID=17261356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25418186A Granted JPS63107173A (en) 1986-10-24 1986-10-24 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS63107173A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230149A (en) * 1988-07-20 1990-01-31 Sanyo Electric Co Ltd Hetero junction field effect transistor
US5127603A (en) * 1989-12-13 1992-07-07 Shimano Industrial Co., Ltd. Fishing reel with cover for enclosing control dial

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230149A (en) * 1988-07-20 1990-01-31 Sanyo Electric Co Ltd Hetero junction field effect transistor
US5127603A (en) * 1989-12-13 1992-07-07 Shimano Industrial Co., Ltd. Fishing reel with cover for enclosing control dial

Also Published As

Publication number Publication date
JPH0312770B2 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
US7262446B2 (en) Semiconductor device and process for production thereof
US5739557A (en) Refractory gate heterostructure field effect transistor
JP2001217257A (en) Semiconductor device and its manufacturing method
WO2004010488A1 (en) Semiconductor device
JPS6356710B2 (en)
JPS63107173A (en) Field effect transistor
JP4631104B2 (en) Manufacturing method of semiconductor device
JPS6242569A (en) Field effect transistor
US4772932A (en) Bipolar transistor and including gas layers between the emitter and base and the base and collector
JP3633587B2 (en) Manufacturing method of semiconductor device
JPS62298181A (en) Semiconductor device
JPS63272080A (en) Semiconductor device
JPS63107172A (en) Field effect transistor
JPS61174775A (en) Semiconductor device
KR900008154B1 (en) Field effect transistor
JP3383057B2 (en) Semiconductor device
JPS60136380A (en) Semiconductor device
KR20010014864A (en) Semiconductor device and manufacturing method therefor
JPH01262670A (en) Field effect transistor
JPS63174A (en) Semiconductor device
JPH04233241A (en) High breakdown strength field-effect transistor
JPH03155169A (en) Semiconductor device
JPH04280640A (en) Field-effect transistor and manufacture thereof
JPS62229972A (en) Compound semiconductor device and manufacture thereof
JPH04225239A (en) Heterojunction field-effect transistor