JPS63174957A - 4−アミノ−3−ヒドロキシ酪酸の製法 - Google Patents

4−アミノ−3−ヒドロキシ酪酸の製法

Info

Publication number
JPS63174957A
JPS63174957A JP62007262A JP726287A JPS63174957A JP S63174957 A JPS63174957 A JP S63174957A JP 62007262 A JP62007262 A JP 62007262A JP 726287 A JP726287 A JP 726287A JP S63174957 A JPS63174957 A JP S63174957A
Authority
JP
Japan
Prior art keywords
acid
compound
reaction
azido
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62007262A
Other languages
English (en)
Other versions
JPH0362706B2 (ja
Inventor
Seiichi Takano
誠一 高野
Kuniro Ogasawara
国郎 小笠原
Yoshiisa Sekiguchi
喜功 関口
Naoya Kasai
尚哉 笠井
Kazuhiko Sakaguchi
和彦 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP62007262A priority Critical patent/JPS63174957A/ja
Publication of JPS63174957A publication Critical patent/JPS63174957A/ja
Publication of JPH0362706B2 publication Critical patent/JPH0362706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は4−アミノ−3−ヒドロキシ醋酸の製法に関す
る。
4−アミノ−3−ヒドロキシ醋酸は、その薬効として脳
代謝改善作用、脳血流量増加作用、血圧降下作用、鎮静
作用などがあり、生物活性を示すのはその光学異性体の
うち(R)体である。現在4−アミノ−3−ヒドロキシ
酪酸はラセミ体で使用されており、従って(R)体のみ
を高純度で得ることは重要なことでおる。また(R)−
4−アミノ−3−ヒドロキシ酪酸から誘導される(R)
−力ルニチンはビタミンBTとも称され、その優れた生
物活性より栄養剤、医薬品として注目されている。
(従来技術) 従来、(R)−4−アミノ−3−ヒドロキシ酪酸の合成
法としては下記の方法が知られている。
(1) し−アスコルビン酸を出発原料とし、 (R)
−4−アミノ−3−ヒドロキシブチロニトリルを経由す
る方法(J、 Am、 Chem、 Soc、 、第1
02巻。
6304頁(1980) )。
(2)し−アラビノースを出発原料として、(R)−4
−アミノ−3−ヒドロキシ醋酸メチルを経由する方法(
Acta、 Chem、 5cand、 B、第37巻
、344頁。
(1983) )。
(3)シャープレス酸化により不斉合成して、(R)−
3,4−エポキシ酪酸を経由する方法(J、 Org。
Chem、 、第49巻、 3707頁、 (1984
))。
(4)酵素又は微生物を利用してβ−ケトエステルの不
斉還元ヤシエステルの不斉加水分解で不斉炭素を導入す
る方法(丁etrahedron Lett、 、第2
5巻。
5235頁(1984)、Tetrahedron L
ett、 、第26巻。
101頁(1985))。
(5)  (23,4R) −N−アセチル−4−ヒド
ロキシプロリンを出発原料とする方法(5ynthes
is。
424頁、 (1986))。
(発明が解決しようとする問題点) 上記いずれの方法も本発明の原料で必る4−アジド−3
−ヒドロキシ酪酸を経由してはおらず、上記方法のうち
、(1)、(2)は非常に工程数が多いという不利があ
り、(3)は得られた(R)−4−アミノ−3−ヒドロ
キシ醋酸の光学純度が低い、(4)は反応濃度が低いか
、あるいは生成物の光学純度が低い、また(5)は出発
原料が高価で必る、というそれぞれの問題点がある。
(問題点を解決するための手段) 本発明者らは、上記の如き問題がなく反応操作が簡便で
しかも光学純度の高い光学活性(R)−4−アミノ−3
−ヒドロキシ酪酸を高収率で製造する方法として、本出
願人の出願に係る特開昭61−132196号公報及び
特願昭60−147065号明細書記載の光学活性(R
)−エピクロルヒドリンを出発原料とする方法を検討し
た。その結果、上記エピクロルヒドリンより光学活性ア
ジド誘導体を合成し、これをざらに酸化して得た新規な
光学活性酪酸誘導体を原料とする方法によって光学純度
の非常に高い本発明目的物が得られることを見出したも
のである。
本発明は、下記式 で示される4−アジド−3−ヒドロキシ酪酸を触媒の存
在下で水素添加することを特徴とする4−アミノ−3−
ヒドロキシ酪酸の製法である。
本発明の方法は、光学活性エピクロルヒドリンを用いて
下記のような反応工程を経て得られた光学純度の高い光
学活性4−アジド−3−ヒドロキシ酪酸(E)を原料と
して用いれば目的物の光学純度が著しく高いものが高収
率で得られる。
A           B          Cア
ジド誘導体 l−I           H D            E アジド誘導体       酪酸誘導体F      
         G 醋酸誘導体 上記反応工程において、C及びDの光学活性アジド誘導
体とE及び本発明の原料となるFの光学活性酪酸誘導体
は従来文献未記載の新規化合物でおり、本出願人におい
て別途出願した。
本発明において原料となる上記F化合物(光学活性4−
アジド−3−ヒドロキシ酪酸)は、光学活性エピクロル
ヒドリンを原料とし、上記反応工程を経由する方法が中
間体の単離が容易にでき、しかも光学純度の高いものが
高収率で得られるので有利である。
上記反応工程による原料化合物(光学活性4−アジド−
3−ヒドロキシ酪酸)の製法を前記先願の発明によって
得られた光学純度の高い光学活性(R)−エピクロルヒ
ドリンを原料として用いた例で以下説明するが、 (S
)体のエピクロルヒドリンを用いた場合も同様であり、
この場合は(S)−4−アジド−3−ヒドロキシ酪酸が
得られ、このものは更に最終化合物である(S)−4−
アミノ−3ヒドロキシ酪酸に変換される。
:イ)AからBを得る反応 この反応は、(R)−エピクロルヒドリン(A)に−価
銅化合物、例えばシアン化第−銅、ヨウ化第−銅の存在
下でBのR1に相当する有機アルカリ金属化物RIMを
作用させることによって行われる。
1?1)1のHは、好ましくはリチウム、ナトリウムで
あり、R1の有機基、例えば芳香環の炭素に直結おるい
は二重結合の炭素に結合したアルカリ金属化合物が用い
られる。R1はフェニル基の如き芳香族炭化水素残基、
ビニル基の如きオレフィン残基あるいはシクロペンタジ
ェニル基の如き容易にカルボン酸に変換しうる疎水性置
換基であり、通常下記R1)1に示されるような有機基
が用いられる。
即ち、RI Hの具体例としては、芳香族化合物アルカ
リ金属誘導体として、フェニルリチウム、2−メチルフ
ェニルリチウム、2,3−ジメチルフェニルリチウム、
2−メトキシフェニルリチウム等のメチル基、メトキシ
ル基を1〜5個有するフェニルリチウム、1−ナフチル
リチウム、2−ナフチルリチウム等が挙げられ、オレフ
ィンアルカリ金属誘導体として、CH2=ct+ci、
 CH3−CH=C(CH3)Li、  n −C7H
15CH=Ct(Liがあり、シクロペンタジェン又は
置換シクロペンタジェンアルカリ金属誘導体として が挙げられる。これらRlHのうち入手の容易さや収率
からみて最も好ましいのはフェニルリチウムである。
本反応において、原料エピクロルヒドリンに対する一価
銅化合物の使用量は1〜1.1当量がよく、R’Hの使
用量は2〜2.2当量が最適である。反応は溶媒として
通常無水のエーテル類、例えばエチルエーテル、テトラ
じドロフラン等を用いて反応温度−90〜−45℃の範
囲で2〜3時間反応させることによって達成される。
(ロ)BからCを得る反応 この反応はB化合物にアルカリ金属アジド塩、例えばナ
トリウムアジドあるいはカリウムアジドを作用させる方
法によって行われる。溶媒はジメチルホルムアミド、ジ
オキサン、アセトニトリル−水(混合系)が用いられ、
60〜100℃、5〜20時間で達成される。アルカリ
金属アジド塩としてナトリウムアジドあるいはカリウム
アジドをB化合物に対して2〜10当量用いて行われる
。特にナトリウムアジド2当量を用い、溶媒としてジメ
チルホルムアミド、80℃、14時間の反応条件が最適
である。
(ハ)CからDを得る反応 この反応は上記光学活性(R)−アジド誘導体(C)に
酸無水物類もしくは酸ハロゲン化物類と塩基類を作用さ
せて通常アシル化を行う反応である。[)MおけるRと
してはアシル基(−C0R2。
但し、R2は低級アルキル基又はフェニル基)のほか、
t−7トキシカルボニル基が選ばれる。アシル基の場合
、アシル化剤としては酸無水物類、例えば無水酢酸、無
水プロピオン酸、無水安息香酸なと、もしくは酸ハロゲ
ン化物類、例えば塩化アセデル、臭化アセチル、塩化プ
ロピオニル、臭化プロピオニル、塩化ベンゾイル、臭化
ベンゾイルなどが用いられる。t−ブトキシカルホニル
基の導入にはt−ブトキシカルボン酸無水物の使用がよ
い。塩基類としてはピリジン、トリエチルアミンなどが
用いられる。
上記酸無水物類又は酸ハロゲン化物類の使用量は、アジ
ド誘導体(C)に対して1〜6当量の範囲がよく、塩基
類の使用量は2〜20当量の範囲が適当である。反応は
至温(20〜25℃)下で24〜100時間行うことに
よって達成される。溶媒は、ピリジンあるいは塩基とし
てトリエチルアミンを用いる場合は、塩化メチレン、ク
ロロホルム、四塩化炭素の使用がよい。
(ニ)DからEを得る反応 この反応は光学活性(R)−アジド誘導体(D化合物)
の酸化反応であり、通常過ヨウ素酸アリカリ金属塩と塩
化ルテニウムの共存下で行われる。
これらの反応剤はD化合物に対して過ヨウ素酸アルカリ
金属塩2〜18当量、塩化ルテニウム0.022当量が
好ましい。反応条件はシャープレスの条件(J、 Or
g、 Chem、 、第46%、 393B頁、 (1
981))によるが、通常溶媒として四塩化炭素二アセ
トニトリル:水= 2: 2:  3(容量)を用いて
至温(25’C)で0.5〜120時間行うことによっ
て達成される。
(ホ)EからFを得る反応 この反応によって本発明の原料となるF化合物((R)
−4−アジド−3−ヒドロキシ醋酸)を得ることができ
る。E化合物のRがt−ブトキシカルボニル基の場合は
、酸類2例えば塩酸、蟻酸。
酢酸、トリフルオロ酢酸などを作用させることによって
行われる。また上記EのRがアシル基の場合には、塩基
類1例えば炭酸カリウム、炭酸ナトリウム、水酸化カリ
ウム、水酸化ナトリウムなどを作用させることによって
行われる。酸類を用いる場合にはトリフルオロ酢酸の使
用が反応後の減圧留去の容易さ及び収率の点で好ましい
以上のようにして本発明の原料化合物である光学活性(
1?)−4−アジド−3−ヒドロキシ酪酸は合成される
。上記説明にあいでは主に光学活性体のものについて述
べたがラセミ体のエピクロルヒドリンを用いてラセミ体
の上記原料化合物も同様にして得られるものであり、こ
れによりラセミ体の目的物である4−アミノル3−ヒド
ロキシ酪酸を得ることができる。
本発明の目的物は上記原料化合物の末端アジドを触媒の
存在下で水素添加することによって達成される。
触媒としてはこの種の反応に使用されるものなら何でも
適用できるが、特に金属系触媒、例えばパラジウム、白
金等がよく、収率及び経済性の点でパラジウムが好まし
い。殊にパラジウムの含有量が10%程度のパラジウム
−カーボン粉末が優れている。触媒の使用量は原料化合
物に対して0.5〜50重量%の範囲が適当である。反
応は、通常至温(20〜25℃)、常圧で3〜15時間
行うことによって達成される。
反応に際して用いられる溶媒としては、アルコール類、
例えばメタノール、エタノール、ロープロバノール、イ
ソプロパツール、t−ブタノール等、おるいはこれらと
水との混合物、エーテル類、例えばエチルエーテル、テ
トラヒドロフラン、ジオキサン等があるが、通常メタノ
ールが好ましく用いられる。
(実施例) 合成例1 (B化合物、(R)−1−クロロ−2−ヒドロキシ−3
−フェニルプロパンの合成) 20(7!容量の反応器にシアン化第−銅5.32g(
59,40m mol )を含む乾燥テトラヒドロフラ
ン溶液50dを加え、アルゴン気流下、−90℃でフェ
ニルリチウム溶液45.7.W!(シクロヘキサン:エ
ーテル=70:30(容量)の2.60モル溶液、フェ
ニルリチウム0.1189mol >を滴下し、同温度
で30分間攪拌した。次いで一45℃で光学純度99%
以上の(R)−エピクロルヒドリン4.2.W (54
,05m mol )を滴下し同温度で1.5時間攪拌
した。反応後反応液に飽和塩化アンモニウム水溶液を加
えた俊エーテルで抽出した。このエーテル層を飽和重曹
水。
飽和食塩水で順次洗浄し硫酸マグネシウムで乾燥後、溶
媒を減圧下で留去し淡黄色油状物10.40(lを得た
。これをシリカゲル300i;lを充填したカラムクロ
マトグラフィに付し、エーテル:ヘキサン=1= 9(
容量〉流分から無色油状の(R)−1−クロロ−2−ヒ
ドロキシ−3−フェニルプロパン(B ) a、 39
(1(収率93%)を得た。
上記B化合物の性状は以下のとおりである。
沸点 94℃(18mm Hg 、クーゲルロール(K
LIgelrOhr >装置による)[α]o  −3
,72° (C=1.02. CHCl3)I Rv 
max cm−13400(OR)NMR(CDC1:
+ ) δ:2.22(IH,d、  J= 5.2H2゜ex
changeable with  020 、044
>2.90(2H,d、  J= 6.6Hz、 ar
omatic−CH2−) 3.47〜3.62 (2M、  m、 −CH2−C
1)3.90〜4.20 (IH,m、 −CH(OH
) −)7.29 (5H,m 、 aromatic
  H)MS(m/e)、   170 (M十 )、
  91  (100%)元素分析 C9H110C1理論値C: 63.35. H:6.
50゜CJ!:  20.78 測定値C: 63.04. H:6.54゜(ffl:
 20.28 合成例2 (C化合物、 (R)−1−アジド−2−ヒドロキシ−
3−フェニルプロパンの合成) 200m容量の反応器に上記合成例1で得られた(R)
−1−クロロ−2−ヒドロキシ−3−フェニルプロパン
(B)  5.OOg(29,30m mol)を含む
ジメチルホルムアミド溶液70dを加え、0℃でナトリ
ウムアジド3.81g(58,60m mol >を加
えてアルゴン気流下同温度で30分間、次いで80’C
で14時間攪拌反応せしめた。反発後水を加えてエーテ
ルで抽出し、エーテル層を水、飽和食塩水で順次洗浄し
硫酸マグネシウムで乾燥させた。溶媒を減圧下で留去し
褐色油状物6.24g8得た。これをシリカゲル200
gを充填したカラムクロマトグラフィに付し、エーテル
:ヘキサン=1ニア(容量)流分より(R)−1−アジ
ド−2−ヒドロキシ−3−フェニルプロパン(C)  
4.84Cl(収率93%)を得た。
上記C化合物の性状は以下のとおりでおる。
沸点 145℃(18mn+ Hg 、クーゲルロール
装置)[αコ 。  +2.76° (Cm2.10.
CH(J3 )I Rνmax Cm−’  3420
 (OH) 、 2120 (83)NMR(CDα3
) δ:2.02(1N、  d、  J= 5.2Hz。
exchangeable with  020 、0
H)2.80 (2H、d、  J= 6.6Hz、 
aromatic−C!i2−> 3.28〜3.37 <2H,m 、 −Cjj2− 
N3 )3.86〜4.08 (IH,m、 −C!1
(OH) −)7.26(5H,m、 aromati
c  H)MS(m/e)、  149 (M” −N
2 ) 、 91 (100%〉合成例3 (D−(イ)化合物、(R)−1−アンド−2−1−ブ
トキシカルボキシ−3−フェニルプロパンの合成) 合成例2により得られた(R)−1−アジド−2−ヒド
ロキシ−3−フェニルプロパン(C)  101mg(
0,56m mol >を含むジクロロメタン溶液1m
lを容量10dの反応器に入れ、ジ−t−ブトキシカル
ボン酸無水物739ma(3,38m mol )及び
トリエチルアミン1.411n1(10,15m mo
l )を加えてアルゴン気流下室温で90時間攪拌し反
応せしめた。反応後ジクロロメタンを加え、有機層を5
%塩酸、飽和重曹水、飽和食塩水で順次洗浄し硫酸マグ
ネシウムで乾燥後、溶媒を減圧下で留去して褐色油状の
残留物を得た。これをシリカゲル5gを充填したカラム
クロマトグラフィに付し、エーテル:ヘキサン=1:2
0(容量)流分より無色油状の(R)−1−アジド−2
−t−ブトキシカルボキシ−3−フェニルプロパン(D
−(イ))137mO(収率88%)を得た。
上記D−(イ)化合物の性状は以下のとおりである。
沸点 125°C(1,Omm Hg、クーゲルロール
装置)[α]o+18.28° (Cm2.22. C
HO23)r RvmaX Cm−’  2120 (
N3 )NMR(CDCb ) δ: 1.46 (9H,S、  0CO2−C(CH
3) 3 )2.89〜3.03 (2H,dd、 a
romatic  −CH2−)3.32〜3./13
 (2N、  m、 −CH2−N3 )4.82〜5
.10 (1N、  m、 −CM−OCO2t−Bu
)7.25 (5H,m、 aromatic  H)
MS(m/e)、  160 (M+−OCO−t−B
u) 。
103 (100%) 元素分析 Cl4H1903N3理論値C: 60.63. I−
(:6.91゜N:15.15 測定値C:  61.00. H:6.65゜N:15
.15 合成例4 (D−(ロ)化合物、(R)−1−アジド−2−アセト
キシ−3−フェニルプロパンの合成)合成例2により得
られた(R)−1−アジド−2−ヒドロキシ−3−フェ
ニルプロパン(C)1.23(11(6,94m mo
l )を含むピリジン溶液1.23d(ピリジン15.
27m mol )を容量10m1の反応器に入れ、ア
ルゴン気流下空温で無水酢10.72d (7,63m
mol>を滴下し同温度で24時間攪拌しながら反応せ
しめた。反応後溶媒を減圧下で留去した後エーテルを加
え、有機層を5%塩酸、飽和重曹水。
飽和食塩水で順次洗浄し!iiI[酸マグネシウムで乾
燥後、溶媒を減圧下で留去して得られる残留物1.49
3gの一部0.1815CIを蒸留に付し、無色油状の
(R)−1−−アジド−2−7セトキシー3−フェニル
プロパン(D=(ロ) >  0.1710り (収率
93%)を得た。
上記D−(ロ)化合物の性状は以下の通りである。
沸点 84℃(0,85mm Hg 、クーゲルロール
装置)[α]D+7.12° (Cm2.13. CH
(43)IRl)max cm−’  2120(N3
 >、 1740(Cm 0)NMR(CDCf13) δ: 2.10 (3N、  S、  OCOCH3)
2.88〜2.99 (2N、  m、 aromat
IC−CL! −)3.27〜3.38(2N、  m
、 −C,旦2− N3 )5.05〜5.30 (I
H,m、 −Cti(OAc> −>7.21 (5H
,m、 aromatic  H)MS(m/e)、 
 219 (M  ) 、 91 (loo%)元素分
析 C11H1302N3 理論値C: 60.26. l
−(:5.98゜N:19.15 測定値C: 59.98. H:5.82゜N:19.
28 合成例5 (D−(ハ)化合物、(R)−1−アジド−2−ベンゾ
キシ−3−フェニルプロパンの合成)合成例2により得
られた(R)−1−アジド−2−ヒドロキシ−3−フェ
ニルプロパン(C)291、7ma (1,646m 
mof >を含むジクロロメタン3d溶液を容量10m
1の反応器に入れ、ピリジン0、297!(3,621
m mol )及び塩化ベンゾイル0.217(1,8
11m mol>を加えてアルゴン気流下空温で46時
間攪拌しながら反応せしめた。反応後溶媒を減圧下で留
去した後エーテルを加え、有機層を5%塩酸、飽和重曹
水、飽和食塩水で順次洗浄し硫酸マグネシウムで乾燥後
、溶媒を減圧下で留去して淡黄色油状の残留物を得た。
これをシリカゲルioogを充填したカラムクロマトグ
ラフィに付し、エーテル:ヘキサン=1:30(容量)
流分より無色油状の(R)−1−アジド−2−ベンゾキ
シ−3−フェニルプロパン(D−(ハフ)  0.40
52(](収率87.6%)を得た。
上記D−(ハ)化合物の性状は以下のとおりである。
IRvmaX Cm−’  2120(N3 )、 1
720(Cm 0)NMR(CDα3) δ:3.04〜3.16 (2N、  m、 aro(
lIatic  −CH2−)3.40〜3.52 (
2)1.  m、 −CH2−N3 )5.29〜5.
56 (t)1.  m、 −CH(0COPh) −
>7.27(5H,m、 aromatic  tl 
)7.43〜7.60(3N、  m、 aromat
ic  H)8.00〜8.13(2H,m、 aro
matic  H)合成例6 (E−(イ)化合物、(R)−4−アジド−3−t−ブ
トキシカルボキシ酪酸の合成) 上記合成例3によって得られた(R)−1−アジド−2
−t−ブトキシカルボキシ−3−フェニルプロパン(D
−(イ) >  123.5ma (0,445m m
of>を含ムCcJla :CH3CN: [20= 
2: 2: 3 (容@)溶液3.5rdlを容量10
dの反応器に入れ、RUCI13・3120 2.56
m(1(0,0098m mol>及びNa1Oa  
2.28g(10゜68m mol )を加えてアルゴ
ン気流下空温で120時間攪拌しながら反応させた。
反応後10%塩酸を加えてからジクロロメタンで抽出し
硫酸マグネシウムで乾燥させた後、減圧下で溶媒を留去
させた残留物にエーテルを加えてセライト濾過した。濾
液のエーテル層を飽和重曹水で抽出し、次いで水層を濃
塩酸で酸性にして■びエーテルで抽出し硫酸マグネシウ
ムで乾燥させた。
溶媒を減圧上留去して得られる褐色油状物をメタノール
で洗浄したシリカゲル4.4gを充填したカラムクロマ
トグラフィに付し、クロロホルム:メタノール=3:1
(容量)流分より(R)−4−アンド−3−t−ブトキ
シカルレボキシ酪1 (E−(イ〉) 63.5m(J
 (収率58%)とこれの脱アシル化によって(R)−
4−アジド−3−ヒドロキシ醋酸(F)14.9ma 
(収率23%)をそれぞれ得た(E−(イ)及びF全収
率81%)。
得られた(R)−4−アジド−3−t−ブトキシカルボ
キシ酸1 (E−(イ))の性状は以下のとおりである
。また該E−(イ〉化合物の赤外線吸収スペクトルを第
1図に示した。
[α] 、  +13.12°(C=0.442 、 
CHCb )I Rv max cm−13400〜2
800 (OH) 。
2110 (N3 ) 、 R30(C= O)NMR
(CDC13) δ: 1.50 (9H,S、 0COC(CH3) 
3 )2.76 (2)1.  d、  J= 6.4
Hz、−Ct12−COOH)3.52〜3.57 (
2H,m、 −Ch −N3 )5.07〜5.26 
(1M、  m、 −C!1(OCOOt −Btu)
 )8.09 (IH,br、s、 exchange
able withD20 、−COO助 MS(m/e)、  217 (M+−82) 、 8
3 (100%)合成例7 (E−(ロ)化合物、 (R)−4−アジド−3−アセ
トキシ醋酸の合成) 上記合成例4によって得られた蒸留による精製前の粗製
物(R)−1−アジド−2−7セトキシー3−フェニル
プロパン(D−(ロ))  1.3093(](5゜5
6mmol)を含むCCl4: CH3CN : 82
0 =2:  2:  3(容量)溶液18dを容量5
0dの反応器に入れ、これにRLIC13・3t120
 32.Omg  (0,122mm01)とNa10
434.5(1(0,8111101>を加えアルゴン
気流下室温で120時間攪拌しながら反応させた。反応
後の精製処理は合成例6と同様にして油状物の(R)−
4−アジド−3−アセトキシ酪酸(E−(ロ) ) 0
.9071(]を得た。この一部0.2115gをメタ
ノールで洗)争したシリカゲル10(]を充填したカラ
ムクロマトグラフィに付し、クロロホルム:メタノ2ル
=99:1(容量)流分より精製(R)−4−アジド−
3−アセトキシ酪酸(E−(ロ) )  0.2007
!;] (収率83%)を得た。
精製されたE−(口〉化合物の性状は以下のとおりであ
る。またこのE−(ロ)の赤外線吸収スペクトルを第2
図に示した。
[α]。 +4,69° (C= 0.940. CM
α3)f Rv max cm−’  3500〜28
00 (Off) 。
2120 (N3 > 、 1740 (C= O)N
MR(CDC13) δ: 2.10 (311,s、  0COC!j3)
2.74 (2H,d、  J= 6.7Hz、 −C
H2C00H)3.47〜3.55 (2H,m、 −
C1j2− N3 )5.20〜5.45 (IH,m
、 −CM (OCOCH3)  )9.89 (lH
,br、s、 exchangeable witho
20 、、−COOH) MS(m/e)、  1’i’O(M+−1)、  1
09(100%)合成例8 (E−(ハ)化合物、(R)−4−アジド3−ベンゾキ
シ醋酸の合成) 上記合成例5によって得られた(R)−1−アジド−2
−ベンゾキシ−3−フェニルプロパン(D−(ハ) )
  232.2m(1(0,826m mof>を含む
CC4)4:CH3CN: 820 =12:  2:
  3(容量)溶液10.5mlを容130dの反応器
に入れ、これにRuCl23・3H204,75mg 
 ’、 0.0182m mol)とNaIO44,5
9fj(21,48m mof >を加えてアルゴン気
流下室温で34時間攪拌しながら反応させた。反応後の
処理は合成例6と同様にして淡黄色油状物の(R)−4
−アジド−3−ベンゾキシ酪酸(E−(ハ))176.
3mq (収率85.6%)を得た。このものはカラム
クロマトグラフィによる精製を要しない程純度の高いも
のであった。
得られた(R)−4−アジド−3−ベンゾキシ酸M (
E−(ハ))の性状は以下のとありでおる。
またこの化合物E−(ハ)の赤外線スペクトルを第3図
に示した。
■Rv max cm−13500〜2800 (ON
) 。
2120 (N3 ) 、 1720 (C= 0)N
MR(CDCJ2:+ ) δ:2.90 (2H,dd、  J= 6.7Hz、
 −CH2−COOH)3.60〜3.72 (2H,
m、 −CH2−N3 )5.50〜5.65 (IH
,m、 −CM (0COf)h) −)6.61 (
1m、 br、s、 exchangeable vi
thD20 、 C00N> 7.45〜7.60 (3H,m、 aromatic
 H)7.98〜8.11 (2H,m、 aroma
tic H>合成例9 (F化合物、(R)−4−アジド−3−ヒドロキシ酪酸
の合成) 合成例6によって得られた(R) −4−アジド−3−
t−ブトキシカルボキシ酪酸(E−(イ))798m(
] (33,26mmol)を含むジクロロメタン溶液
6mlを合成例6と同様な反応器に入れ、アルゴン気流
下O℃でCF3COOH2,57dを滴下し同温度で1
7時間攪拌しながら反応させた。反応後溶媒を減圧下に
留去し残留物として油状の(R)−4−アジド−3−ヒ
ドロキシ酸! (F)  472mg(収率100%)
を得た。
上記(R)−4−アジド−3−ヒドロキシ酪酸(F)の
性状は以下のとおりでおる。またこの化合物(F)の赤
外線吸収スペクトルを第4図に示した。
[α〕。 +19.93° (C= 2.408. C
HCl3)IRνmaxcm−13500〜2800(
OH)。
2120 (N3 ) 、 1740 (C= 0)N
MR(CD(J3) δ:2.60(2H,d、  J= 6.4Hz、 −
C旦2−COOH)3.40 (2tl、  m、−C
jj2− N3 )4.10〜4.38(IH,m、−
Cjj(0旧−)6.90 (2H,br、s、 ex
changeable with[)20 、−DH−
and  −COOH−)MS(m/e)、  128
 (M  −0H) 、 42 (100%)合成例1
0 (F化合物、4−アンド−3−ヒドロキシ酪酸の合成) 合成例7によって得られたカラムクロマトグラフィによ
る精製前の粗製物(R)−4−アジド−3−アセトキシ
酪酸(E−(ロ) )  0.6010!;I <3.
05mmol)を含む水:メタノール=1:9(容量)
溶液10m1を合成例6と同様な反応器に入れ、これに
NaOH0,244(J  (6,10mol)を加え
てアルゴン気流下空温で1時間攪拌しながら反応させた
。反応後メタノールを留去させ、濃塩酸で酸性とした後
エーテルで抽出した。溶媒を減圧上留去し淡黄色油状物
484.4mgを得た。これをメタノールで洗浄したシ
リカゲル15(Jを充填したカラムクロマトグラフィに
付し、クロロホルム流分より油状の(R)−4−アジド
−3−ヒドロキシ酸M(F)  427mg(収率 9
6.5%)を得た。このものの性状は合成例9によって
得られたF化合物と一致した。
合成例11 (F化合物、(R)−4−アジド−3−ヒドロキシ酪酸
の合成〉 合成例8によって得られた(R)−4−アジド−3−ベ
ンゾキシ酪酸(E −(ハ) > 56.On+g (
0,22mmol)を含むメタノール溶液2mlを合成
例6と同様な反応容器に入れ、これにに2 CO348
,5mp(0,35m mof>を加えてアルゴン気流
下空温で144時間攪拌しながら反応させた。反応後溶
媒を減圧下で留去しエーテルを加えて飽和重曹水で抽出
し、水層を濃塩酸で酸性にし再びエーテルで抽出した後
硫酸マグネシウムで乾燥させた。溶媒を減圧上留去し残
留物をメタノールで洗浄したシリカゲルi、ogを充填
したカラムクロマトグラフィに付し、ジクロロメタン流
分より油状の(f?)−4−アジド−3−ヒドロキシ酪
酸(F) 32.8m(1(合成例8を含めた仝収率8
6%)を得た。このものの性状は合成例9によって得ら
れたF化合物と一致した。
実施例 合成例9〜11によって得られたF化合物、(R)−4
−アジド3−ヒドロキシ酪酸を用いて本発明の目的物で
あるG化合物、(R)−4−アミノ−3−ヒドロキシ酪
酸を合成した。
上記F化合物101.8m(J (0,702mol 
)を含むメタノール溶液2.Odを容1io7!の反応
器に入れ、これにパラジウム−炭素粉末(パラジウム含
量10重量%) 10.2mgを加え水素気流下空温で
14時間攪拌しながら反応させた。反応後、水:メタノ
ール=3: 7(容量)溶液を加えセライト′a過した
。濾液の溶媒を減圧下で留去させ、残菌結晶物を含水エ
タノールから再結晶させて無色針状の目的物、(R)−
4−アミノ−3ヒドロキシ酪酸(G) 77n+c+(
収率92%)を得た。
このものの性状は以下のとおりである。
融点 212°C(既知化合物212℃)[α]。 −
23,17° (C= 0.492.水)、(既知化合
物[α] D−21,06°) IRy max cm−13430,3200〜250
0 (OH) 。
2110、1620.1580〜150ONMR(CD
C13) δ:2.33 (2H,J= 6.6H2,−C)j2
−COOH)2.85〜3.04(2H,m、−Cji
2NH3)3.85〜4.30 (IH,m、 −(J
j (OH) −’)MS(m/e)、  119(M
  )、29(100%)C4H9N理論値 C:  
40.33. Hニア、62゜N:11.76 測定値 C:  40.03. H: 7.80゜N:
11.81 上記NMRは既知のラセミ体標品のNMRの帰属と一致
した。またセルロース薄層クロマトグラフィ上での挙動
も既知のラセミ体標品と一致した。
(発明の効果) 本発明の方法は、光学純度が非常に高い原料化合物、(
R)−4−アジド−3−ヒドロキシ酪酸を用いているの
で生物活性を示す(R)体の4−アミノ−3−ヒドロキ
シ酪酸を高純度、高収率で得ることができ、またこの原
料化合物も簡便な反応工程を経て収率よく取得できるの
で経済性にも優れている。
【図面の簡単な説明】
第1図〜第3図は、それぞれ合成例6〜8によって得ら
れた、本発明の原料化合物、 (R)−4−アジド−3
−ヒドロキシ酪酸の前駆体である光学活性(R)−酪酸
誘導体の赤外線吸収スペクトルであり、第4図は、合成
例9によって1qられだ原料化合物、(R)−4−アジ
ド−3−ヒドロキシ酪酸の赤外線吸収スペクトルである

Claims (2)

    【特許請求の範囲】
  1. (1)下記式で示される4−アジド−3−ヒドロキシ酪
    酸を触媒の存在下で水素添加することを特徴とする4−
    アミノ−3−ヒドロキシ酪酸の製法。 ▲数式、化学式、表等があります▼
  2. (2)4−アジド−3−ヒドロキシ酪酸が光学異性体で
    ある特許請求の範囲第1項記載の製法。
JP62007262A 1987-01-13 1987-01-13 4−アミノ−3−ヒドロキシ酪酸の製法 Granted JPS63174957A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62007262A JPS63174957A (ja) 1987-01-13 1987-01-13 4−アミノ−3−ヒドロキシ酪酸の製法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007262A JPS63174957A (ja) 1987-01-13 1987-01-13 4−アミノ−3−ヒドロキシ酪酸の製法

Publications (2)

Publication Number Publication Date
JPS63174957A true JPS63174957A (ja) 1988-07-19
JPH0362706B2 JPH0362706B2 (ja) 1991-09-26

Family

ID=11661113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007262A Granted JPS63174957A (ja) 1987-01-13 1987-01-13 4−アミノ−3−ヒドロキシ酪酸の製法

Country Status (1)

Country Link
JP (1) JPS63174957A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036603A1 (fr) * 1995-05-19 1996-11-21 Daiso Co., Ltd. Procede ameliore pour preparer la 4-hydroxy-2-pyrrolidone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163639A (ja) * 1984-07-12 1986-04-01 スクラ−ボ・エセ・ピ・ア L−カルニチンの製法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163639A (ja) * 1984-07-12 1986-04-01 スクラ−ボ・エセ・ピ・ア L−カルニチンの製法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036603A1 (fr) * 1995-05-19 1996-11-21 Daiso Co., Ltd. Procede ameliore pour preparer la 4-hydroxy-2-pyrrolidone
US5869694A (en) * 1995-05-19 1999-02-09 Daiso Co., Ltd. Process for preparing 4-hydroxy-2-pyrrolidone

Also Published As

Publication number Publication date
JPH0362706B2 (ja) 1991-09-26

Similar Documents

Publication Publication Date Title
Deng et al. A practical, highly enantioselective synthesis of the taxol side chain via asymmetric catalysis.
EP0530285B1 (fr) Procede de preparation enantioselective de derives de la phenylisoserine
EP0530286B1 (fr) Procede de preparation stereoselective de derives de la phenylisoserine
JPH07116179B2 (ja) R−(+)−α−リポン酸及びS−(−)−α−リポン酸の製法
van Aar et al. Synthesis of (4R, 5R)-muricatacin and its (4R, 5S)-analog by sequential use of the photo-induced rearrangement of epoxy diazomethyl ketones
JPH0788376B2 (ja) 光学活性α−トコトリエノ−ルの製造方法
JPH0569818B2 (ja)
JPS63174957A (ja) 4−アミノ−3−ヒドロキシ酪酸の製法
JP2823616B2 (ja) 「4,4,5,8−テトラメチル−1−オキサスピロ〔2.5〕オクタン、その製造法、及び2,2,3,6−テトラメチル−シクロヘキサン−カルブアルデヒド、その製造法」
BE875053A (fr) Composes analogues aux cephalosporines
JPS63174960A (ja) 酪酸誘導体
Vankar et al. Asymmetric synthesis of chiral vinylic epoxides and α-hydroxy-β, γ-unsaturated esters via (−)-menthol based auxiliary and enzymatic resolution respectively
CN1216023C (zh) 反式-(+)-水合蒎醇制备方法
FR2546889A1 (fr) Procede de preparation d'un acide aminolactonecarboxylique
JPH0222254A (ja) 2,3―ジアミノプロピオン酸誘導体
JPH0193570A (ja) ビタミンa及びその誘導体の合成方法
JP3116420B2 (ja) 光学活性エポキシド誘導体及び製造法
KR100524145B1 (ko) 고순도의 키랄 3-하이드록시-γ-부티로락톤의 제조방법
JPS63174959A (ja) アジド誘導体
JPH08295682A (ja) バッカチン誘導体及びその製法
JPH0539235A (ja) (1,3−ブタジエン−2−イル)メタノール誘導体および糖類合成法
JPH0611735B2 (ja) 光学活性なβ―アルキル―γ―アシルオキシカルボン酸エステルの製造方法
JPS61180734A (ja) シクロペンタン誘導体
JPH0784456B2 (ja) δ−ラクトン誘導体の製法
JPH0586020A (ja) α,β−ジヒドロキシ−γ,δ−不飽和カルボン酸チオールエステル誘導体およびその製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees