JPS631740B2 - - Google Patents

Info

Publication number
JPS631740B2
JPS631740B2 JP3655380A JP3655380A JPS631740B2 JP S631740 B2 JPS631740 B2 JP S631740B2 JP 3655380 A JP3655380 A JP 3655380A JP 3655380 A JP3655380 A JP 3655380A JP S631740 B2 JPS631740 B2 JP S631740B2
Authority
JP
Japan
Prior art keywords
substrate
silicon
frame
ray
ray exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3655380A
Other languages
Japanese (ja)
Other versions
JPS56132343A (en
Inventor
Tadashi Nakamura
Keizo Hidejima
Teruo Shirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP3655380A priority Critical patent/JPS56132343A/en
Publication of JPS56132343A publication Critical patent/JPS56132343A/en
Publication of JPS631740B2 publication Critical patent/JPS631740B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Description

【発明の詳細な説明】 本発明はX線露光用マスクの製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an X-ray exposure mask.

X線露光処理は、従来行われている電子線露光
処理において問題となる二次電子の発生や塵埃に
よる散乱がなく、高いアスペクト比のレジスト微
細パターンが得られることを特徴としている。
The X-ray exposure process is characterized by the fact that there is no generation of secondary electrons or scattering due to dust, which are problems in conventional electron beam exposure processes, and that a fine resist pattern with a high aspect ratio can be obtained.

第1図はX線露光装置の原理図である。 FIG. 1 is a diagram showing the principle of an X-ray exposure apparatus.

すなわち、X線露光装置は、基本的にX線発生
室1と試料室2とに分割され、両室はベリリウム
窓3で区切られて構成され、X線発生室1が常に
高真空に保たれてターゲツト4が汚れないように
されている。
That is, the X-ray exposure apparatus is basically divided into an X-ray generation chamber 1 and a sample chamber 2, and both chambers are separated by a beryllium window 3, so that the X-ray generation chamber 1 is always kept at a high vacuum. This prevents the target 4 from getting dirty.

同図において、X線発生室1内において、電子
銃5から発生した電子線6がターゲツト4に衝突
し、該ターゲツト4からX線7が発生する。そし
てベリリウム窓3を通して試料室2へ入射したX
線7は、X線露光用マスク8を通過して、被処理
基板9上に被着されているX線レジスト10に選
択的に照射される。
In the figure, in an X-ray generation chamber 1, an electron beam 6 generated from an electron gun 5 collides with a target 4, and X-rays 7 are generated from the target 4. Then, the X that entered the sample chamber 2 through the beryllium window 3
The rays 7 pass through an X-ray exposure mask 8 and are selectively irradiated onto an X-ray resist 10 deposited on a substrate 9 to be processed.

ここで該X線露光用マスク8は、第2図に詳細
に示されるようにフレーム21、メンブラン(支
持膜)22並びにX線吸収体23からなる。
Here, the X-ray exposure mask 8 consists of a frame 21, a membrane (support film) 22, and an X-ray absorber 23, as shown in detail in FIG.

従来メンブラン22としてシリコン(Si)、窒
化シリコン(Si3N4)など剛体薄膜が用いられて
きた。ところがこれらの剛体薄膜からなるメンブ
ランを用いて露光処理を行うと、製造工程中の熱
処理などにより被処理基板に反りが生じた場合、
マスクと被転写基板とが完全密着せず、正確な露
光処理ができなかつた。
Conventionally, a rigid thin film such as silicon (Si) or silicon nitride (Si 3 N 4 ) has been used as the membrane 22. However, when exposure processing is performed using membranes made of these rigid thin films, if the substrate to be processed warps due to heat treatment during the manufacturing process,
The mask and the substrate to be transferred did not come into complete contact with each other, making it impossible to perform accurate exposure processing.

そこでポリイミド等のプラスチツク・フイルム
をメンブランとして使用することが提案された。
このような構造によれば、マスクと被処理基板と
を完全密着させることができる他、該プラスチツ
ク・フイルムが透明なので光学的位置合わせがで
きるという特長がある。
Therefore, it was proposed to use a plastic film such as polyimide as the membrane.
This structure has the advantage that not only can the mask and the substrate to be processed be brought into perfect contact with each other, but also optical alignment can be performed because the plastic film is transparent.

このようなプラスチツク・フイルムでメンブラ
ンを構成したX線露光用マスクのフレームは、一
般にステンレス又はパイレツクスガラスが使われ
ている。
The frame of such an X-ray exposure mask having a membrane made of plastic film is generally made of stainless steel or pyrex glass.

ところがステンレスは加工精度は良いが、熱膨
張係数が10×10-6/℃であり、被処理基板である
シリコン基板(熱膨張係数2×10-6/℃)に露光
処理を行なうとする時、その差が大きく、電子線
露光による該X線露光用マスクの製作時と該X線
露光用マスクを用いてのX線露光処理時とで温度
差がある場合、あるいは長時間のX線露光時に温
度変化が生じた場合には該X線露光用マスクと被
処理基板との間に位置ずれを生じてしまい、微細
加工上、不適当である。例えば直径100〔mm〕のシ
リコン(Si)基板に対し露光処理を行う際、その
処理中の温度差が2〔℃〕ある場合、最大位置ず
れは1.6〔μm〕程に達する。
However, although stainless steel has good processing accuracy, it has a thermal expansion coefficient of 10 × 10 -6 /℃, and when performing exposure processing on a silicon substrate (thermal expansion coefficient of 2 × 10 -6 /℃), which is the substrate to be processed. , the temperature difference is large, and there is a temperature difference between the time of manufacturing the X-ray exposure mask by electron beam exposure and the time of X-ray exposure processing using the X-ray exposure mask, or if there is a long-term X-ray exposure. If a temperature change occurs at times, a positional shift occurs between the X-ray exposure mask and the substrate to be processed, which is inappropriate in terms of microfabrication. For example, when performing exposure processing on a silicon (Si) substrate with a diameter of 100 [mm], if the temperature difference during the processing is 2 [°C], the maximum positional deviation will reach about 1.6 [μm].

又パイレツクスガラスは、その熱膨張係数が3
×10-6/℃とシリコンに近いがそれ自体の加工精
度を上げにくいという難点がある。
Also, Pyrex glass has a coefficient of thermal expansion of 3.
×10 -6 /℃, which is close to silicon, but it has the disadvantage that it is difficult to increase its own processing accuracy.

従つて被転写基板材料であるシリコンをフレー
ム材料に使用すれば、温度差による転写ずれを零
にすることができる。
Therefore, if silicon, which is the transfer target substrate material, is used as the frame material, the transfer deviation due to the temperature difference can be reduced to zero.

ところで従来X線マスクに使用されるシリコン
フレーム厚は、通常直径76〔mm〕で300〜400〔μm〕
厚、直径100〔mm〕で600〔μm〕程度である。これ
は、通常のLSI製造用ウエーハをそのまま使用し
ていることと、薄いほどシリコンのエツチング時
間が短かくてすむためである。
By the way, the thickness of the silicon frame used in conventional X-ray masks is usually 76 [mm] in diameter and 300 to 400 [μm].
The thickness is about 600 [μm] with a diameter of 100 [mm]. This is because ordinary LSI manufacturing wafers are used as is, and the thinner the silicon, the shorter the etching time for the silicon.

ところが、ポリイミド等のプラスチツク・マス
クはメンブランが均等な張力で張られている場合
でも張力が大きいためフレームが変形し吸収体パ
ターンのピツチ精度を悪くする。又、ポリイミド
膜厚不均一、並びにポリイミド化のための熱処理
時に、成膜用基板面内の温度不均一がある場合に
は、均一な張力分布とならずフレームに複雑な変
形が生じ、従つて吸収体パターンのピツチ精度が
悪くなるといつた欠点がある。
However, even if the membrane is stretched with uniform tension in a plastic mask made of polyimide or the like, the tension is large, causing deformation of the frame and impairing the pitch accuracy of the absorber pattern. In addition, if there is non-uniform polyimide film thickness or non-uniform temperature within the surface of the film-forming substrate during heat treatment for polyimide formation, the tension distribution will not be uniform and complex deformation will occur in the frame. The disadvantage is that the pitch accuracy of the absorber pattern deteriorates.

これを解決する手段としては、シリコン・フレ
ーム厚をできるだけ厚くすることであるが、厚く
することは次の二つの問題点がある。
One way to solve this problem is to make the silicon frame as thick as possible, but increasing the thickness poses the following two problems.

一つはシリコン背面エツチングに長時間を要す
ることである。仮にシリコン厚を3〔mm〕厚とし
た場合、水酸化カリウム(KOH)溶液やエチレ
ンジアミン―ピロカテコール混液のエツチング速
度は約1〔μm/分〕と非常に遅いため50時間も要
する。
One is that silicon backside etching takes a long time. If the silicon thickness is 3 mm, the etching rate of potassium hydroxide (KOH) solution or ethylenediamine-pyrocatechol mixture is very slow at approximately 1 μm/min, so it would take 50 hours.

又、弗酸―硝酸―酢酸混液では組成、液回転速
度、液温によつてエツチング速度によつて変化す
るが速いものでは10〔μm/分〕程度となりエツチ
ング時間も5時間程度と短かくなるが次のもう一
つの問題点がある。
In addition, in the case of a hydrofluoric acid-nitric acid-acetic acid mixture, the etching rate changes depending on the composition, liquid rotation speed, and liquid temperature, but if it is fast, it will be about 10 [μm/min], and the etching time will be as short as about 5 hours. However, there is another problem.

第3図aはX線露光用マクス製作工程中のシリ
コン背面エツチング前の状態を示したもので300
〜600〔μm〕厚のシリコン基板31上にポリイミ
ド皮膜32を形成した試料を、0リング33でエ
ツチング液がフレームとして残る外周部に浸入し
ないように密閉している。
Figure 3a shows the state before etching the back side of the silicon during the manufacturing process of the mask for X-ray exposure.
A sample in which a polyimide film 32 is formed on a silicon substrate 31 having a thickness of ~600 [μm] is sealed with an O-ring 33 so that the etching solution does not enter the outer periphery that remains as a frame.

同図bはエツチング完了時の状態を示したもの
でシリコン厚が600〔μm〕程度では0リング33
近傍でのサイドエツチング量はわずかで、0リン
グ33による密閉状態は保たれフレーム34が残
る。
Figure b shows the state when etching is completed, and when the silicon thickness is about 600 [μm], the O-ring 33
The amount of side etching in the vicinity is small, the sealing state by the O-ring 33 is maintained, and the frame 34 remains.

ところが厚いシリコンの場合には密閉状態が保
たれなくなる。第4図aは、厚いシリコン基板4
1上にポリイミド皮膜42を形成した試料を0リ
ング43で密閉したシリコン・エツチング前の状
態である。
However, if the silicone is thick, the airtight state cannot be maintained. FIG. 4a shows a thick silicon substrate 4
This is a state in which a sample with a polyimide film 42 formed thereon is sealed with an O-ring 43 before silicon etching.

同図bは中央部エツチング完了後の状態でシリ
コン基板が厚いためサイドエツチ量も大きく0リ
ングの弾性をもつても密閉できずエツチング液が
フレーム部分44まで浸入し、フレーム部分44
もエツチングしてしまう。又、エツチングが不均
一で厚いシリコンが島状に残ると、その重みのた
め数〔μm〕厚のポリイミド皮膜42が破れると
いつた欠点がある。
Figure b shows the state after the etching of the central part is completed, and the side etching amount is large because the silicon substrate is thick, and even with the elasticity of the O-ring, it cannot be sealed, and the etching liquid penetrates into the frame part 44.
I also end up etching myself. Furthermore, if the etching is uneven and thick silicon remains in the form of islands, the polyimide film 42, which is several μm thick, may break due to its weight.

本発明は、このような従来のX線露光用マスク
の有する欠点を除去し、より高精度の露光処理を
行うことができるX線露光用マスクを提供しよう
とするものである。
The present invention aims to eliminate the drawbacks of conventional X-ray exposure masks and to provide an X-ray exposure mask that can perform exposure processing with higher precision.

また本発明は、該X線露光用マスクを容易に形
成することができる製造方法をも提供すを。
The present invention also provides a manufacturing method that can easily form the X-ray exposure mask.

このため、本発明によれば、被処理基板と同一
の熱膨張係数を有する1〔mm〕厚以上のフレーム
を有することを特徴とするX線露光用マスクが提
供される。
Therefore, according to the present invention, there is provided an X-ray exposure mask characterized by having a frame having a thickness of 1 mm or more and having the same coefficient of thermal expansion as the substrate to be processed.

また本発明によれば、被処理基板と同じ材質で
厚みが1〔mm〕厚以上の厚いシリコン成膜用基板
を準備し、フレームとなる領域以外を予め超音波
加工等により基板裏面より削りとり該領域基板厚
みを薄くし、しかる後メンブラン及びX線吸収体
パターンを形成したのち基板裏面より化学的エツ
チング等により、フレーム以外の成膜用基板を除
去する工程を有することを特徴とするX線露光用
マスクの製造方法が提供される。
Further, according to the present invention, a silicon film forming substrate made of the same material as the substrate to be processed and having a thickness of 1 mm or more is prepared, and the area other than the area that will become the frame is scraped off from the back surface of the substrate by ultrasonic processing or the like. An X-ray method comprising the step of reducing the thickness of the region substrate, forming a membrane and an X-ray absorber pattern, and then removing the film-forming substrate other than the frame by chemical etching or the like from the back side of the substrate. A method of manufacturing an exposure mask is provided.

すなわち本発明によれば、フレーム厚を厚くす
ることによりメンブラン張力によるフレームの変
形を防止し得、マスク・パターンの寸法精度を高
くし得るX線露光用マスク、及びかかるX線露光
用マスクを容易に提供できるX線マスクの製造方
法が提供される。
That is, according to the present invention, an X-ray exposure mask that can prevent deformation of the frame due to membrane tension by increasing the frame thickness and increase the dimensional accuracy of the mask pattern, and such an X-ray exposure mask can be easily manufactured. A method for manufacturing an X-ray mask is provided.

次に本発明を実施例をもつて詳細に説明しよ
う。
Next, the present invention will be explained in detail using examples.

本発明の具体的な実施例を、第5図に示す製造
工程をもつて、より詳細に説明する。
A specific embodiment of the present invention will be described in more detail with reference to the manufacturing process shown in FIG.

本実施例においては、メンブラン用プラスチツ
ク材としてポリイミドを、またマスクフレーム材
料としてはシリコン(Si)を用いた。
In this example, polyimide was used as the plastic material for the membrane, and silicon (Si) was used as the mask frame material.

まず第5図aに示されるように1〔mm〕厚以上
のシリコンからなる成膜用基板51を準備する。
First, as shown in FIG. 5a, a film-forming substrate 51 made of silicon and having a thickness of 1 mm or more is prepared.

次いで同図bに示されるように、該成膜用基板
51のフレームとなる領域52以外の領域53を
裏面から削りとり薄くする。その厚さは容易に撰
択的エツチングできる範囲で、且つ次のポリアミ
ツク酸回転塗布工程での機械的強度を保てる厚さ
とされ、例えば300〜600〔μm〕残されるようにす
る。シリコンは、非常に硬い材料で、通常の機械
加工法では、フレーム部を残して中央部のみ薄く
するといつた加工が困難であるため、本実施例で
は容易に加工できる超音波加工法で行つた。
Next, as shown in FIG. 5B, the region 53 of the film-forming substrate 51 other than the region 52 that will become the frame is removed from the back surface to make it thinner. The thickness should be such that it can be easily selectively etched and still maintain mechanical strength during the subsequent polyamic acid spin coating step, for example, 300 to 600 μm. Silicon is a very hard material, and it is difficult to process it using normal machining methods, such as thinning only the center part while leaving the frame part intact.In this example, we used ultrasonic processing, which is easy to process. .

次いで同図cに示されるように成膜用基板51
の前記エツチング処理がなされない面にポリアミ
ツク酸を厚さ2〜5〔μm〕程に回転塗布したのち
加熱処理を行つてポリイミド皮膜54を形成し
た。
Next, as shown in FIG.
Polyamic acid was spin-coated to a thickness of about 2 to 5 μm on the surface not subjected to the etching treatment, and then heat treated to form a polyimide film 54.

次いで、同図dに示されるようにフレーム52
の縁部を0リング55で密閉して、中央部の薄い
シリコン部分53をエツチングし除去する。この
際同図eに示されるように薄いシリコンをエツチ
ングするのでサイドエツチ量は少なく、0リング
55によつて密閉が保たれ、フレーム部はエツチ
ングされることがない。同図fはエツチングが完
了した状態を示す。
Next, as shown in FIG. d, the frame 52
The edges are sealed with an O-ring 55, and the thin silicone portion 53 at the center is etched and removed. At this time, as shown in FIG. 5E, since thin silicon is etched, the amount of side etching is small, and the O-ring 55 maintains a tight seal, so that the frame portion is not etched. Figure f shows the state in which etching has been completed.

次いで、ポリイミド皮膜54の一方の表面に電
子線レジスト層を形成し、該電子線レジストに所
望のパターンを露光し、現像パターン56を形成
する。この状態を第5図gに示す。
Next, an electron beam resist layer is formed on one surface of the polyimide film 54, and a desired pattern is exposed to the electron beam resist to form a developed pattern 56. This state is shown in FIG. 5g.

しかる後、リフトオフ法、メツキ法などにより
前記ポリイミド皮膜のレジストパターン55に覆
われていない表面に金(Au)等のX線吸収体の
皮膜57を選択的に形成したのちレジスト56を
剥離する。この状態を第5図hに示す。
Thereafter, a film 57 of an X-ray absorber such as gold (Au) is selectively formed on the surface of the polyimide film not covered by the resist pattern 55 by a lift-off method, plating method, etc., and then the resist 56 is peeled off. This state is shown in FIG. 5h.

この結果、該第5図hに示される構造をもつて
本発明に係るX線露光用マスクが完成される。
As a result, an X-ray exposure mask according to the present invention having the structure shown in FIG. 5h is completed.

又、本発明の応用として、厚いシリコン基板を
第6図a,bに平面図及び断面図に示すように一
部超音波加工でシリコン61を選択的に削りと
り、フレーム部62以外に格子状にシリコン67
を厚く残す。このあと第5図cと同様にポリイミ
ド皮膜64を形成したのち背面エツチングを行な
つて薄いシリコン部分を除去する。この場合格子
状のシリコン(リブ)67は、薄いシリコン部分
63の厚さ分だけエツチングされるが第6図cの
ように残される。
Further, as an application of the present invention, a part of the silicon 61 of a thick silicon substrate is selectively removed by ultrasonic processing as shown in the plan view and cross-sectional view of FIGS. silicon 67
Leave a thick layer. Thereafter, a polyimide film 64 is formed in the same manner as in FIG. 5c, and then backside etching is performed to remove the thin silicon portion. In this case, the silicon lattice (ribs) 67 are etched by the thickness of the thin silicon portion 63, but are left as shown in FIG. 6c.

この、リブ67は薄いポリイミド皮膜64の機
械的補強の役割をはたす。
This rib 67 serves as mechanical reinforcement for the thin polyimide film 64.

以上のように本発明によれば被転写基板材料で
あるシリコンをフレーム材料に使用することによ
り、温度差による転写ずれを零にすることがで
き、且つ不均一な張力を有するポリイミド膜に対
してもフレームの変形がなくピツチ精度の良い吸
収体パターンを有するX線露光用マクスを容易に
製造できる。
As described above, according to the present invention, by using silicon, which is the material of the transferred substrate, as the frame material, it is possible to reduce transfer deviation due to temperature differences to zero, and it is possible to eliminate transfer deviation due to temperature differences, and also to prevent polyimide films having uneven tension. Also, it is possible to easily manufacture an X-ray exposure mask having an absorber pattern with good pitch accuracy without frame deformation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はX線露光装置の概略の構造を示す断面
図、第2図は該X線露光装置において使用される
X線露光用マスクの一般的な構造を示す断面図、
第3図は従来の薄いシリコン基板の背面エツチ工
程を示す工程断面図、第4図は厚いシリコン基板
に対する背面エツチ工程を示す工程断面図、第5
図は本発明によるX線露光用マスクの製造工程を
示す工程断面図、第6図は本発明の応用としての
リブ付X線露光用マスクの平面図、断面図であ
る。 第5図において、51…厚いシリコン基板、5
2…フレーム部、53…薄いシリコン基板部、5
4…ポリイミド皮膜、55…0リング、56…電
子線レジスト・パターン、57…X線吸収体。
FIG. 1 is a sectional view showing the general structure of an X-ray exposure device, FIG. 2 is a sectional view showing the general structure of an X-ray exposure mask used in the X-ray exposure device,
FIG. 3 is a process sectional view showing the conventional backside etching process for a thin silicon substrate, FIG. 4 is a process sectional view showing the backside etching process for a thick silicon substrate, and FIG.
The figure is a cross-sectional view showing the manufacturing process of an X-ray exposure mask according to the present invention, and FIG. 6 is a plan view and a cross-sectional view of a ribbed X-ray exposure mask as an application of the present invention. In FIG. 5, 51...thick silicon substrate, 5
2...Frame part, 53...Thin silicon substrate part, 5
4... Polyimide film, 55... 0 ring, 56... Electron beam resist pattern, 57... X-ray absorber.

Claims (1)

【特許請求の範囲】 1 被処理基板とほぼ同一の熱膨張係数を有する
厚さ1〔mm〕以上の成膜用基板を準備し、マスク
のフレームとなる領域以外の領域を該基板の一方
の主面から選択的に除去して該領域を薄くした
後、該基板の他方の主面にX線吸収体支持膜を形
成し、しかる後該基板の一方の主面よりエツチン
グ処理を行ない該フレーム以外の成膜用基板を除
去する工程を有することを特徴とするX線露光用
マスクの製造方法。
[Scope of Claims] 1. Prepare a film-forming substrate with a thickness of 1 mm or more and having almost the same coefficient of thermal expansion as the substrate to be processed, and cover the area other than the area that will become the frame of the mask on one side of the substrate. After selectively removing from the main surface to make the region thin, an X-ray absorber support film is formed on the other main surface of the substrate, and then an etching process is performed from one main surface of the substrate to form the frame. 1. A method for manufacturing an X-ray exposure mask, comprising the step of removing other film-forming substrates.
JP3655380A 1980-03-22 1980-03-22 Mask for x-ray exposure and its manufacture Granted JPS56132343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3655380A JPS56132343A (en) 1980-03-22 1980-03-22 Mask for x-ray exposure and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3655380A JPS56132343A (en) 1980-03-22 1980-03-22 Mask for x-ray exposure and its manufacture

Publications (2)

Publication Number Publication Date
JPS56132343A JPS56132343A (en) 1981-10-16
JPS631740B2 true JPS631740B2 (en) 1988-01-13

Family

ID=12472944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3655380A Granted JPS56132343A (en) 1980-03-22 1980-03-22 Mask for x-ray exposure and its manufacture

Country Status (1)

Country Link
JP (1) JPS56132343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11618953B2 (en) 2016-11-23 2023-04-04 Institut National De La Recherche Scientifique System for laser-driven impact acceleration

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885433A (en) * 1981-11-16 1983-05-21 Hitachi Ltd Photomask
DE3339624A1 (en) * 1983-11-02 1985-05-09 Philips Patentverwaltung Gmbh, 2000 Hamburg METHOD FOR PRODUCING A MASK FOR PATTERN PRODUCTION IN LACQUER LAYERS BY MEANS OF X-RAY RAY LITHOGRAPHY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117558A (en) * 1976-03-30 1977-10-03 Toshiba Corp Soft x-ray exposure mask and its manufacturing method
JPS52117557A (en) * 1976-03-30 1977-10-03 Toshiba Corp Soft x-ray exposure mask and its manufacturing method
JPS5375770A (en) * 1976-12-17 1978-07-05 Hitachi Ltd X-ray copying mask
JPS55127559A (en) * 1979-03-26 1980-10-02 Fujitsu Ltd Blank mask for x-ray exposure and using method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117558A (en) * 1976-03-30 1977-10-03 Toshiba Corp Soft x-ray exposure mask and its manufacturing method
JPS52117557A (en) * 1976-03-30 1977-10-03 Toshiba Corp Soft x-ray exposure mask and its manufacturing method
JPS5375770A (en) * 1976-12-17 1978-07-05 Hitachi Ltd X-ray copying mask
JPS55127559A (en) * 1979-03-26 1980-10-02 Fujitsu Ltd Blank mask for x-ray exposure and using method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11618953B2 (en) 2016-11-23 2023-04-04 Institut National De La Recherche Scientifique System for laser-driven impact acceleration

Also Published As

Publication number Publication date
JPS56132343A (en) 1981-10-16

Similar Documents

Publication Publication Date Title
US4254174A (en) Supported membrane composite structure and its method of manufacture
US4873163A (en) Photomask material
JPH0618170B2 (en) Monolithic silicon film integrated body and manufacturing method thereof
US4632871A (en) Anodic bonding method and apparatus for X-ray masks
US5291536A (en) X-ray mask, method for fabricating the same, and pattern formation method
US4170512A (en) Method of manufacture of a soft-X-ray mask
US4198263A (en) Mask for soft X-rays and method of manufacture
US4384919A (en) Method of making x-ray masks
JPS62115720A (en) Manufacture of x-ray photolithography mask using monolithic supporter and structure obtained with it
JPS631740B2 (en)
KR100282541B1 (en) Aperture for charged beam drawing machine and method for forming the same
JPS5923104B2 (en) Manufacturing method for soft X-ray exposure mask
JPS5923105B2 (en) Manufacturing method for soft X-ray exposure mask
JPS6047740B2 (en) X-ray exposure mask and its manufacturing method
JPH0322686B2 (en)
JPS59163825A (en) X-ray exposure mask and manufacture thereof
KR20040095731A (en) Charged particle beam exposure mask and manufacturing method thereof
JPS63150918A (en) Mask for x-ray exposure
KR0175351B1 (en) X-ray blank mask and the process for preparing thereof
JPS60251620A (en) X-ray mask
JPS58207047A (en) Production of mask
JPS5931027A (en) Manufacture of x-ray mask
JPH0311086B2 (en)
JPH06252035A (en) Manufacture of x-ray mask
JPS6236669A (en) Transfer mask and its manufacture