JPS5923105B2 - Manufacturing method for soft X-ray exposure mask - Google Patents

Manufacturing method for soft X-ray exposure mask

Info

Publication number
JPS5923105B2
JPS5923105B2 JP51034833A JP3483376A JPS5923105B2 JP S5923105 B2 JPS5923105 B2 JP S5923105B2 JP 51034833 A JP51034833 A JP 51034833A JP 3483376 A JP3483376 A JP 3483376A JP S5923105 B2 JPS5923105 B2 JP S5923105B2
Authority
JP
Japan
Prior art keywords
mask
soft
etching
layer
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51034833A
Other languages
Japanese (ja)
Other versions
JPS52117558A (en
Inventor
隆 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51034833A priority Critical patent/JPS5923105B2/en
Priority to US05/782,379 priority patent/US4198263A/en
Publication of JPS52117558A publication Critical patent/JPS52117558A/en
Publication of JPS5923105B2 publication Critical patent/JPS5923105B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は軟X線露光用マスクの製造方法に関し、特に
マスクズレを生ぜずかつ大面積のマスクの製造を可能に
する軟X線露光用マスクの製造方法を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a mask for soft X-ray exposure, and particularly provides a method for manufacturing a mask for soft X-ray exposure that does not cause mask displacement and enables manufacturing of a large-area mask. It is.

従来半導体集積回路装置の製造に光製版技術が用いられ
ていた。
Conventionally, optical plate-making technology has been used to manufacture semiconductor integrated circuit devices.

しかし光製版技術の解像能力はこれに用いた光の波長に
直接関係する干渉や回折効果によつて制限され、安定に
再現されうる最少線幅はおよそ2μ程度である。この光
による解像の限界を克服するために走査電子線露光方式
およびX線露光方式が開発された。しかし前者は電子ビ
ームを順次走査して露光するために時間がかかり、マス
タマスクの製造には用いられるが半導体フ 基板に直接
露光することは経済的でない。一方、光の代りに波長が
数オングストロム^の軟X線を用いるX線転写方式と称
せられる技術は上記走査電子線方式に比して安価でかつ
経済的である。軟X線に対するマスクは、マスク材料と
これを支持5 するとともに軟X線を透過する薄膜とか
らなつている。このマスク材料の厚さはマスク材料をパ
ターンづけする技術によつて制限され、厚さは最小線幅
を1μとすると0.5μ程度迄である。これに対して軟
X線を透過する薄膜の厚さは、X線の波フ 長、薄膜の
材質にもよるが、せいぜい10μ程度である。従来X線
を透過する薄膜としてはシリコンもしくは有機物のフィ
ルムが用いられてきた。
However, the resolution ability of optical plate-making technology is limited by interference and diffraction effects that are directly related to the wavelength of the light used, and the minimum line width that can be stably reproduced is about 2 μm. A scanning electron beam exposure method and an X-ray exposure method have been developed to overcome this limitation of resolution by light. However, the former method takes time to perform exposure by sequentially scanning an electron beam, and although it is used for manufacturing a master mask, it is not economical to directly expose a semiconductor substrate. On the other hand, a technique called an X-ray transfer method that uses soft X-rays with a wavelength of several angstroms instead of light is cheaper and more economical than the scanning electron beam method. A mask for soft X-rays consists of a mask material and a thin film that supports the mask material and transmits the soft X-rays. The thickness of this mask material is limited by the technique of patterning the mask material, and the thickness is up to about 0.5 microns, assuming a minimum line width of 1 micron. On the other hand, the thickness of a thin film that transmits soft X-rays is approximately 10 μm at most, depending on the wave length of the X-rays and the material of the thin film. Conventionally, silicon or organic films have been used as thin films that transmit X-rays.

有機物フィルムは大面積のマスクの製造を容易にするも
、5 フィルムと半導体基板のシリコンとの熱膨張係数
の差による「マスクズレ」を生ずるという致命的な欠点
がある。これは単に転写時の温度制御のみならず、マス
ク製作工程での温度制御が正確に行なわれないとマスク
の精度が保たれないからであ0 る。一方、シリコン薄
膜の場合には基板と同じ材質であるため上記の「マスク
ズレ」の問題はないが、有機物フィルムに比して脆いた
め微小部分のマスクは容易に作れるが大面積のマスクの
製造は従来’5 困難とされていた。
Although organic films facilitate the manufacture of large-area masks, they have the fatal drawback of causing "mask misalignment" due to the difference in thermal expansion coefficient between the film and the silicon of the semiconductor substrate. This is because the accuracy of the mask cannot be maintained unless temperature control is performed not only during transfer but also during the mask manufacturing process. On the other hand, in the case of a silicon thin film, since it is made of the same material as the substrate, there is no problem with the above-mentioned "mask misalignment," but since it is more fragile than an organic film, it is easy to make a mask for a small area, but it is difficult to make a mask for a large area. Previously '5 was considered difficult.

シリコン薄膜によるマスクの製造の一例を断面図にて第
1図および第2図に示す。これはシリコン基板を部分的
に薄くしてこのウ7−部分をマスクにするもので、図の
1はシリコン基板で、この1主面にボロンを高濃度に含
む層2を拡散またはエピタキシヤル成長などの手段で形
成し次にマスク材3が構成される。
An example of manufacturing a mask using a silicon thin film is shown in cross-sectional views in FIGS. 1 and 2. In this method, a silicon substrate is partially thinned and this part is used as a mask. 1 in the figure is a silicon substrate, and a layer 2 containing a high concentration of boron is grown on this 1 main surface by diffusion or epitaxial growth. Then, the mask material 3 is formed.

次にアルカリ液にて裏面よりエツチングを施すと、ボロ
ンを高濃度に含むシリコン層2はシリコン基板よりもエ
ツチングされにくいためシリコン基板はその露出面側か
らエツチングされて第2図の如くなる。しかしこの方法
は選択性が完全でないことと、液相エツチングにおいて
は第3図に示す如くエツジの部分はエツチレートが速い
ため溝(図における矢印)を形成し、さらに時には孔と
なり、またエツチングのバラツキを生ずる部分の面積は
可成の部分を占めマスクの有効面積が減少し、またエツ
チング面が一様でないという欠点をもつている。この発
明は上記従来の欠点を除去するためになされたもので、
シリコン薄膜で比較的大きい面積の軟X線露光用マスク
を製造する目的で、その概要はシリコン基板に形成した
第1のエピタキシヤル成長層の基板周辺部で覆われてい
ない露出部を格子状に残してマスクの強度を増大させる
とともに、シリコンの選択エツチングを二段階に別け選
択性を向上し、表面の均一性をよくすることによつて達
成される。
Next, when etching is performed from the back side using an alkaline solution, the silicon layer 2 containing a high concentration of boron is more difficult to etch than the silicon substrate, so the silicon substrate is etched from the exposed side, resulting in the result as shown in FIG. However, this method does not have perfect selectivity, and in liquid phase etching, as shown in Figure 3, the etching rate is fast at the edge portions, forming grooves (arrows in the figure) and sometimes forming holes, and also causing variations in etching. The area where the etching occurs occupies a considerable portion, which reduces the effective area of the mask, and has the disadvantage that the etched surface is not uniform. This invention was made to eliminate the above-mentioned conventional drawbacks.
In order to manufacture a soft X-ray exposure mask with a relatively large area using a silicon thin film, the outline of the process is to form a lattice pattern on the exposed parts of the first epitaxial growth layer formed on the silicon substrate that are not covered around the substrate periphery. This is achieved by increasing the strength of the mask by increasing the strength of the mask, and by dividing the selective etching of the silicon into two stages to improve the selectivity and improve the surface uniformity.

次にこの発明の実施例につき説明する。Next, embodiments of this invention will be described.

第4図で不純物濃度が1018個/Cc以下、直径75
詣、厚さ600μのn型(100)のシリコンウエハ1
1にトリクロルシラン(SiHCl3)の水素還元によ
つて1170℃で不純物濃度が1×1020個/5CC
のボロンを含む35μの厚さの第1のエピタキシヤル層
12を形成した。
In Figure 4, the impurity concentration is 1018 particles/Cc or less, the diameter is 75
Pilgrimage, 600μ thick n-type (100) silicon wafer 1
1, the impurity concentration was reduced to 1 x 1020 pieces/5CC at 1170°C by hydrogen reduction of trichlorosilane (SiHCl3).
A first epitaxial layer 12 having a thickness of 35 microns was formed containing boron.

次にモノシラン(SiH4)の熱分解によつて1000
℃で8×1014個/Ccのボロンを含む厚さが3.8
μの第2のエピタキシヤル層13を積層形成した。次に
厚さ150Xのクロム層14を一例の真空蒸着により被
着した。これは後の金めつき被着を容易にするためのも
のである。次に走査電子線露光によつて厚さ0.8μの
所望のレジストのパターン15を形成し、これをマスク
として厚さ0.5μの金層16を選択的にめつき被着し
たのちレジストを除去して第5図に示す如くなる。上記
第1および第2の各エピタキシヤル層12,13につき
例示された不純物濃度はシリコン基板に対する第1のエ
ピタキシヤル層、第1のエピタキシヤル層と第2のエピ
タキシヤル層とのエツチングレートを後に述べる10:
1,200:1というように大きくするためで、第1の
エピタキシヤル層の不純物濃度は2×1019個/Cc
以上、第2のエピタキシヤル層の不純物濃度は5×10
15個/Cc以下にすれば好適する。
Next, by thermal decomposition of monosilane (SiH4),
The thickness is 3.8 including 8 x 1014 pieces/Cc of boron at °C.
A second epitaxial layer 13 of μ was laminated. A chromium layer 14 having a thickness of 150× was then deposited by vacuum evaporation in an example. This is to facilitate the subsequent application of gold plating. Next, a desired resist pattern 15 with a thickness of 0.8 μm is formed by scanning electron beam exposure, and using this as a mask, a gold layer 16 with a thickness of 0.5 μm is selectively deposited. After removal, the result will be as shown in FIG. The impurity concentrations exemplified for each of the first and second epitaxial layers 12 and 13 are based on the etching rate of the first epitaxial layer, the first epitaxial layer, and the second epitaxial layer with respect to the silicon substrate. State 10:
This is to increase the impurity concentration to 1,200:1, and the impurity concentration of the first epitaxial layer is 2×1019/Cc.
As mentioned above, the impurity concentration of the second epitaxial layer is 5×10
It is preferable that the number is 15 pieces/Cc or less.

次に第6図に示すように上記処理を施した面にシリコン
のエツチング液に対する保護膜17を被着し、シリコン
ウエハの露出主面(上記処理を施した主面と反対主面)
の周縁部18を幅5mI残して容量比が次式HF:HN
O3=3:97・・・・・・・・・・・・・・・・・・
・・・・・・1のシリコンエツチング液で厚さ400μ
を除去した。
Next, as shown in FIG. 6, a protective film 17 against the silicon etching solution is applied to the surface subjected to the above treatment, and the exposed principal surface of the silicon wafer (the principal surface opposite to the principal surface subjected to the above treatment) is applied.
Leaving the peripheral edge 18 of 5 mI wide, the capacitance ratio is given by the following formula: HF:HN
O3=3:97・・・・・・・・・・・・・・・・・・
・・・・・・400μ thick with silicone etching solution 1
was removed.

次に第7図に示す如く周辺部を幅711保護膜で被覆し
エチレンジアミン:水:ピロカテコiル:17で0:8
・0:39・・・2の組成のシリコンエツチング液でシ
リコンウエハ11をエツチングしてシリコン基板の段差
面18′を形成した。
Next, as shown in Fig. 7, the peripheral part was covered with a protective film having a width of 711 mm and a mixture of ethylenediamine:water:pyrocatechol:17 and 0:8.
The silicon wafer 11 was etched with a silicon etching solution having a composition of 0:39...2 to form a stepped surface 18' of the silicon substrate.

この組成2のエツチング液は上記ウエハ11と第1のエ
ピタキシヤル層12の不純物濃度比では15:1の選択
性を有する。次に周知の写真蝕刻の手段により幅400
μの格子状のレジストを附け、周辺部を幅9uの保護膜
で被覆しHF:HNO3:CH3COOH=1:3:8
・・・3の組成のエツチング液中で第1のエピタキシヤ
ル成長層に対する選択エツチングが達成される。
This etching solution having composition 2 has a selectivity of 15:1 in terms of the impurity concentration ratio between the wafer 11 and the first epitaxial layer 12. Then, by means of well-known photoetching, a width of 400
A lattice-shaped resist of μ is applied, and the peripheral part is covered with a protective film with a width of 9 μ. HF:HNO3:CH3COOH=1:3:8
. . . Selective etching of the first epitaxially grown layer is achieved in an etching solution having a composition of 3.

すなわち、第8図に示すように、上記の式3に示される
エツチング液21を入れた容器22内にシリコン基板2
3,23・・・を浸し、かつ液中に一例の炭素(O電極
24と白金(Pt)電極25を並べ、炭素電極24を正
に、白金電極25を負にして両端の電極電位が40mV
になる如く過酸化水素(H2O2)を過酸化水素注加口
26から制御しつつ導入して行なう選択エツチング方法
で達成される。この組成のエツチング液は上述の第1の
エピタキシヤル層12と第2のエピタキシヤル層13の
不純物の濃度比では200:1の選択性を有する。上記
第1のエピタキシヤル層12のエツチング後の第2のエ
ピタキシヤル層13の表面の粗さは1000Xのすぐれ
た滑面が得られ、該層の厚さ3.8μに比しX線の透過
に対しては全く無視できる。ウエハ11と第1のエピタ
キシヤル層12のエツチングはウエハを毎分40回転の
公転と毎分20回転の自転とによつて行なつた。これは
表面の均一性をうるために有効である。また第1のエピ
タキシヤル層12の選択エツチングではウエハを自公転
させないと選択性は30:1にまで低下する。次に保護
膜17を除去して第7図に示すようにX線露光用マスク
が得られた。このマスクは第1のエピタキシヤル層12
の格子状に残された部分がマスクの補強部となる。上記
の如くして形成されたマスクを用いてアルミニウムの波
長8.34λの軟X線を照射したところ極めて良好なパ
ターンを得ることができた。
That is, as shown in FIG.
3, 23..., and arranged an example of carbon (O electrode 24 and platinum (Pt) electrode 25 in the liquid, making the carbon electrode 24 positive and the platinum electrode 25 negative, so that the electrode potential at both ends was 40 mV.
This is accomplished by a selective etching method in which hydrogen peroxide (H2O2) is introduced in a controlled manner from the hydrogen peroxide inlet 26. The etching solution having this composition has a selectivity of 200:1 in terms of the impurity concentration ratio between the first epitaxial layer 12 and the second epitaxial layer 13 mentioned above. The surface roughness of the second epitaxial layer 13 after etching the first epitaxial layer 12 is an excellent smooth surface of 1000X, and compared to the thickness of this layer of 3.8μ, the transmission of X-rays is reduced. can be completely ignored. Etching of the wafer 11 and the first epitaxial layer 12 was performed by rotating the wafer at 40 revolutions per minute and rotating at 20 revolutions per minute. This is effective for obtaining surface uniformity. Further, in the selective etching of the first epitaxial layer 12, the selectivity decreases to 30:1 unless the wafer is rotated. Next, the protective film 17 was removed to obtain an X-ray exposure mask as shown in FIG. This mask covers the first epitaxial layer 12.
The portions left in the grid form become the reinforcing portions of the mask. When aluminum was irradiated with soft X-rays having a wavelength of 8.34λ using the mask formed as described above, an extremely good pattern could be obtained.

すなわち、この発明の軟X線露光用マスクの製造方法に
よれば、薄いシリコンで形成される軟X線露光用マスク
を強固に、かつ露光の透過面を高度に平滑に形成するの
が容易で、解像性能がすぐれたマスクの製造が達成でき
、稠密で微細なパターンが形成できる顕著な利点がある
That is, according to the method for manufacturing a soft X-ray exposure mask of the present invention, it is easy to form a soft X-ray exposure mask made of thin silicon that is strong and has a highly smooth exposure surface. , it is possible to manufacture a mask with excellent resolution performance, and it has the remarkable advantage that a dense and fine pattern can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の軟X線露光用マスクの製造
方法を説明するための断面図、第3図は従来の軟X線露
光用マスクおよびその製造方法の欠点を説明するための
部分断面図、第4図ないし第7図はこの発明の一実施例
の軟X線露光用マスクの製造方法を工程順に説明するい
ずれも断面図、第8図は第2エピタキシヤル成長層のエ
ツチングに用いるエツチング装置の断面図である。 11・・・・・・シリコンウエハ、12・・・・・・第
1のエピタキシヤル層、13・・・・・・第2のエピタ
キシヤル層、14,16・・・・・・金属層、17・・
・・・・保護膜、18・・・・・・ウエハの周縁部、2
1・・・・・・エツチング液、22・・・・・・エツチ
ング容器、23・・・・・・(第1エピタキシヤル成長
層をエツチングする段階の)シリコンウエハ、24・・
・・・・炭素電極、25・・・・・・白金電極、26・
・・・・・過酸化水素注加口。
FIGS. 1 and 2 are cross-sectional views for explaining a conventional method of manufacturing a mask for soft X-ray exposure, and FIG. 3 is a cross-sectional view for explaining the drawbacks of a conventional mask for soft X-ray exposure and its manufacturing method. 4 to 7 are cross-sectional views illustrating the manufacturing method of a soft X-ray exposure mask according to an embodiment of the present invention in the order of steps, and FIG. 8 is a diagram showing the etching of the second epitaxial growth layer. FIG. 11... Silicon wafer, 12... First epitaxial layer, 13... Second epitaxial layer, 14, 16... Metal layer, 17...
...Protective film, 18... Wafer periphery, 2
1... Etching solution, 22... Etching container, 23... Silicon wafer (at the stage of etching the first epitaxial growth layer), 24...
...Carbon electrode, 25...Platinum electrode, 26.
...Hydrogen peroxide injection port.

Claims (1)

【特許請求の範囲】[Claims] 1 不純物濃度が10^1^8個/cc以下のシリコン
基板の1主面にボロンの不純物濃度が2×10^1^9
個/cc以上の第1のエピタキシャル成長層を形成する
工程と、前記第1のエピタキシャル成長層上に不純物濃
度が5×10^1^5個/cc以下の第2のエピタキシ
ャル成長層を形成する工程と、前記第2のエピタキシャ
ル成長層にこれとなじみのよい金属層を介してマスク形
成予定域に軟X線を透過させない金属のマスクパターン
層を形成する工程と、前記シリコン基板の他主面周縁部
を除きエチレンジアミンと水とピテカテコールの組成比
が17cc:8cc:3gである蝕刻液で蝕刻する工程
と、前記第1のエピタキシャル成長層のシリコン基板周
縁部で覆われていない露出部を弗酸と硝酸と酢酸の組成
比が1:3:8である蝕刻液で選択的に蝕刻してマスク
パターン層の形成されてない部分を選択的に残す工程と
を具備した軟X線露光用マスクの製造方法。
1 Boron impurity concentration is 2×10^1^9 on one main surface of a silicon substrate with an impurity concentration of 10^1^8 pieces/cc or less
forming a first epitaxial growth layer having an impurity concentration of 5×10^1^5 impurities/cc or less on the first epitaxial growth layer; forming a metal mask pattern layer that does not allow soft X-rays to pass through the second epitaxial growth layer through a metal layer that is compatible with the second epitaxial growth layer, and excluding the periphery of the other principal surface of the silicon substrate; Etching with an etchant having a composition ratio of ethylenediamine, water, and pitecatechol of 17 cc: 8 cc: 3 g, and etching the exposed portion of the first epitaxial growth layer that is not covered with the peripheral edge of the silicon substrate with hydrofluoric acid, nitric acid, and acetic acid. A method for manufacturing a mask for soft X-ray exposure, comprising the step of selectively etching with an etchant having a composition ratio of 1:3:8 to selectively leave a portion where a mask pattern layer is not formed.
JP51034833A 1976-03-30 1976-03-30 Manufacturing method for soft X-ray exposure mask Expired JPS5923105B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP51034833A JPS5923105B2 (en) 1976-03-30 1976-03-30 Manufacturing method for soft X-ray exposure mask
US05/782,379 US4198263A (en) 1976-03-30 1977-03-29 Mask for soft X-rays and method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51034833A JPS5923105B2 (en) 1976-03-30 1976-03-30 Manufacturing method for soft X-ray exposure mask

Publications (2)

Publication Number Publication Date
JPS52117558A JPS52117558A (en) 1977-10-03
JPS5923105B2 true JPS5923105B2 (en) 1984-05-30

Family

ID=12425192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51034833A Expired JPS5923105B2 (en) 1976-03-30 1976-03-30 Manufacturing method for soft X-ray exposure mask

Country Status (1)

Country Link
JP (1) JPS5923105B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286002U (en) * 1985-11-19 1987-06-01
JPH0446315U (en) * 1990-08-24 1992-04-20
JPH0517097U (en) * 1991-08-12 1993-03-05 積水ハウス株式会社 Integrated post with stained light

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312274A (en) * 1976-07-21 1978-02-03 Oki Electric Ind Co Ltd Production of mask for x-ray exposure
JPS5313879A (en) * 1976-07-23 1978-02-07 Nec Corp Silicon mask for x-ray exposure and its production
JPS56132343A (en) * 1980-03-22 1981-10-16 Chiyou Lsi Gijutsu Kenkyu Kumiai Mask for x-ray exposure and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286002U (en) * 1985-11-19 1987-06-01
JPH0446315U (en) * 1990-08-24 1992-04-20
JPH0517097U (en) * 1991-08-12 1993-03-05 積水ハウス株式会社 Integrated post with stained light

Also Published As

Publication number Publication date
JPS52117558A (en) 1977-10-03

Similar Documents

Publication Publication Date Title
US3620833A (en) Integrated circuit fabrication
US4472459A (en) Local oxidation of silicon substrate using LPCVD silicon nitride
JPS6217850B2 (en)
JPH03114049A (en) Formation of silicon shadow mask
CN110998436B (en) Cortex and method for producing cortex
US4198263A (en) Mask for soft X-rays and method of manufacture
JPS5923105B2 (en) Manufacturing method for soft X-ray exposure mask
JPH03129818A (en) Manufacture of semiconductor device
US3698947A (en) Process for forming monocrystalline and poly
JPS5923104B2 (en) Manufacturing method for soft X-ray exposure mask
EP0424375B1 (en) Monolithic channeling mask having amorphous/single crystal construction
JP3080860B2 (en) Dry etching method
JPH0345526B2 (en)
JPS6027180B2 (en) Manufacturing method of semiconductor device
US3615940A (en) Method of forming a silicon nitride diffusion mask
JPS62234333A (en) Formation of mask for processing fine groove
JPS6289324A (en) Manufacture of semiconductor device
WO1987007400A2 (en) Monolithic channeling mask
JPS59167028A (en) Manufacture of compound semiconductor integrated circuit device
JPH0673389B2 (en) Method for manufacturing semiconductor device
JPS61174635A (en) Manufacture of semimconductor device
JPS6122645A (en) Substrate for semiconductor device and manufacture thereof
JPH01305519A (en) Preparation of semiconductor integrated circuit
JPS5827655B2 (en) Manufacturing method of aperture diaphragm
JPS61134037A (en) Manufacture of semiconductor device