JPH0345526B2 - - Google Patents

Info

Publication number
JPH0345526B2
JPH0345526B2 JP11334881A JP11334881A JPH0345526B2 JP H0345526 B2 JPH0345526 B2 JP H0345526B2 JP 11334881 A JP11334881 A JP 11334881A JP 11334881 A JP11334881 A JP 11334881A JP H0345526 B2 JPH0345526 B2 JP H0345526B2
Authority
JP
Japan
Prior art keywords
thin film
mask
ray
single crystal
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11334881A
Other languages
Japanese (ja)
Other versions
JPS5814837A (en
Inventor
Katsumi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56113348A priority Critical patent/JPS5814837A/en
Publication of JPS5814837A publication Critical patent/JPS5814837A/en
Publication of JPH0345526B2 publication Critical patent/JPH0345526B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は微細パターンの高精度転写技術として
注目されているX線露光法に於いて用いられるX
線露光マスクの製造方法に関するものである。
[Detailed Description of the Invention] The present invention applies to
The present invention relates to a method for manufacturing a line exposure mask.

X線露光法は、波長の短い軟X線を図形の転写
媒体として用いるため、プロキシミテイ露光によ
る微細パターンの高精度一括転写が可能であり、
この為マスクの汚れが生じ難く、また高精度のマ
スク位置合せも可能になるといつた長所を有して
いる。その反面、電子ビーム励起方式のX線源を
用いたX線露光装置では、点光源から放射状に発
生する軟X線を図形の転写媒体として用いるが故
にマスク及びウエハの反りや歪が転写パターンの
位置ずれやボケに大きく影響するという問題も抱
えている。しかしながら、ウエハの大口径化もま
た半導体デバイスの生産性及び歩留りを高める為
に不可欠である。この為、従来、マイラー、カブ
トン、ポリイミド、パリレン−Nなどといつたプ
ラスチツクの薄膜を転写パターンの支持層とする
大口径のX線露光マスク(以後プラスチツクマス
クと称する)を用いて、密着露光により大口径ウ
エハに転写しようとする試みがなされている。
Since the X-ray exposure method uses soft X-rays with short wavelengths as a pattern transfer medium, it is possible to transfer fine patterns all at once with high precision using proximity exposure.
For this reason, it has the advantage that the mask is less likely to become contaminated and that highly accurate mask positioning is possible. On the other hand, in X-ray exposure equipment using an electron beam excitation type X-ray source, soft X-rays generated radially from a point light source are used as a pattern transfer medium, so warping and distortion of the mask and wafer may occur in the transferred pattern. It also has the problem of greatly affecting positional shift and blurring. However, increasing the diameter of wafers is also essential for increasing the productivity and yield of semiconductor devices. For this reason, conventionally, a large-diameter X-ray exposure mask (hereinafter referred to as a plastic mask) with a thin film of plastic such as Mylar, Kabuton, polyimide, or Parylene-N as a support layer for the transferred pattern is used to perform contact exposure. Attempts have been made to transfer to large diameter wafers.

ところが、現在までのところ、これらプラスチ
ツクマスクには、プラスチツク薄膜の寸法の経時
変化や温度及び湿度の変動に伴う寸法の変化及び
使用状態においてもウエハに密着したプラスチツ
ク薄膜を引き離す時に生ずる歪等々の問題がある
ため、1μm前後若しくはそれ以下の超微細パタ
ーンを所望の精度で重ね合せ露光することは非常
に困難である。
However, to date, these plastic masks have problems such as changes in the dimensions of the plastic thin film over time, changes in dimensions due to fluctuations in temperature and humidity, and distortion that occurs when the plastic thin film that is in close contact with the wafer is separated during use. Therefore, it is extremely difficult to overlay and expose ultrafine patterns of around 1 μm or less with the desired precision.

一方、第1図に示すようにAu等のX線を良く
吸収する重金属で形成した所望の転写パターン1
1をSiやSi3N4、SiO2、SiC、BN、Al2O3等々の
軟X線の透過率が大きい無機材料から成る薄膜1
2で支持し保護膜13を用いて選択的に蝕刻除去
して形成したSiフレーム14で前記薄膜12を補
強支持する構造のX線露光マスク(以後これを無
機マスクと称する)の開発もまた盛んである。こ
うした無機マスクは、一般に寸法の経時変化が殆
ど無くまた、温度や湿度の変化に伴う寸法の変動
が小さいため、極めて高精度の位置合せを必要と
する超LSI等の製造に適している。
On the other hand, as shown in Fig. 1, a desired transfer pattern 1 made of a heavy metal such as Au that absorbs X-rays well
1 is a thin film 1 made of an inorganic material with high soft X-ray transmittance such as Si, Si 3 N 4 , SiO 2 , SiC, BN, Al 2 O 3 etc.
The development of an X-ray exposure mask (hereinafter referred to as an inorganic mask) having a structure in which the thin film 12 is reinforced and supported by a Si frame 14 formed by selectively etching and removing the thin film 12 using a protective film 13 is also actively being developed. It is. Such inorganic masks generally have almost no change in dimensions over time, and small variations in dimensions due to changes in temperature or humidity, so they are suitable for manufacturing VLSIs and the like that require extremely high-precision alignment.

無機マスクの欠点は、一般に該薄膜12と該Si
フレーム14との界面に働く応力によつて、反り
を生じ、また機械的強度がプラスチツクマスクに
比べて小さい為、大口径ウエハに一括露光するこ
とはやはり困難な点である。しかし、大口径ウエ
ハに露光する場合の上記の問題点は比較的小口径
の高平面度を有する無機マスクを用いたステツ
プ・アンド・リビート露光方式を採用することに
より解決できる。なぜならば、こうすることによ
つてマスク面積は小さくてもよいことになり、マ
スクの寸法が小さいために反りが小さくなり、し
かも温度や湿度の変化に伴うマスクのピツチ精度
の低下が小さく抑えられ、更に各露光ステツプ毎
にX線露光マスクとウエハの間隔及び平行度を微
妙に調整できるようになる為、ウエハの口径とは
無関係に高精度の位置合せが可能になるのであ
る。
The disadvantage of inorganic masks is that the thin film 12 and the Si
The stress acting on the interface with the frame 14 causes warping, and the mechanical strength is lower than that of a plastic mask, so it is still difficult to expose large diameter wafers all at once. However, the above-mentioned problems when exposing a large-diameter wafer can be solved by employing a step-and-rebeat exposure method using an inorganic mask with a relatively small diameter and high flatness. This is because by doing this, the mask area can be small, and the small dimensions of the mask reduce warping, and furthermore, the decrease in mask pitch accuracy due to changes in temperature and humidity is kept to a minimum. Furthermore, since the spacing and parallelism between the X-ray exposure mask and the wafer can be finely adjusted for each exposure step, highly accurate alignment is possible regardless of the diameter of the wafer.

更に、こうしたステツプ・アンド・リビート方
式用のX線露光マスクを製造する場合を考えてみ
ても電子ビーム露光技術等の微細パターン描画技
術を用いてするX線露光マスクのパターン形成も
描画パターン数が、少なくて済むために容易にな
るという利点すら享受し得ることになる。
Furthermore, when considering the case of manufacturing an X-ray exposure mask for such a step-and-rebeat method, the number of patterns drawn is also large when forming patterns on the X-ray exposure mask using fine pattern drawing technology such as electron beam exposure technology. , you can even enjoy the advantage that it becomes easier because it requires less.

さて、ここでもう一度、従来型の大口径を実現
しようとした無機マスクの問題点を振り返つて考
えてみよう。たとえば、第1図の模式的断面図を
参照すれば判るようにSi基板の大部分を占めるX
線透過域を形成し、薄膜12を補強支持するSiフ
レーム14を形成するには、まず転写パターン1
1を形成した表面を蝕刻してしまつたり傷つけた
りしないように保護する手段を施し、しかる後に
Si基板の裏面から保護膜13で覆われていない領
域を選択的に蝕刻除去するのを常としているが、
この場合、各マスク表面を保護する手段を施すの
に大体1時間程度は要し、さらに裏面からの選択
蝕刻に5〜6時間を要している。無機マスクは前
記の如き数々の利点を有する優れた転写マスクで
はあるが、この生産性の悪さは、やはり問題であ
る。一般にMOSトランジスタ等々のデバイスを
作るには、少くとも5〜6枚多い場合には10枚程
度のマスクを組として用いる必要がありこれに予
備の分を含めると、その所要枚数ひいては、それ
に要する製造時間は膨大なものになつているので
ある。
Now, let's take a look back at the problems with conventional inorganic masks that attempted to achieve large apertures. For example, as can be seen from the schematic cross-sectional view in Figure 1, X
In order to form the Si frame 14 that forms the line-transmissive area and reinforces and supports the thin film 12, first the transfer pattern 1 is
The surface on which 1 was formed is provided with means to protect it from being etched or damaged, and then
It is customary to selectively etch away areas not covered with the protective film 13 from the back surface of the Si substrate.
In this case, it takes approximately one hour to apply means to protect the surface of each mask, and further five to six hours to selectively etch the back surface. Although an inorganic mask is an excellent transfer mask having many advantages as described above, its poor productivity is still a problem. Generally, to make a device such as a MOS transistor, it is necessary to use at least 5 to 6 masks, or about 10 masks as a set.If you include the spare mask, the number of masks required and the manufacturing required. Time has become a huge amount.

また、従来のX線露光マスクの製造方法では、
X線透過性薄膜や、異方性蝕刻液に対する保護膜
の形成工程に於いて、各Si基板毎に膜厚や膜質の
ばらつきがある為、X線露光マスク基板の反り量
が異なつたり、また電子ビーム露光工程に於ける
温度や基板の固定状態にばらつきを生じたりして
いる為にピツチ精度が低下するという問題点もあ
る。
In addition, in the conventional method of manufacturing an X-ray exposure mask,
In the process of forming X-ray transparent thin films and protective films against anisotropic etchants, there are variations in film thickness and film quality for each Si substrate, so the amount of warping of the X-ray exposure mask substrate may vary. There is also the problem that the pitch accuracy is lowered due to variations in the temperature and the fixing state of the substrate during the electron beam exposure process.

本発明は、かかる無機マスクの製造上の問題点
を解決し、同時に多数のX線露光マスクを生産す
る方法を提供するものであり、以下に実施例を用
いて本発明の詳細を具体的に説明する。第2図a
から第2図fに至る各図は、本発明の一実施例に
よるX線露光マスクの主要製造工程を順を追つて
示した模式的断面図である。第2図aに於いて、
21はSi単結晶板であり、少なくとも一方の面は
鏡面研磨する(以後、鏡面研磨された面を表面、
必ずしも鏡面研磨を必要としない面を裏面と称す
る)。
The present invention solves the problems in manufacturing such inorganic masks and provides a method for simultaneously producing a large number of X-ray exposure masks. explain. Figure 2a
to FIG. 2F are schematic cross-sectional views sequentially showing the main manufacturing steps of an X-ray exposure mask according to an embodiment of the present invention. In Figure 2 a,
21 is a Si single crystal plate, and at least one surface is mirror-polished (hereinafter, the mirror-polished surface will be referred to as the surface,
(The surface that does not necessarily require mirror polishing is called the back surface.)

以下、本実施例においては、21の表面が
{100}面であると仮定して説明する。従つて、以
後結晶面、結晶軸と特定して記すが、これは全て
21の表面を{100}と仮定したことに発するの
であつて本発明の必須条件ではない。他の組合せ
も勿論可能である。Si単結晶基板21の裏面には
Si3N4又は、SiO2若しくはSiCのいずれか一つ又
は、それ等の複合膜から成る薄膜22をCVD法
又はスパツタリング法若しくは熱酸化法等の方法
により堆積する。次に第2図bに示すように、た
とえば通常の光学露光技術を用いて該薄膜22の
所定の領域を蝕刻除去し、該薄膜の一部で構成し
たパターン22′を形成する。このときパターン
22′はSi単結晶基板21の<110>方向に平行に
形成しておくとよい。前記薄膜22の一部を蝕刻
除去して形成した開口部23及び24は、前者2
3は所望の転写パターンが形成される領域に対応
し、後者24は、後の工程に於て該Si単結晶基板
21の一部を蝕刻除去して複数個のX線露光マス
クに分割するためのスクライブ線に対応する。但
し、開口部24の溝幅は、該Si単結晶基板の厚さ
をtμmとしたとき2(t−100)×(tan54.7゜)-1μ

から2(t−10)×(tan54.7゜)-1μmの間にあるこ

が望ましい。次に第2図Cに示すように、該Si単
結晶基板21の表面上にSi3N4、SiO2、SiC、
BN、Al2O3等のX線を良く透過する材料から成
る薄膜25を、例えばCVD法又はスパツタリン
グ法あるいはイオン蒸着法等々の方法を用いて形
成する。更に、第2図dに示すように薄膜25の
表面上に電子ビーム露光技術又はイオンビーム露
光技術あるいは深紫外線露光技術等々の方法を用
いて所望の転写パターン26をAu等のX線を良
く吸収する重金属で形成する。以後、該パターン
26をX線吸収体パターンと称する。この場合、
X線吸収体パターン26は、開口領域23に対応
する領域に形成しておく。
In the following, this embodiment will be described on the assumption that the surface of 21 is a {100} plane. Therefore, hereinafter, they will be specifically referred to as crystal planes and crystal axes, but these are based on the assumption that the surface of 21 is {100}, and are not essential conditions for the present invention. Other combinations are of course possible. On the back side of the Si single crystal substrate 21
A thin film 22 made of one of Si 3 N 4 , SiO 2 or SiC, or a composite film thereof is deposited by a method such as a CVD method, a sputtering method, or a thermal oxidation method. Next, as shown in FIG. 2B, a predetermined region of the thin film 22 is etched away using, for example, a conventional optical exposure technique, to form a pattern 22' consisting of a portion of the thin film. At this time, the pattern 22' is preferably formed parallel to the <110> direction of the Si single crystal substrate 21. The openings 23 and 24 formed by etching away a part of the thin film 22 are
3 corresponds to an area where a desired transfer pattern will be formed, and the latter 24 is for etching away a part of the Si single crystal substrate 21 in a later process to divide it into a plurality of X-ray exposure masks. corresponds to the scribe line. However, the groove width of the opening 24 is 2 (t-100) x (tan54.7°) -1 μm when the thickness of the Si single crystal substrate is tμm.
m
It is desirable that the value is between 2(t-10)×(tan54.7°) -1 μm. Next, as shown in FIG. 2C, Si 3 N 4 , SiO 2 , SiC,
A thin film 25 made of a material that transmits X-rays well, such as BN or Al 2 O 3 , is formed using a method such as a CVD method, a sputtering method, or an ion vapor deposition method. Furthermore, as shown in FIG. 2d, a desired transfer pattern 26 is formed on the surface of the thin film 25 using a method such as an electron beam exposure technique, an ion beam exposure technique, or a deep ultraviolet exposure technique. Formed with heavy metals. Hereinafter, the pattern 26 will be referred to as an X-ray absorber pattern. in this case,
The X-ray absorber pattern 26 is formed in a region corresponding to the opening region 23.

しかる後、任意の治具を用いて該X線吸収体パ
ターンを保護しつつ、例えば、水酸化カリウム水
溶液又は抱水ヒドラジン等々の異方性蝕刻液を用
いて該Si単結晶基板21の一部を蝕刻除去し、第
2図eに示すように開口部23及び蝕刻溝24′
を形成する。このとき前記異方性蝕刻液は、Si単
結晶基板の{100}面に対する蝕刻速度が大きく
{111}面に対する蝕刻速度が小さいため、前述の
ように該薄膜パターン22′を予めSi単結晶基板
21の<110>方向に平行に形成しておけば、該
開口領域23′及び該開口溝を24′を囲むSi単結
晶基板21′の側面には{111}面が現われ、薄膜
25とこの{111}面とがなす角度は、{100}面
と{111}面とのなす角54.7゜に等しくなる。した
がつて前述のように予め該開口領域24の幅を該
Si単結晶板の厚さtμmに対応して2(t−100)×
(tan54.7゜)-1μmから2(t−10)×(tan54.7゜)
-1μm
の範囲に形成しておけば、蝕刻溝24′の深さは、
およそ(t−100)μmから(t−10)μmの範
囲に形成される。したがつて、蝕刻溝24′の領
域では、該Si単結晶基板21′の厚さはおよそ10μ
mないし100μmとなり、しかも該蝕刻溝は予め
<110>方向に平行に形成されているため前記の
異方性蝕刻液を用いた蝕刻工程を経た後は、第2
図fに示すように該蝕刻溝24′を境にして複数
個の矩形板状のX線露光マスクに人の手で容易に
分割できる。すなわち、本発明が提供する方法に
よれば、従来多大の時間を要していたX線露光マ
スクのSi基板の蝕刻工程を大幅に短縮でき、寸法
精度に優れた無機マスクの生産性の向上に大きく
寄与することとなる。一般に無機マスクでは転写
パターンの支持層となる該薄膜25は、軟X線の
透過率を考慮して高々数μm以下の膜厚に形成さ
れる為、非常に脆く、従来使用されている種々の
切断機を用いて該薄膜25及びX線吸収体パター
ン26に損傷を与えずに該Si単結晶基板21′を
分割することは極めて困難である。また、本発明
の製造方法によれば、同一Si基板から多数のX線
露光マスク基板が同時に得られる為、従来のX線
露光マスクに於いて大きな問題となつている、異
なるマスク間のピツチ精度が大幅に向上する。こ
の効果は同じレベル(例えば配線のレベル)のマ
スク間でも、異なるレベル(例えばLOCOSと配
線のレベル)のマスク間でも成立する。
Thereafter, while protecting the X-ray absorber pattern using an arbitrary jig, a part of the Si single crystal substrate 21 is etched using an anisotropic etchant such as a potassium hydroxide aqueous solution or hydrazine hydrate. The opening 23 and the etched groove 24' are removed as shown in FIG. 2e.
form. At this time, since the anisotropic etchant has a high etching rate for the {100} plane of the Si single crystal substrate and a low etching rate for the {111} plane, the thin film pattern 22' is previously etched onto the Si single crystal substrate as described above. If the opening region 23' and the opening groove are formed parallel to the <110> direction of 21, a {111} plane will appear on the side surface of the Si single crystal substrate 21' surrounding the opening region 23' and the opening groove 24'. The angle formed by the {111} plane is equal to the angle 54.7° between the {100} plane and the {111} plane. Therefore, as described above, the width of the opening area 24 is estimated in advance.
2(t-100)×corresponding to the thickness tμm of the Si single crystal plate
(tan54.7゜) -1 μm to 2 (t-10) x (tan54.7゜)
-1μm
If the etched groove 24' is formed within the range of
It is formed in a range of approximately (t-100) μm to (t-10) μm. Therefore, in the region of the etched groove 24', the thickness of the Si single crystal substrate 21' is approximately 10 μm.
m to 100 μm, and since the etched grooves are previously formed parallel to the <110> direction, after the etching process using the anisotropic etching solution, the second etching groove is
As shown in FIG. f, the mask can be easily divided manually into a plurality of rectangular plate-shaped X-ray exposure masks with the etched groove 24' as a boundary. In other words, according to the method provided by the present invention, the etching process of the Si substrate of the X-ray exposure mask, which conventionally required a lot of time, can be significantly shortened, and the productivity of inorganic masks with excellent dimensional accuracy can be improved. This will make a major contribution. In general, in an inorganic mask, the thin film 25, which serves as a support layer for the transferred pattern, is formed to a thickness of several μm or less at most in consideration of the transmittance of soft X-rays. It is extremely difficult to divide the Si single crystal substrate 21' using a cutting machine without damaging the thin film 25 and the X-ray absorber pattern 26. Furthermore, according to the manufacturing method of the present invention, a large number of X-ray exposure mask substrates can be obtained from the same Si substrate at the same time, which reduces the pitch accuracy between different masks, which is a big problem in conventional X-ray exposure masks. will be significantly improved. This effect holds true both between masks at the same level (for example, wiring level) and between masks at different levels (for example, LOCOS and wiring level).

第3図は、本発明の実施例を更に詳細に説明す
る為に示したX線露光マスクの概略平面図であ
る。図に於いてA−A′で切断した断面を矢印の
方向から見た図が第2図eに相当する。第3図に
於いて31は{100}面を表面とするSi基板であ
り、32は<110>方向を示すオリエンテーシヨ
ン・フラツトである。破線で示した矩形領域33
は該Si単結晶基板31の所定の領域を異方性蝕刻
液を用いて選択的に蝕刻除去して形成した開口領
域であり、第2図の23′に相当する。各開口領
域33には、予めX線を良く透過する膜が形成さ
れており、また該薄膜上には予め所望のX線吸収
体パターンが形成されている。上記X線吸収体パ
ターンは該開口領域33のそれぞれに異なるマス
クレベルのパターンを形成することも可能である
し、また同一マスクレベルのパターンを繰り返し
形成することも可能である。いずれの場合に於い
ても、例えば、電子ビーム露光技術を用いたパタ
ーン形成プロセスでは装置へのマスク基板の設置
が一度で済むという利点がある。第3図に於いて
2点鎖線34は異方性蝕刻液を用いて該Si単結晶
基板31の一部分を蝕刻除去して形成した蝕刻溝
であり、第2図に於て24′で示した部分に相当
する。この蝕刻溝がなす形状はSi単結晶基板の主
平面を何面に選ぶか、また蝕刻溝の側面を何面で
形成するか、蝕刻溝の方向を何方向に選ぶかによ
つて定まることになる。前記実施例では{100
面}、{111}面、<110>方向を選んだ結果、矩形
になつたということであり、これらの選択は蝕刻
液との兼ね合いで適当に選択することができる。
前に蝕刻溝24の幅を設定するところで例示した
54.7゜という数値は、これらの条件設定に伴つて
結晶学的に定まる定数というべき性格のものであ
る。
FIG. 3 is a schematic plan view of an X-ray exposure mask shown to explain the embodiment of the present invention in more detail. FIG. 2e corresponds to a cross-sectional view taken along line A-A' in the figure, viewed from the direction of the arrow. In FIG. 3, 31 is a Si substrate having a {100} plane as its surface, and 32 is an orientation flat showing the <110> direction. Rectangular area 33 indicated by a broken line
2 is an opening region formed by selectively etching a predetermined region of the Si single crystal substrate 31 using an anisotropic etchant, and corresponds to 23' in FIG. A film that transmits X-rays well is formed in advance in each opening region 33, and a desired X-ray absorber pattern is formed in advance on the thin film. The X-ray absorber pattern can be formed at different mask levels in each of the opening regions 33, or it is also possible to repeatedly form a pattern at the same mask level. In either case, for example, a pattern forming process using electron beam exposure technology has the advantage that the mask substrate only needs to be installed in the apparatus once. In FIG. 3, a two-dot chain line 34 is an etched groove formed by etching away a portion of the Si single crystal substrate 31 using an anisotropic etchant, and is indicated by 24' in FIG. corresponds to a portion. The shape of this etched groove is determined by the number of main planes of the Si single-crystal substrate, the number of side faces of the etched groove, and the direction of the etched groove. Become. In the above example, {100
As a result of selecting the {111} plane}, the {111} plane, and the <110> direction, a rectangular shape is obtained, and these selections can be made appropriately in consideration of the etching solution.
An example was given earlier when setting the width of the etched groove 24.
The value of 54.7° has the character of being a constant determined crystallographically by setting these conditions.

第4図の該Si結晶基板31を該蝕刻溝34を境
にして個々のX線露光マスクに分割した状態を示
す。第4図に於いて41は該X線透過性薄膜33
を補強支持する為に該Si単結晶基板31の一部で
形成した補強支持枠である。
A state in which the Si crystal substrate 31 of FIG. 4 is divided into individual X-ray exposure masks with the etched groove 34 as a boundary is shown. In FIG. 4, 41 is the X-ray transparent thin film 33.
This is a reinforcing support frame formed of a part of the Si single crystal substrate 31 for reinforcing and supporting the Si single crystal substrate 31.

上記のように本発明によれば、複数個のX線露
光マスクが一括して製造できる為、Si単結晶基板
を用いた高精度のX線露光マスクの生産性が、従
来方法に比べて大幅に向上することとなり、特に
ステツプ・アンド・リピート用X線露光マスクの
製造には大きな効果を発揮する。
As described above, according to the present invention, multiple X-ray exposure masks can be manufactured at once, so the productivity of high-precision X-ray exposure masks using a Si single crystal substrate is significantly improved compared to conventional methods. This is particularly effective in the production of step-and-repeat X-ray exposure masks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来からのSi基板を用いた無機マス
クの模式的断面図である。第2図a〜fの各図
は、本発明の一実施例によるX線露光マスクの製
造方法を、その主要工程を追つて示した模式的断
面図であり、第3図は本発明の一実施例を示すSi
単結晶基板の概略平面図、第4図は本発明の製造
方法によつて得られるX線露光マスク単体の概略
平面図である。図中、各番号はそれぞれ次のもの
を示す。11,26……X線吸収体パターン、1
2,25……X線透過性薄膜、13,22′……
保護膜、21,31……{100}Si単結晶基板、
14,21′,41……Si単結晶基板の一部で形
成した補強支持梁、23′,33……Si単結晶基
板の一部を蝕刻除去して形成した蝕刻溝。
FIG. 1 is a schematic cross-sectional view of a conventional inorganic mask using a Si substrate. Each of FIGS. 2a to 2f is a schematic cross-sectional view showing the main steps of a method for manufacturing an X-ray exposure mask according to an embodiment of the present invention, and FIG. Si showing examples
FIG. 4 is a schematic plan view of a single crystal substrate, and FIG. 4 is a schematic plan view of a single X-ray exposure mask obtained by the manufacturing method of the present invention. In the figure, each number indicates the following. 11, 26...X-ray absorber pattern, 1
2, 25... X-ray transparent thin film, 13, 22'...
Protective film, 21, 31...{100}Si single crystal substrate,
14, 21', 41... Reinforcement support beams formed from a part of the Si single crystal substrate, 23', 33... Etched grooves formed by etching away a part of the Si single crystal substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 Si単結晶基板の一方の表面上にX線透過性薄
膜を形成する工程と、該薄膜上に重金属よりなる
X線吸収体パターンを形成する工程と、該Si単結
晶基板の他方の表面上にSi3N4、SiO2又はSiCの
いずれか一つ若しくはこれ等の複合膜からなる薄
膜を形成し、この薄膜を所望の形状にパターニン
グする工程と、このパターニングした薄膜を保護
膜として前記Si単結晶基板の一部を異方性蝕刻液
を用いて蝕刻除去し、前記X線透過性薄膜の裏面
を露出せしめた複数個の開口領域と該開口領域を
取り囲むように配置されたるV字型断面を有する
蝕刻溝とを同時に形成する工程と、前記蝕刻溝を
境界にして複数個のX線露光マスクに分割する工
程とを含むことを特徴とするX線露光マスクの製
造方法。
1. A step of forming an X-ray transparent thin film on one surface of the Si single crystal substrate, a step of forming an X-ray absorber pattern made of heavy metal on the thin film, and a step of forming an X-ray absorber pattern on the other surface of the Si single crystal substrate. A step of forming a thin film made of one of Si 3 N 4 , SiO 2 or SiC, or a composite film of these, and patterning this thin film into a desired shape, and using the patterned thin film as a protective film. a plurality of opening regions in which a portion of the single crystal substrate is etched away using an anisotropic etchant to expose the back surface of the X-ray transparent thin film; and a V-shape arranged to surround the opening regions; 1. A method for manufacturing an X-ray exposure mask, comprising the steps of: simultaneously forming an etched groove having a cross section; and dividing the mask into a plurality of X-ray exposure masks using the etched groove as a boundary.
JP56113348A 1981-07-20 1981-07-20 Production of x-ray exposure mask Granted JPS5814837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56113348A JPS5814837A (en) 1981-07-20 1981-07-20 Production of x-ray exposure mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56113348A JPS5814837A (en) 1981-07-20 1981-07-20 Production of x-ray exposure mask

Publications (2)

Publication Number Publication Date
JPS5814837A JPS5814837A (en) 1983-01-27
JPH0345526B2 true JPH0345526B2 (en) 1991-07-11

Family

ID=14609970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56113348A Granted JPS5814837A (en) 1981-07-20 1981-07-20 Production of x-ray exposure mask

Country Status (1)

Country Link
JP (1) JPS5814837A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608326A (en) * 1984-02-13 1986-08-26 Hewlett-Packard Company Silicon carbide film for X-ray masks and vacuum windows
JPS6337619A (en) * 1986-08-01 1988-02-18 Nippon Telegr & Teleph Corp <Ntt> X-ray mask
IL88837A (en) * 1988-12-30 1993-08-18 Technion Res & Dev Foundation Method for the preparation of mask for x-ray lithography
US5057388A (en) * 1989-05-26 1991-10-15 Technion Research And Development Foundation Ltd. Method for the preparation of mask for X-ray lithography
JP2639153B2 (en) * 1990-01-26 1997-08-06 日本電気株式会社 Method for manufacturing semiconductor device
JP3105990B2 (en) * 1991-06-26 2000-11-06 株式会社東芝 X-ray mask and method of manufacturing X-ray mask

Also Published As

Publication number Publication date
JPS5814837A (en) 1983-01-27

Similar Documents

Publication Publication Date Title
EP0134438A2 (en) Vacuum and/or electrostatic pinchuck for holding semiconductor wafers or other flat electrical components and method for making the same
JPS5933673B2 (en) Method of manufacturing thin free-standing metal structures
JPS613409A (en) Method of forming matching mark of semiconductor wafer
EP3667417B1 (en) Pellicle and method for producing pellicle
JPS5842031B2 (en) Nozzle array manufacturing method for inkjet printers
JPH0864524A (en) Preparation of x-ray absorption mask
JPH0345526B2 (en)
JP4983313B2 (en) Transfer mask and manufacturing method thereof
JP4333107B2 (en) Transfer mask and exposure method
EP0424375B1 (en) Monolithic channeling mask having amorphous/single crystal construction
JPS641926B2 (en)
JP5332776B2 (en) Method for manufacturing transfer mask
JPS5923104B2 (en) Manufacturing method for soft X-ray exposure mask
JPS59163825A (en) X-ray exposure mask and manufacture thereof
JPH11307442A (en) X-ray mask, x-ray mask blank, and their manufacture
JP3110955B2 (en) Manufacturing method of mask for charged particle beam exposure
JP2797190B2 (en) Manufacturing method of X-ray exposure mask
JPS6061750A (en) Manufacture of x-ray exposure mask
JP2899542B2 (en) Method of manufacturing transfer mask
JP5003321B2 (en) Mask blank and mask blank manufacturing method
JPS6127900B2 (en)
JP3148798B2 (en) Manufacturing method of mask for charged particle beam exposure
JP2674180B2 (en) Structure of X-ray exposure mask and manufacturing method
JP3241551B2 (en) Charged particle beam exposure mask and method of manufacturing the same
JP3451431B2 (en) X-ray exposure mask and method of manufacturing the same