JPS6317355B2 - - Google Patents

Info

Publication number
JPS6317355B2
JPS6317355B2 JP4925083A JP4925083A JPS6317355B2 JP S6317355 B2 JPS6317355 B2 JP S6317355B2 JP 4925083 A JP4925083 A JP 4925083A JP 4925083 A JP4925083 A JP 4925083A JP S6317355 B2 JPS6317355 B2 JP S6317355B2
Authority
JP
Japan
Prior art keywords
internal electrodes
electrostrictive
electrode
exposed
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4925083A
Other languages
Japanese (ja)
Other versions
JPS59175176A (en
Inventor
Atsushi Ochi
Kazuaki Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58049250A priority Critical patent/JPS59175176A/en
Priority to EP83307867A priority patent/EP0113999B1/en
Priority to DE8383307867T priority patent/DE3373594D1/en
Publication of JPS59175176A publication Critical patent/JPS59175176A/en
Priority to US06/940,210 priority patent/US4681667A/en
Publication of JPS6317355B2 publication Critical patent/JPS6317355B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は縦効果を利用した電歪効果素子の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an electrostrictive element using longitudinal effect.

電歪効果の大きな材料を用いて積層チツプコン
デンサ構造の素子を構成すると低電圧で大きな歪
の発生する電歪効果素子(以下素子と略記する)
が得られる。第1図a,bにこの素子の構造を示
す。
When an element with a multilayer chip capacitor structure is constructed using a material with a large electrostrictive effect, an electrostrictive effect element (hereinafter abbreviated as an element) generates large distortion at low voltage.
is obtained. Figures 1a and 1b show the structure of this element.

第1図aは正面から見たときの断面図であり、
bは上から見た平面図である。1は電歪材料、2
および2′は電歪材料内部に形成された内部電極
で、片方の端部は電歪材料表面に露出している。
3および3′は内部電極の露出した端部を電気的
に接続する外部電極を示している。内部電極はこ
の外部電極により一層おきに電気的に接続されて
いる。第1図bにおいて4は積層方向に内部電極
の重なる部分、5は重ならない部分、6は内部電
極の存在しない部分を示している。このような構
造の素子では図1bから明らかなように内部電極
の重なる部分が素子の中央部分のみに存在する。
外部電極3および3′の間に電圧を印加すると基
本的にはプラス側内部電極およびマイナス側内部
電極の重なつた部分4だけが電界強度が高くな
る。端面に近い周辺部すなわち内部電極の重なり
がない部分5および内部電極の存在しない部分6
は電界強度が弱いため、その部分が変形しないば
かりでなく、素子全体の変形を阻害する動きをす
る。従つてこのような構造の素子では材料固有の
歪量を得ることができず、また変形する部分とし
ない部分の境界に応力集中が起こり、高電圧を印
加したりあるいは長時間電圧を印加すると素子が
破壊する欠点がある。
Figure 1a is a sectional view when viewed from the front;
b is a plan view seen from above. 1 is an electrostrictive material, 2
and 2' are internal electrodes formed inside the electrostrictive material, one end of which is exposed to the surface of the electrostrictive material.
3 and 3' indicate external electrodes that electrically connect the exposed ends of the internal electrodes. The internal electrodes are electrically connected to every other layer by this external electrode. In FIG. 1b, 4 indicates a portion where the internal electrodes overlap in the stacking direction, 5 indicates a portion where they do not overlap, and 6 indicates a portion where no internal electrode exists. In an element having such a structure, as is clear from FIG. 1b, the overlapping portion of the internal electrodes exists only in the central part of the element.
When a voltage is applied between the external electrodes 3 and 3', the electric field strength basically increases only in the overlapped portion 4 of the positive and negative internal electrodes. Peripheral area near the end face, that is, a portion 5 where internal electrodes do not overlap and a portion 6 where internal electrodes do not exist
Since the electric field strength is weak, not only that part does not deform, but also moves that inhibits the deformation of the entire element. Therefore, in an element with such a structure, it is not possible to obtain the amount of strain inherent to the material, and stress concentration occurs at the boundary between the deformed part and the non-deformed part, and if a high voltage is applied or a voltage is applied for a long time, the element It has the disadvantage of being destroyed.

上記の欠点を改善した素子として本発明者等は
第2図a,bに示すような、内部電極の全ての端
部が電歪材料表面に露出している構造の素子を先
に提案した。第2図aはこの構造の素子を正面か
ら見た図でありbはaを電極部分で切断し上から
見たときの断面図である。20および21は電歪
材料、22および22′は内部電極、23は内部
電極を一層おきに接続するワイヤー(プラス側)、
24は同じくワイヤー(マイナス側)である。2
5および26はそれぞれプラス電極端子およびマ
イナス電極端子である。
As an element that has improved the above-mentioned drawbacks, the present inventors have previously proposed an element having a structure in which all the ends of the internal electrodes are exposed to the surface of the electrostrictive material, as shown in FIGS. 2a and 2b. FIG. 2a is a front view of an element having this structure, and FIG. 2b is a cross-sectional view of a when cut at the electrode portion and viewed from above. 20 and 21 are electrostrictive materials, 22 and 22' are internal electrodes, 23 is a wire (positive side) connecting the internal electrodes every other layer,
Similarly, 24 is a wire (minus side). 2
5 and 26 are a positive electrode terminal and a negative electrode terminal, respectively.

内部電極は第2図bから明らかなように素子の
断面積全部を占めており、第1図に示すような、
内部電極ではさまれない周辺部は存在しない。こ
の構造の素子においては内部電極は一層おきにワ
イヤーで電気的に接続され電極素子25および2
6が取り出されている。両電極端子間に電圧を印
加すると、図中矢印で示すように内部電極22か
ら22′に向かつて内部電極に垂直に電界が発生
する。電歪材料は一般に電界の方向に電界の絶対
値に比例して伸長し、電界と垂直な方向には収縮
する。この構造の素子においては内部電極間の電
界強度分布は素子の表面に形成され保護膜の動き
をする電歪材料20の部分をのぞいて均一とな
る。そのためこの構造の素子は第1図に示した構
造の素子に較べてはるかに均一に変形し応力集中
が発生しない。従つて材料固有の大きな歪を示し
また変形に際して破壊しない特長がある。
As is clear from FIG. 2b, the internal electrodes occupy the entire cross-sectional area of the device, and as shown in FIG.
There is no peripheral area that is not sandwiched by the internal electrodes. In an element with this structure, the internal electrodes are electrically connected every other layer by wires to the electrode elements 25 and 2.
6 has been taken out. When a voltage is applied between both electrode terminals, an electric field is generated perpendicularly to the internal electrodes from the internal electrodes 22 to 22' as shown by arrows in the figure. Electrostrictive materials generally expand in the direction of the electric field in proportion to the absolute value of the electric field, and contract in the direction perpendicular to the electric field. In the element having this structure, the electric field intensity distribution between the internal electrodes is uniform except for the portion of the electrostrictive material 20 formed on the surface of the element and which moves as a protective film. Therefore, the element with this structure deforms much more uniformly than the element with the structure shown in FIG. 1, and stress concentration does not occur. Therefore, it exhibits a large strain inherent to the material and has the advantage of not breaking when deformed.

ところが電歪材料に高電界をかけるために内部
電極の間隔は250μm程度であり、ワイヤを用い
て一層おきに接続する方法は工業的には極めて困
難である。
However, in order to apply a high electric field to the electrostrictive material, the interval between internal electrodes is about 250 μm, and it is extremely difficult to connect every other layer using wires from an industrial perspective.

そこで本発明者等は先に内部電極の端部が露出
している素子表面に絶縁材料を塗布し焼成して内
部電極の露出端を一層おきに被い、その上から外
部電極を側面全体に一様に塗布することにより内
部電極を電気的に接続する方法を提案した。
Therefore, the present inventors first coated an insulating material on the element surface where the end of the internal electrode was exposed, baked it, covered the exposed end of the internal electrode every other layer, and then applied the external electrode over the entire side surface. We proposed a method to electrically connect internal electrodes by uniformly coating them.

しかし印刷法により塗布する場合、流動性の絶
縁材料を使用しなければならず、微細な絶縁パタ
ーンを安定に形成することは困難である。また同
じ理由により塗布厚みの制御も困難である。不必
要に厚い絶縁材料は素子の変形を阻害する。また
厚みが不充分の場合は絶縁耐圧を低下させる。
However, when applying by printing, a fluid insulating material must be used, and it is difficult to stably form a fine insulating pattern. Furthermore, for the same reason, it is difficult to control the coating thickness. Unnecessarily thick insulating material inhibits device deformation. Moreover, if the thickness is insufficient, the dielectric strength voltage will be lowered.

本発明の目的はこれら2つの問題点を解決し、
内部電極端部が素子表面に露出している電歪効果
素子の内部電極間を安定で効率よく電気的に接続
できる電歪効果素子の製造方法を提供することで
ある。
The purpose of the present invention is to solve these two problems,
It is an object of the present invention to provide a method for manufacturing an electrostrictive effect element that can stably and efficiently electrically connect between internal electrodes of an electrostrictive effect element whose internal electrode end portions are exposed on the surface of the element.

すなわち本発明は電歪材料と内部電極とが交互
に積層され、該内部電極と一層おきにそれぞれ接
続する2つの外部電極が形成された積層コンデン
サ型構造の積層体で積層方向に平行で、しかも外
部電極形成面と異なる2つの面に内部電極層が露
出している構造の積層体を作製する工程と、該積
層体の一方の外部電極と該積層体の外側に設置す
る電極板との間に直流電圧を印加し、電気泳動法
によつて前記内部電極露出面の一方の面におい
て、一層おきの内部電極層上とその近傍に絶縁材
料を形成する工程と、当該積層体の絶縁材料を形
成した面及び内部電極層と異なる内部電極露出面
及び内部電極層とその近傍に前記外部電極と異な
る外部電極と前記電極板との間に直流電圧を印加
し、同じく電気泳動法によつて絶縁材料を形成す
る工程と、当該絶縁材料が形成された積層体の外
部電極形成部近傍を切断する工程とを具備する電
歪効果素子の製造方法である。
That is, the present invention is a laminate having a multilayer capacitor type structure in which electrostrictive materials and internal electrodes are alternately laminated, and two external electrodes are connected to the internal electrodes at every other layer, and are parallel to the lamination direction. A process of producing a laminate having a structure in which internal electrode layers are exposed on two surfaces different from the external electrode forming surface, and between one external electrode of the laminate and an electrode plate installed outside the laminate. a step of forming an insulating material on and in the vicinity of every other internal electrode layer on one of the exposed surfaces of the internal electrodes by applying a DC voltage to the laminate; A direct current voltage is applied between the electrode plate and the external electrode different from the external electrode to the exposed surface of the internal electrode different from the formed surface and the internal electrode layer, the internal electrode layer, and the vicinity thereof, and the insulation is also insulated by the electrophoresis method. This is a method of manufacturing an electrostrictive effect element, which includes a step of forming a material, and a step of cutting a layered body formed with the insulating material in the vicinity of an external electrode forming portion.

素子表面に露出している内部電極とその周辺に
のみ絶縁材料膜を形成しようとする場合、あらか
じめ何らかのパターンを用意しこれを露出してい
る内部電極に位置合わせするのが通常考えられる
方法であるが、今考えている電歪効果素子にこの
方法を適用すると100ミクロン程度の位置合わせ
精度が要求される。同時に電歪効果素子の内部電
極間距離も決められた値にそろえることが必要と
なる。これら2つの問題点が電歪効果素子の電気
的接続を困難なものにしている。
When attempting to form an insulating material film only on the internal electrodes exposed on the element surface and their surroundings, the usual method is to prepare some kind of pattern in advance and align it with the exposed internal electrodes. However, if this method is applied to the electrostrictive element currently being considered, alignment accuracy of about 100 microns is required. At the same time, it is necessary to adjust the distance between the internal electrodes of the electrostrictive element to a predetermined value. These two problems make electrical connection of electrostrictive elements difficult.

今、発想を転換して内部電極の露出部を絶縁パ
ターン形成に利用できれば位置ずれの問題点は解
消され、内部電極間距離が不規則な素子にも適用
できる。
If we change our way of thinking and use the exposed portions of internal electrodes to form insulation patterns, the problem of positional misalignment can be solved, and the method can be applied to devices with irregular distances between internal electrodes.

一方、電気泳動法により懸濁液中で帯電したガ
ラス粉末を導電性物体の表面に付着させる技術が
知られている。これは例えばガラス粉末粒子がプ
ラスに帯電する時は、ガラス粉末を付着させたい
導電性物体と対向電極とを懸濁液中に置き、対向
電極から付着させたい導電性物体の方向に電界が
発生するように両者の間に直流電圧を印加するも
のである。印加する電圧は通常直流10V〜200V
程度である。帯電したガラス粒子は電界によつて
力を受けて移動し、導電性物体表面に付着する。
これを焼成し固着させることにより導電性物体表
面に数ミクロンないし数百ミクロンの厚みのガラ
ス膜が形成される。この方法によればガラス粉末
は目的とする導電性物体表面にのみ付着し、絶縁
性物質または目的とする導電性物体と電気的に接
続していない導電性物体表面上には付着しないと
言われている。以上のような特徴を有するためこ
の電気泳動法を内部電極を含む電歪材料積層体に
適用することにより、端面に露出した内部電極上
とその周辺にのみ絶縁物質を付着させることがで
き、これを焼成固着させて完全な精度の絶縁パタ
ーンを形成する事ができる。
On the other hand, a technique is known in which glass powder charged in suspension is adhered to the surface of a conductive object by electrophoresis. For example, when glass powder particles become positively charged, a conductive object to which the glass powder is attached and a counter electrode are placed in a suspension, and an electric field is generated from the counter electrode in the direction of the conductive object to which the glass powder is attached. A DC voltage is applied between the two so that the The voltage applied is usually 10V to 200V DC.
That's about it. The charged glass particles move under the force of the electric field and adhere to the surface of a conductive object.
By firing and fixing this, a glass film with a thickness of several microns to several hundred microns is formed on the surface of the conductive object. It is said that according to this method, the glass powder adheres only to the surface of the target conductive object, and does not adhere to the surface of an insulating material or a conductive object that is not electrically connected to the target conductive object. ing. Due to the above characteristics, by applying this electrophoresis method to an electrostrictive material laminate including internal electrodes, it is possible to deposit an insulating material only on and around the internal electrodes exposed at the end faces. By firing and fixing, it is possible to form an insulating pattern with perfect precision.

内部電極の露出部全てに帯状の絶縁パターンを
形成するのは容易であるが、既に述べたように電
歪効果素子を電気的に接続するには一層おきの内
部電極の露出部およびその周辺の電歪材料表面に
のみ絶縁材料を形成させることが必要である。本
発明の方法はこの問題点を解決し、電気泳動法を
用いた絶縁パターン形成により電歪効果素子を電
気的に接続する方法を提案するものである。
It is easy to form a strip-shaped insulating pattern on all the exposed parts of the internal electrodes, but as mentioned above, in order to electrically connect the electrostrictive effect element, it is necessary to form a strip-shaped insulation pattern on all the exposed parts of the internal electrodes and the surrounding area. It is necessary to form the insulating material only on the surface of the electrostrictive material. The method of the present invention solves this problem and proposes a method for electrically connecting electrostrictive elements by forming an insulating pattern using electrophoresis.

まず第3図に示すような構造の多数の内部電極
とそれらを外部で接続する外部電極とを有する電
歪材料積層体を作製する。内部電極は端面に露出
しており、一層おきに2組にまとめられて、それ
ぞれ両端の2つの仮設外部電極に接続されてい
る。図中番号32で示す内部電極の露出部とその
周辺に絶縁材料を付着させるには、まず裏側を余
分な付着が生じないように粘着テープ等で保護し
てから積層体を帯電したガラス粉末を含む懸濁液
中にひたす。対向電極板を表側の面の前に置き、
対向電極板と外部電極33との間に直流電圧を印
加する。プラスに帯電したガラス粉末は対向電極
板から内部電極露出部に向つて発生した電界によ
つて力を受けて懸濁液中を移動し外部電極33と
接続している内部電極露出部32の上とその周辺
にのみ付着し、外部電極35と接続している内部
電極露出部34には付着しない。これを懸濁液か
ら引き上げて乾燥させ焼成し、固着させると内部
電極の露出部を一層おきに被う帯状のガラス被膜
が形成される。その様子を第4図に示す。帯状の
ガラス被膜42が一層おきに形成され、内部電極
42は露出したままになつている。
First, an electrostrictive material laminate having a structure as shown in FIG. 3 having a large number of internal electrodes and external electrodes connecting them externally is produced. The internal electrodes are exposed on the end face, and are grouped into two sets with every other layer connected to two temporary external electrodes at both ends. To attach insulating material to the exposed part of the internal electrode and its surrounding area, which is indicated by number 32 in the figure, first protect the back side with adhesive tape or the like to prevent unnecessary adhesion, and then apply electrically charged glass powder to the laminate. Soak in a suspension containing Place the counter electrode plate in front of the front surface,
A DC voltage is applied between the counter electrode plate and the external electrode 33. The positively charged glass powder moves through the suspension under the force of the electric field generated from the counter electrode plate toward the internal electrode exposed area, and moves onto the internal electrode exposed area 32 connected to the external electrode 33. It adheres only to the periphery thereof, and does not adhere to the internal electrode exposed portion 34 connected to the external electrode 35. When this is pulled out of the suspension, dried, fired, and fixed, a band-shaped glass film is formed that covers every other exposed portion of the internal electrode. The situation is shown in Figure 4. A band-shaped glass coating 42 is formed every other layer, leaving the internal electrodes 42 exposed.

次に裏側の面にも同様に、絶縁パターンを形成
する。まず、表側の面を余分な付着が生じないよ
うに粘着テープ等で被い前記の懸濁液中にひた
す。対向電極板を裏側の面の前に設置し、対向電
極板と外部電極45との間に電圧を印加し、ガラ
ス粉末粒子を内部電極露出部44上に付着させ
る。その後焼成固着し帯状のガラス被膜を形成す
る。
Next, an insulating pattern is similarly formed on the back side. First, the front side is covered with adhesive tape or the like to prevent excessive adhesion and immersed in the suspension. A counter electrode plate is placed in front of the back surface, and a voltage is applied between the counter electrode plate and the external electrode 45 to cause glass powder particles to adhere onto the internal electrode exposed portion 44 . After that, it is baked and fixed to form a band-shaped glass coating.

次に両面に帯状のガラス被膜を形成した電歪材
料積層体を第5図aに示す破線部を切断し、電歪
効果素子の最終的な寸法にする。少なくとも外部
電極近傍の2個所は切断する。両端の仮設外部電
極のついた2つの小片50は電歪効果素子として
は使用できない。第5図のように切断すると一個
の電歪材料積層体より電歪効果素子51が複数個
得られる。第5図bにガラス被膜の形成された電
歪効果素子を示す。次に第6図で示すように帯状
のガラス被膜および露出した内部電極を横断して
被うような外部電極66を表側と裏側にそれぞれ
形成すれば電歪効果素子を電気的に接続すること
ができる。
Next, the electrostrictive material laminate having band-shaped glass coatings formed on both sides is cut along the broken line shown in FIG. 5a to obtain the final dimensions of the electrostrictive effect element. Cut at least two places near the external electrode. The two small pieces 50 with temporary external electrodes at both ends cannot be used as electrostrictive elements. By cutting as shown in FIG. 5, a plurality of electrostrictive effect elements 51 can be obtained from one electrostrictive material laminate. FIG. 5b shows an electrostrictive element with a glass coating formed thereon. Next, as shown in FIG. 6, if external electrodes 66 are formed on the front and back sides of the band-shaped glass film and the exposed internal electrodes so as to cover the exposed internal electrodes, the electrostrictive element can be electrically connected. can.

本発明の方法に使用するガラス材料の備えるべ
き性質としては、まず第一に複数回焼成温度に達
しても製造上問題を生じないという条件から一度
結晶化すると再び軟化点を超えて加熱しても軟化
しない性質を持つ結晶化ガラスであることがあげ
られる。その中でも機械的強度、ちみつさ、絶縁
性にすぐれかつ熱膨張係数が電歪材料と同程度で
あることが必要である。
The properties that the glass material used in the method of the present invention should have are, first of all, that it should not cause manufacturing problems even if it reaches the firing temperature multiple times, and once crystallized, it cannot be heated again beyond its softening point. It is also a crystallized glass that does not soften. Among these, it is necessary to have excellent mechanical strength, honey, and insulation properties, and a coefficient of thermal expansion comparable to that of the electrostrictive material.

本発明の方法を電歪効果素子の電気的接続に使
用することにより次のような効果が得られる。内
部電極の露出部とその周辺にのみガラス粉末が付
着するので絶縁パターンの精度はほぼ理想的であ
る。印刷法等の場合と異なり、形成したい絶縁パ
ターンとそれを適用する積層体の内部電極間距離
とを合わせる必要がなく、一般に収縮率および最
終形状のコントロールが困難であるセラミツク材
料の製造方法としては優れたプロセスと考えられ
る。付着が電気化学的反応であるため、厚みおよ
び巾の均一性が得られる。内部電極の露出したと
ころへ付着が集中する性質があるために部分的な
欠落、欠陥が生じにくく、焼成固着後その上に外
部電極を形成し電圧を印加しても絶縁耐圧の局部
的に低い部分が存在せず、全体として高い絶縁耐
圧が得られる。
By using the method of the present invention for electrically connecting electrostrictive elements, the following effects can be obtained. Since the glass powder adheres only to the exposed portions of the internal electrodes and their surroundings, the accuracy of the insulation pattern is almost ideal. Unlike printing methods, it is not necessary to match the distance between the insulating pattern to be formed and the internal electrodes of the laminate to which it is applied, and it is generally difficult to control the shrinkage rate and final shape as a manufacturing method for ceramic materials. Considered a good process. Because the deposition is an electrochemical reaction, uniformity in thickness and width is obtained. Because the adhesion tends to concentrate on the exposed parts of the internal electrodes, it is difficult to cause partial loss or defects, and even if an external electrode is formed on top of it after firing and fixing, and a voltage is applied, the withstand voltage is locally low. There are no parts, and a high dielectric strength voltage can be obtained as a whole.

以下実施例に従つて本発明の詳細な説明を行な
う。
The present invention will be described in detail below with reference to Examples.

まず第3図に示すような構造の多数の内部電極
と1組の仮設外部電極とを有する電歪材料積層体
をして以下の方法により作製する。
First, an electrostrictive material laminate having a structure as shown in FIG. 3 and having a large number of internal electrodes and a set of temporary external electrodes is manufactured by the following method.

マグネシウムニオブ酸鉛(Pb(Mg1/3Nb2/
3)O3)およびチタン酸鉛(PbTiO3)を主成分
とする電歪材料予焼粉末に微量の有機バインダー
を添加し、これを有機溶媒中に分散させたスラリ
ーを準備した。通常の積層セラミツクコンデンサ
の製造に使用されるキヤステイング製膜装置によ
りこのスラリーをマイラーフイルム上に数百ミク
ロンの厚さに塗布し乾燥させた。これをフイルム
から剥離し、電歪材料グリーンシートを得た。一
部のグリーンシートには更に内部電極として白金
ペーストをスクリーン印刷した。これらのグリー
ンシートを数10枚重ね、熱プレスにより圧着一体
化した後1250℃で焼成し、電歪材料積層体を得
た。これを内部電極が一層おきに表面に露出する
ような位置で切断し仮設外部電極を塗布焼付けし
更に側面を切断して第3図に示すような内部電極
が露出している積層体を得た。このようにして得
られた電歪材料積層体に電気泳動法を適用する。
第3図において30は保護膜部分の電歪材料、3
1は歪を生じる電歪材料をそれぞれ示す。内部電
極32,34はそれぞれ33と35で示す仮設外
部電極に接続しており、他の内部電極は一層おき
に交互に2つの仮設外部電極に接続されている。
Magnesium lead niobate (Pb (Mg1/3Nb2/
3 ) A slurry was prepared by adding a small amount of an organic binder to an electrostrictive material pre-fired powder containing lead titanate (PbTiO 3 ) and lead titanate (PbTiO 3 ) as main components, and dispersing this in an organic solvent. This slurry was coated onto a Mylar film to a thickness of several hundred microns using a casting film forming apparatus used in the manufacture of ordinary multilayer ceramic capacitors and dried. This was peeled off from the film to obtain an electrostrictive material green sheet. Some of the green sheets were further screen-printed with platinum paste as internal electrodes. Several ten of these green sheets were stacked, pressed together by heat press, and then fired at 1250°C to obtain an electrostrictive material laminate. This was cut at a position where the internal electrodes were exposed on the surface every other layer, temporary external electrodes were applied and baked, and the sides were further cut to obtain a laminate with exposed internal electrodes as shown in Figure 3. . Electrophoresis is applied to the electrostrictive material laminate thus obtained.
In FIG. 3, 30 is the electrostrictive material of the protective film portion, 3
1 indicates an electrostrictive material that causes strain. The inner electrodes 32, 34 are connected to temporary outer electrodes indicated at 33 and 35, respectively, and the other inner electrodes are connected to two temporary outer electrodes alternately on every other layer.

次に付着物であるガラス粉末を含む懸濁液を以
下の方法で作製する。ホウケイ酸亜鉛系結晶ガラ
ス粉末30g、エタノール290ml、5%ヨウ素エタ
ノール溶液10mlを高速ホモジナイザーで混合す
る。ヨウ素が電解質の役割を果たし、ガラス粉末
はプラスに帯電している。30分間超音波をかけた
後、30分間静置して沈殿物を除去し残りの懸濁液
を使用する。
Next, a suspension containing glass powder as deposits is prepared by the following method. Mix 30 g of zinc borosilicate crystalline glass powder, 290 ml of ethanol, and 10 ml of 5% iodine ethanol solution using a high-speed homogenizer. Iodine acts as an electrolyte, and the glass powder is positively charged. After applying ultrasound for 30 minutes, let stand for 30 minutes to remove the precipitate, and use the remaining suspension.

前記電歪材料積層体の内部電極が露出している
片面を粘着テープで被い懸濁液にぬれるのを防い
だ後前記懸濁液を満たした容器に沈める。付着さ
せたい面の前方1cmの距離のところに付着させた
い面より大きい面積を持つステンレス製対向電極
板を沈める。対向電極板を直流電源のプラス端子
に接続し、仮設外部電極33をマイナス端子に接
続し、20V300秒電圧を印加する。紙了後乾燥さ
せると、内部電極露出部32の上とその周辺の電
歪材料表面に巾200ミクロンのガラス粉末の付着
が得られた。
One side of the electrostrictive material laminate on which the internal electrodes are exposed is covered with adhesive tape to prevent it from getting wet with the suspension, and then submerged in a container filled with the suspension. A stainless steel counter electrode plate with a larger area than the surface to be attached is submerged at a distance of 1 cm in front of the surface to which it is to be attached. The counter electrode plate is connected to the positive terminal of a DC power supply, the temporary external electrode 33 is connected to the negative terminal, and a voltage of 20V is applied for 300 seconds. When the paper was dried, glass powder with a width of 200 microns was deposited on the surface of the electrostrictive material on and around the internal electrode exposed portion 32.

裏面の粘着テープを取り除いた後、705℃で10
分間保持することにより焼成しガラス被膜を電歪
材料に固着させた。その様子を第4図に示す。第
4図において40は保護膜部の電歪材料、41は
歪を生じる電歪材料をそれぞれ示す。帯状のガラ
ス被膜42は仮設外部電極43とつながる内部電
極の露出部とその周辺に形成される。第4図で4
4は露出したままになつている内部電極、45は
それらをまとめている仮設外部電極をそれぞれ示
す。
After removing the adhesive tape on the back, heat at 705℃ for 10
The glass film was baked by holding for a minute to fix the glass film to the electrostrictive material. The situation is shown in Figure 4. In FIG. 4, reference numeral 40 indicates an electrostrictive material of the protective film portion, and reference numeral 41 indicates an electrostrictive material that causes strain. The band-shaped glass coating 42 is formed on the exposed portion of the internal electrode connected to the temporary external electrode 43 and its periphery. 4 in Figure 4
Reference numeral 4 indicates an internal electrode left exposed, and reference numeral 45 indicates a temporary external electrode that brings them together.

次に反対側の面にガラス被膜を形成する。まず
既にガラス被膜を形成した面を粘着テープで被い
保護した後、外部電極45を直流電源のマイナス
端子に接続し一回目と同様な方法で電圧を印加し
て内部電極44の露出部とその周辺にガラス粉末
を付着させる。これを一回目と同様に焼成して帯
状のガラス被膜を形成する。
Next, a glass coating is formed on the opposite side. First, protect the surface on which the glass coating has already been formed by covering it with adhesive tape, then connect the external electrode 45 to the negative terminal of the DC power supply and apply a voltage in the same manner as the first time to connect the exposed part of the internal electrode 44 and the Adhere glass powder around the area. This is fired in the same manner as the first time to form a band-shaped glass coating.

以上のように表側と裏側にガラス被膜を形成し
た電歪材料積層体を第5図aの破線で示す位置で
切断する。図中番号50で示す仮設外部電極のつ
いた小片502個は使用できず、その間の小片51
が電歪効果素子となる。得られた電歪効果素子を
第5図bに示す。図中番号52は保護膜部の電歪
材料、53は歪を生じる電歪材料、54は露出し
た内部電極をそれぞれ示す。複数の内部電極のう
ちたとえば上から数えて奇数番目の内部電極55
は表側の面では56で示すガラス被膜に被われて
いるが、裏側では露出している。逆に54で示す
偶数番目の内部電極は表側では露出しているが裏
側では57で示すガラス被膜により被われてい
る。
The electrostrictive material laminate having glass coatings formed on the front and back sides as described above is cut at the position shown by the broken line in FIG. 5a. 502 small pieces with temporary external electrodes indicated by number 50 in the figure cannot be used, and the small pieces 51 between them cannot be used.
becomes an electrostrictive element. The obtained electrostrictive element is shown in FIG. 5b. In the figure, numeral 52 indicates the electrostrictive material of the protective film portion, 53 indicates the electrostrictive material that causes strain, and 54 indicates the exposed internal electrode. Among the plurality of internal electrodes, for example, an odd-numbered internal electrode 55 counting from the top
is covered with a glass coating 56 on the front side, but is exposed on the back side. Conversely, even-numbered internal electrodes indicated by 54 are exposed on the front side, but are covered with a glass film indicated at 57 on the back side.

得られた電歪効果素子は第6図に示すように2
つの外部電極を表側と裏側に形成することにより
容易に電気的に接続され、これら外部電極間に電
圧を印加することにより保護膜部を除く電歪材料
全体に均一な電界が生じ、大きな歪を発生する。
図中番号60は保護膜部の電歪材料、61は歪を
生じる電歪材料をそれぞれ示す。図中番号62,
63はそれぞれマイナス端子とプラス端子に接続
している内部電極を示す。図中番号64,65は
それぞれ62と63で示す内部電極上に形成され
たガラス被膜である。図中番号66は表側に形成
された外部電極であり、63で示す多数の内部電
極とつながつておりこれらをまとめている。さら
に裏側にも62で示す内部電極をまとめる外部電
極が存在する。
The obtained electrostrictive effect element has a shape of 2 as shown in FIG.
Electrical connection is easily achieved by forming two external electrodes on the front and back sides, and by applying a voltage between these external electrodes, a uniform electric field is generated throughout the electrostrictive material except for the protective film, causing large distortion. Occur.
In the figure, numeral 60 indicates the electrostrictive material of the protective film portion, and 61 indicates the electrostrictive material that causes strain. Number 62 in the diagram,
Reference numerals 63 indicate internal electrodes connected to the negative terminal and the positive terminal, respectively. Numbers 64 and 65 in the figure are glass coatings formed on internal electrodes indicated by 62 and 63, respectively. In the figure, numeral 66 is an external electrode formed on the front side, which is connected to a large number of internal electrodes 63 and brings them together. Further, on the back side, there is an external electrode indicated by 62 which brings together the internal electrodes.

電気的に接続された電歪効果素子は全体をフツ
素樹脂でコートし素子の耐湿性を向上させる。
The entire electrically connected electrostrictive effect element is coated with fluororesin to improve the moisture resistance of the element.

以上の実施例から明らかなように本発明の方法
に従えば多数の内部電極が全て端面に露出した積
層型電歪効果素子を確実に電気的に接続すること
ができ歩留まりが大幅に向上した。さらにこの方
法は電気化学的手法であるため試料個々の個別の
調整、セツテイングが簡単で大量に同時処理が可
能であり、装置が簡便なことと併せコストが低減
できる利点がある。
As is clear from the above examples, according to the method of the present invention, a stacked electrostrictive element in which all of the internal electrodes are exposed at the end face can be reliably electrically connected, and the yield is greatly improved. Furthermore, since this method is an electrochemical method, individual adjustment and setting of each sample is easy, large quantities can be processed simultaneously, and there are advantages in that the equipment is simple and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は積層チツプコンデンサ型の電歪効果素
子の構成図、aは横方向から見た断面図、bは縦
方向からの透視図である。図中番号1は電歪材
料、2と2′は内部電極、3と3′は外部電極、4
は内部電極の重なり部分、5は内部電極の重なら
ない部分、6は内部電極のない部分をそれぞれ示
す。 第2図は内部電極が素子端面に露出している積
層型電歪効果素子の構成図、aは側面図、bは縦
方向の断面図である。図中番号21と21′は電
歪材料、22と22′は内部電極、23と24は
内部電極を接続するワイヤー、25と26は電極
端子をそれぞれ示す。 第3図は本発明の方法が適用される電歪材料積
層体の外観図。図中番号30,31はそれぞれ保
護膜部および歪を発生する電歪材料である。32
と33は外部電極である。34と35は外部電極
である。 第4図は内部電極露出部とその周辺部の電歪材
料上に形成されたガラス被膜が形成された第3図
の電歪材料積層体の外観図。42はガラス被膜で
ある。 第5図aは両面にガラス被膜の形成された電歪
材料積層体の外観図。第5図bは第5図aの破線
部から切り出された電歪効果素子の外観図であ
る。54,55,56,57は内部電極をそれぞ
れ示す。 第6図は外部電極の形成された第5図bで示し
た電歪効果素子の外観図。60,61は電歪材
料、62,63は内部電極、64,65はガラス
被膜、66は外部電極、67,68は外部端子で
ある。
FIG. 1 is a block diagram of a laminated chip capacitor type electrostrictive effect element, a is a sectional view seen from the horizontal direction, and b is a perspective view from the vertical direction. In the figure, number 1 is an electrostrictive material, 2 and 2' are internal electrodes, 3 and 3' are external electrodes, and 4
5 indicates an overlapping portion of internal electrodes, 5 indicates a non-overlapping portion of internal electrodes, and 6 indicates a portion without internal electrodes. FIG. 2 is a configuration diagram of a multilayer electrostrictive element in which internal electrodes are exposed at the end face of the element, where a is a side view and b is a vertical cross-sectional view. In the figure, numbers 21 and 21' are electrostrictive materials, 22 and 22' are internal electrodes, 23 and 24 are wires connecting the internal electrodes, and 25 and 26 are electrode terminals, respectively. FIG. 3 is an external view of an electrostrictive material laminate to which the method of the present invention is applied. In the figure, numbers 30 and 31 indicate a protective film portion and an electrostrictive material that generates strain, respectively. 32
and 33 are external electrodes. 34 and 35 are external electrodes. FIG. 4 is an external view of the electrostrictive material laminate shown in FIG. 3 in which a glass coating is formed on the electrostrictive material in the internal electrode exposed portion and its surrounding area. 42 is a glass coating. FIG. 5a is an external view of an electrostrictive material laminate with glass coatings formed on both sides. FIG. 5b is an external view of the electrostrictive effect element cut out from the broken line part in FIG. 5a. 54, 55, 56, and 57 indicate internal electrodes, respectively. FIG. 6 is an external view of the electrostrictive element shown in FIG. 5b on which external electrodes are formed. 60 and 61 are electrostrictive materials, 62 and 63 are internal electrodes, 64 and 65 are glass coatings, 66 is an external electrode, and 67 and 68 are external terminals.

Claims (1)

【特許請求の範囲】[Claims] 1 電歪材料と内部電極とが交互に積層され、該
内部電極と一層おきにそれぞれ接続する2つの外
部電極が形成された積層コンデンサ型構造の積層
体で積層方向に平行で、しかも外部電極形成面と
異なる2つの面に内部電極層が露出している構造
の積層体を作製する工程と、該積層体の一方の外
部電極と該積層体の外側に設置する電極板との間
に直流電圧を印加し、電気泳動法によつて前記内
部電極露出面の一方の面において、一層おきの内
部電極層上とその近傍に絶縁材料を形成する工程
と、当該積層体の絶縁材料を形成した面及び内部
電極層と異なる内部電極露出面及び内部電極層と
その近傍に前記外部電極と異なる外部電極と前記
電極板との間に直流電圧を印加し、電気泳動法に
よつて絶縁材料を形成する工程と、当該絶縁材料
が形成された積層体の外部電極形成部近傍を切断
する工程とを具備する電歪効果素子の製造方法。
1 A laminate with a laminated capacitor type structure in which electrostrictive materials and internal electrodes are alternately laminated, and two external electrodes are formed that are connected to the internal electrodes at every other layer, parallel to the lamination direction, and in which the external electrodes are formed. A step of producing a laminate having a structure in which internal electrode layers are exposed on two different surfaces, and applying a DC voltage between one external electrode of the laminate and an electrode plate installed outside the laminate. and forming an insulating material on and in the vicinity of every other internal electrode layer on one of the exposed surfaces of the internal electrodes by electrophoresis, and the surface of the laminate on which the insulating material is formed. and applying a DC voltage between the electrode plate and the external electrode different from the external electrode to the exposed surface of the internal electrode different from the internal electrode layer, the internal electrode layer, and its vicinity, and forming an insulating material by electrophoresis. 1. A method of manufacturing an electrostrictive element, comprising: a step of cutting a layered body formed with the insulating material near an external electrode forming part.
JP58049250A 1982-12-22 1983-03-24 Manufacture of electrostrictive effect element Granted JPS59175176A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58049250A JPS59175176A (en) 1983-03-24 1983-03-24 Manufacture of electrostrictive effect element
EP83307867A EP0113999B1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
DE8383307867T DE3373594D1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
US06/940,210 US4681667A (en) 1982-12-22 1986-12-10 Method of producing electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58049250A JPS59175176A (en) 1983-03-24 1983-03-24 Manufacture of electrostrictive effect element

Publications (2)

Publication Number Publication Date
JPS59175176A JPS59175176A (en) 1984-10-03
JPS6317355B2 true JPS6317355B2 (en) 1988-04-13

Family

ID=12825595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58049250A Granted JPS59175176A (en) 1982-12-22 1983-03-24 Manufacture of electrostrictive effect element

Country Status (1)

Country Link
JP (1) JPS59175176A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102078A (en) * 1984-10-25 1986-05-20 Hitachi Metals Ltd Laminated piezo-electric element
JPH0637249Y2 (en) * 1985-03-14 1994-09-28 エスエムシー 株式会社 Direction switching valve
JPS6262571A (en) * 1985-09-12 1987-03-19 Nec Corp Electrostrictive effect element
JPH0680846B2 (en) * 1985-10-15 1994-10-12 日本電気株式会社 Electrostrictive effect element
JPS6365688A (en) * 1986-09-05 1988-03-24 Sumitomo Special Metals Co Ltd Manufacture of piezoelectric laminating actuator
JPS63128778A (en) * 1986-11-19 1988-06-01 Nec Corp Electrostrictive-effect device
JPS63142875A (en) * 1986-12-05 1988-06-15 Sumitomo Special Metals Co Ltd Piezoelectric laminated actuator
JPS63153870A (en) * 1986-12-17 1988-06-27 Nec Corp Electrostrictive effect element
JPS6398670U (en) * 1986-12-17 1988-06-25
JPH0680847B2 (en) * 1987-09-08 1994-10-12 日本電気株式会社 Electrostrictive effect element
JPH01146379A (en) * 1987-12-02 1989-06-08 Nec Corp Electrostrictive element assembly
JPH04206580A (en) * 1990-11-30 1992-07-28 Nec Corp Thickness vibration piezoelectric porcelain transformer and manufacture thereof
JPH0774410A (en) * 1994-09-06 1995-03-17 Ngk Spark Plug Co Ltd Manufacture of electrostriction laminate

Also Published As

Publication number Publication date
JPS59175176A (en) 1984-10-03

Similar Documents

Publication Publication Date Title
JPS62274681A (en) Electrostrictive effect element
JP5304159B2 (en) Manufacturing method of multilayer ceramic capacitor
JPS6317355B2 (en)
US4681667A (en) Method of producing electrostrictive effect element
EP0167392B1 (en) Method of producing electrostrictive effect element
JPS6317354B2 (en)
JPH0564873B2 (en)
JPH0256826B2 (en)
JPS59115579A (en) Electrostrictive effect element and manufacture thereof
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPH0256827B2 (en)
JPS60178678A (en) Manufacture of electronic component of ceramic lamination
JPS61234580A (en) Laminated type electrostriction of piezoelectric element
JPS6318352B2 (en)
JPS6086883A (en) Manufacture of electrostrictive-effect element
JPH05267743A (en) Manufacture of laminated piezoelectric actuator
JPH0256829B2 (en)
JPH02137280A (en) Electrostriction effect element and its manufacture
JPH0519313B2 (en)
JPH0256828B2 (en)
JPH0420248B2 (en)
JPS6225475A (en) Electrostrictive effect element and manufacture thereof
JPS6214483A (en) Manufacture of electrostrictive effect element
JPS6318351B2 (en)
JPH06314829A (en) Manufacture of laminated piezoelectric actuator