JPH0519313B2 - - Google Patents

Info

Publication number
JPH0519313B2
JPH0519313B2 JP63071414A JP7141488A JPH0519313B2 JP H0519313 B2 JPH0519313 B2 JP H0519313B2 JP 63071414 A JP63071414 A JP 63071414A JP 7141488 A JP7141488 A JP 7141488A JP H0519313 B2 JPH0519313 B2 JP H0519313B2
Authority
JP
Japan
Prior art keywords
insulating layer
electrostrictive
internal electrode
exposed
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63071414A
Other languages
Japanese (ja)
Other versions
JPH01164080A (en
Inventor
Kazuaki Uchiumi
Atsushi Ochi
Masanori Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP63071414A priority Critical patent/JPH01164080A/en
Publication of JPH01164080A publication Critical patent/JPH01164080A/en
Publication of JPH0519313B2 publication Critical patent/JPH0519313B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To completely eliminate the production of a crack in an insulating layer due to expansion and contraction even when a voltage is impressed on an electrostrictive effect element in order to cause the expansion and contraction due to an electrostrictive effect and to completely eliminate a disturbance action of the expansion and contraction due to a non-electric field part when the insulating layer has been formed by a method wherein an inorganic insulating layer is formed only in an exposed part of an internal electrode sheet on a side end face of the element and on an electrostrictive material near the exposed part. CONSTITUTION:An electrostrictive effect element is constituted in such a way that only exposed parts on element side faces of internal electrode sheets 2, 2' exposed to the outside and parts near the internal electrodes on the element side faces of electrostrictive material films 1 are coated with outside electrodes 3, 3'. Because an insulating layer is divided, a stretch is hardly exerted on the insulating layer and a bending stress is not exerted. Accordingly, even when the electrostrictive effect element is expanded and contracted, it is possible to completely eliminate a problem that a crack is produced in the insulating layer or that the insulating layer is stripped off.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、縦効果を利用した電歪効果素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrostrictive effect element that utilizes a longitudinal effect.

(従来の技術と本発明が解決しようとする課題) 電歪効果の大きな材料を用いて第3図に示すよ
うな積層チツプコンデンサ構造の素子を構成する
と、低電圧で大きな歪の発生する電歪効果素子が
得られる。すなわち、第3図aに示すように、電
歪材料からなる膜または薄板1の間に正の内部電
極板2、負の内部電極板2′を交互に挟んで積層
し、内部電極板2,2′をそれぞれ外部電極4,
4′に接続した構造である。しかし、上述の従来
の電歪効果素子は、同図bの平面図から理解され
るように、内部電極板2,2′との重なり部分が
素子間の全面積より小となり、周辺部分では両電
極は重なつていない。従つて、外部電極4,4′
間に電圧を印加すると上記電極の重なり部分のみ
電界強度は強くなり、周辺部分の電界強度は弱
い。このため素子周辺部分は変形しないばかりで
なく、素子全体の変形を阻害し材料固有の歪量を
得ることができないという欠点がある。さらに、
変形する部分と、変形しない部分との境界に応力
集中が起き、高電圧印加、くり返し印加または長
時間印加等により機械的に素子が破壊するという
欠点もある。
(Prior Art and Problems to be Solved by the Present Invention) When an element with a multilayer chip capacitor structure as shown in FIG. An effect element is obtained. That is, as shown in FIG. 3a, positive internal electrode plates 2 and negative internal electrode plates 2' are alternately sandwiched and laminated between films or thin plates 1 made of electrostrictive material, and the internal electrode plates 2, 2′ are respectively external electrodes 4,
4'. However, as can be seen from the plan view of FIG. The electrodes do not overlap. Therefore, the external electrodes 4, 4'
When a voltage is applied between them, the electric field strength becomes strong only in the overlapping part of the electrodes, and the electric field strength in the peripheral part is weak. For this reason, there is a drawback that not only the peripheral portion of the element does not deform, but also the deformation of the entire element is inhibited, making it impossible to obtain the amount of strain specific to the material. moreover,
There is also a drawback that stress concentration occurs at the boundary between the deformed part and the undeformed part, and the element is mechanically destroyed by high voltage application, repeated application, long-time application, etc.

上述の欠点を改良するため、第4図a,bに示
すような構造にすることが考えられる。すなわち
同図aに示すように、内部電極板2,2′を電歪
材料の膜(または薄板)1の全面に交互に形成し
て積層し、複数の内部電極板2の端部を相互に接
続して外部端子Aに接続し、複数の内部電極板
2′は外部端子Bに接続した構造である。従つて
同図Bに示すように内部電極板2および2′は素
子全面に形成されているので、電極端子A,B間
に電圧を印加すると、電歪材料の膜1内の電界分
布が一様となり、素子は均一に変形し、応力集中
も起らない。すなわち、素子はほぼ材料固有の変
形量を示しかつ破壊しにくくなる。しかし、内部
電極板2,2′が接近しているので、内部電極板
2相互間および内部電極板2′相互間を電気的に
接続することが非常に難しい。
In order to improve the above-mentioned drawbacks, a structure as shown in FIGS. 4a and 4b may be considered. That is, as shown in FIG. The structure is such that the internal electrode plates 2' are connected to the external terminal A, and the plurality of internal electrode plates 2' are connected to the external terminal B. Therefore, as shown in Figure B, the internal electrode plates 2 and 2' are formed on the entire surface of the element, so when a voltage is applied between the electrode terminals A and B, the electric field distribution within the electrostrictive material film 1 is uniform. As a result, the element deforms uniformly and stress concentration does not occur. In other words, the element exhibits an amount of deformation that is almost inherent to the material and becomes difficult to break. However, since the internal electrode plates 2 and 2' are close to each other, it is very difficult to electrically connect the internal electrode plates 2 and 2'.

本発明の目的は、上述の事情に鑑み、素子全面
に形成された内部電極板の表面との近傍の電歪材
料上のみに絶縁層を形成した電歪効果素子を提案
することにある。
In view of the above-mentioned circumstances, an object of the present invention is to propose an electrostrictive effect element in which an insulating layer is formed only on the electrostrictive material in the vicinity of the surface of the internal electrode plate formed on the entire surface of the element.

(課題を解決するための手段) すなわち本発明は、電歪材料の膜または薄板と
内部電極とが交互に積層され、一体となつて焼結
された電歪効果素子であつて該素子の前記内部電
極板の端面が露出しており、この側端面上に露出
した電極に対し、その全面又は一層おきに無機絶
縁層が露出電極の周囲を含む範囲に形成されてい
る構造である。
(Means for Solving the Problems) That is, the present invention provides an electrostrictive effect element in which films or thin plates of electrostrictive material and internal electrodes are alternately laminated and sintered as one body. The end face of the internal electrode plate is exposed, and an inorganic insulating layer is formed on the entire surface or every other layer of the electrode exposed on this side end face in a range including the periphery of the exposed electrode.

電極を無機材料で絶縁する場合には、デイツプ
法、スクリーン法などが一般的に行なわれてい
る。しかしながら、これらの方法では、絶縁層が
露出電極の周囲だけでなく、素子の全面を覆うよ
うな絶縁層の構造になり、本発明にように電歪効
果素子による素子の伸縮が生じると、無機絶縁層
にクラツクが生じて、絶縁性を失つたり、無機絶
縁層によつて電歪効果が小さくなるなどの不具合
が生じ、実用化が困難であつた。
When insulating electrodes with inorganic materials, dip methods, screen methods, etc. are generally used. However, in these methods, the insulating layer has a structure that covers not only the periphery of the exposed electrode but also the entire surface of the element, and when the element expands and contracts due to the electrostrictive effect element as in the present invention, inorganic Problems such as cracks occurring in the insulating layer resulting in loss of insulation properties and a reduction in electrostrictive effect due to the inorganic insulating layer have made it difficult to put it into practical use.

これは電歪効果素子が電圧を印加することによ
つて伸縮するが、無機絶縁層は伸縮しないため、
無機絶縁層と電歪効果素子の界面に歪を生じるた
めと考えられる。
This is because the electrostrictive element expands and contracts when a voltage is applied, but the inorganic insulating layer does not.
This is thought to be due to strain occurring at the interface between the inorganic insulating layer and the electrostrictive element.

しかもここで生ずる歪は素子の寸法が大きくな
ると伸びの差も大きくなるため、100%クラツク
を生ずる結果となる。
Moreover, as the size of the element increases, the difference in elongation also increases, resulting in a 100% crack.

これを解決する方法として伸縮可能な軟かい有
機材料による絶縁層形成が考えられるが、有機物
による絶縁ではセラミツク、金属などの接着性が
少なく、有機材料自身の耐湿性などの有機材料に
比べ悪いため、特に高電圧が加わるような電歪素
子の絶縁としては実用化が困難である。特に積層
型の電歪効果素子では、内部電極の間隔が数十ミ
クロン〜1ミリ程度と非常に狭く、この間に数十
V〜数百Vと高い電圧を加えるため、有機物を含
むような絶縁層では実用化は困難である。
One possible solution to this problem is to form an insulating layer using a stretchable, soft organic material, but organic insulation has poor adhesion to ceramics, metals, etc., and its own moisture resistance is poor compared to organic materials. In particular, it is difficult to put it into practical use as an insulation for electrostrictive elements to which high voltage is applied. In particular, in stacked electrostrictive elements, the interval between internal electrodes is extremely narrow, ranging from several tens of microns to one millimeter, and a high voltage of several tens to hundreds of volts is applied between these electrodes, so an insulating layer containing organic matter is required. Therefore, it is difficult to put it into practical use.

本発明はこのような問題点を全て解決し、電歪
効果素子を伸縮してもクラツクが生じることな
く、電歪効果素子の伸縮率を阻害することなく、
絶縁性、信頼性の高い無機絶縁層を形成した電歪
効果素子である。
The present invention solves all of these problems, and does not cause cracks even when the electrostrictive element is expanded or contracted, and does not impede the expansion/contraction rate of the electrostrictive element.
This is an electrostrictive effect element formed with an inorganic insulating layer with high insulation properties and reliability.

(実施例) 次に本発明について実施例を示す図面を参照し
て詳細に説明する。
(Example) Next, the present invention will be described in detail with reference to drawings showing examples.

第1図、第2図はそれぞれ本発明の一実施例を
示す斜視図と断面図である。すなわち本発明の電
歪効果素子では、外部に露出した内部電極板2,
2′の素子側面における露出部および電歪材料膜
1の素子側面における内部電極に近い部分のみを
無機絶縁層3,3′でコートした構造であるため、
電歪材料の伸縮に対する歪発生が非常に小さくな
るため、絶縁層のクラツク発生が全くなくなる構
造となつている。
FIG. 1 and FIG. 2 are a perspective view and a sectional view, respectively, showing an embodiment of the present invention. That is, in the electrostrictive effect element of the present invention, the internal electrode plate 2 exposed to the outside,
Since the structure is such that only the exposed portion on the side surface of the element 2' and the portion of the electrostrictive material film 1 on the side surface of the element close to the internal electrode are coated with the inorganic insulating layers 3, 3',
Since the strain caused by expansion and contraction of the electrostrictive material is extremely small, the structure is such that cracks in the insulating layer are completely eliminated.

一例として、長さ10mmのPb(Mg1/3Nb2/3)
O3を主成分とする電歪材料を用いて積層型電歪
効果素子を試作し、電圧1KV/mmを印加すると
伸びて長さが10.01mmになる。
As an example, Pb (Mg1/3Nb2/3) with a length of 10 mm
A laminated electrostrictive effect element was prototyped using an electrostrictive material whose main component is O 3 , and when a voltage of 1 KV/mm was applied, it expanded to a length of 10.01 mm.

従つて、この表面全面に絶縁層を形成すると、
絶縁層に対しても全体が10.01mmになるような力
が加わることになる。さらに積層電歪効果素子の
表面全面に絶縁層を形成し、電歪効果素子を伸縮
させると、絶縁層は伸縮しないため、素子に曲げ
応力が加わることになりこれも絶縁層および素子
のクラツク、ハクリの原因となる。
Therefore, if an insulating layer is formed on the entire surface,
A force will be applied to the insulating layer so that the total thickness becomes 10.01 mm. Furthermore, when an insulating layer is formed on the entire surface of the laminated electrostrictive element and the electrostrictive element is expanded or contracted, since the insulating layer does not expand or contract, bending stress is applied to the element, which also causes cracks in the insulating layer and the element. It causes peeling.

しかしながら、絶縁層を本発明のように分割す
ることによつて、絶縁層に加わる伸びはほとんど
なく、さらに曲げ応力も加わらなくなる。従つ
て、電歪効果素子を伸縮させた場合でも、絶縁層
にクラツク、ハクリなどの問題を生ずることを全
くなくすことが可能となつた。
However, by dividing the insulating layer as in the present invention, almost no elongation is applied to the insulating layer, and furthermore, no bending stress is applied to the insulating layer. Therefore, even when the electrostrictive element is expanded or contracted, it has become possible to completely eliminate problems such as cracks and peeling in the insulating layer.

本発明の構造について実施例に基づいて説明す
る。まず、マグネシウム・ニオブ酸塩Pb(Mg1/
3Nb2/3)O3を主成分とする電歪材料の粉末を
有機バインダーとともに溶媒中に分散しスラリー
状とする。これをドクターブレートを用いた、キ
ヤステイング法によつて、厚さ30μm〜20μmの
均一な厚さのセラミツク生シートとする。このセ
ラミツク生シートを60mm×40mmの矩形に打ち抜
き、表面に白金ペーストをスクリーン印刷法によ
つて内部電極材料として印刷する。
The structure of the present invention will be explained based on examples. First, magnesium niobate Pb (Mg1/
3Nb2/3) Powder of an electrostrictive material containing O3 as a main component is dispersed in a solvent together with an organic binder to form a slurry. This is made into a ceramic raw sheet having a uniform thickness of 30 μm to 20 μm by a casting method using a doctor blade. This raw ceramic sheet is punched out into a rectangle of 60 mm x 40 mm, and platinum paste is printed on the surface as an internal electrode material by screen printing.

このセラミツク生シートを含む複数枚のセラミ
ツク生シートを積層圧着し、一体の積層体とな
す。この積層体を900℃〜1200℃の温度で焼結し、
焼結した積層体とする。
A plurality of raw ceramic sheets including this raw ceramic sheet are laminated and pressed together to form an integral laminate. This laminate is sintered at a temperature of 900℃ to 1200℃,
A sintered laminate.

この焼結体を5mm×5mmの矩形状にダイヤモン
ドカツターを用いて小片に切断する。切断した小
片素子の内部電極層の露出した4つのうち相対向
する2つの面の内部電極素層上に一層おきにたと
えば電極ペーストを塗布または印刷により形成し
電気泳動用の電極として焼付ける。所定のマスク
により電極を蒸着してもよい。この際前記2つの
面において同じ内部電極層の両側に電極を付けな
いように、該2つの電極を形成する内部電極層が
一層ずれるようにする。このようにして形成した
電極にリード線を接続し、これらを一本にまとめ
る。この素子を電気泳動槽の中に入れ、前記リー
ド線と対向電極の間に直流電圧を50V,30秒間印
加し、露出した内部電極表面とその近傍に絶縁層
を形成する。この際絶縁層を形成したくない内部
電極露出部には有機材料を形成しておく、また均
一な厚さで絶縁層を形成するために直流電界印加
中は対向電極が素子周囲を移動するようにする
か、対向電極を素子周囲に配置することが望まし
い。所定の時間直流電界を加え、絶縁層形成の終
わつた素子を900℃−10分条件で熱処理を行なう
と絶縁層が素子表面に焼付けられる。
This sintered body was cut into small rectangular pieces of 5 mm x 5 mm using a diamond cutter. For example, an electrode paste is formed by coating or printing every other layer on two opposing surfaces of the four exposed internal electrode layers of the cut small piece element, and baked as electrodes for electrophoresis. The electrodes may be deposited using a predetermined mask. At this time, the internal electrode layers forming the two electrodes are further shifted so that electrodes are not attached to both sides of the same internal electrode layer on the two surfaces. Lead wires are connected to the electrodes formed in this way, and these are combined into one wire. This device is placed in an electrophoresis tank, and a DC voltage of 50 V is applied between the lead wire and the counter electrode for 30 seconds to form an insulating layer on the exposed internal electrode surface and its vicinity. At this time, an organic material is formed on the exposed parts of the internal electrodes where it is not desired to form an insulating layer, and in order to form an insulating layer with a uniform thickness, the counter electrode is moved around the element while a DC electric field is applied. Alternatively, it is desirable to arrange a counter electrode around the element. A direct current electric field is applied for a predetermined period of time, and the element on which the insulating layer has been formed is heat-treated at 900°C for 10 minutes, so that the insulating layer is baked onto the element surface.

第5図は電気泳動法によつて、電歪効果素子の
露出内部電極に絶縁層を形成する装置の一例を示
す。ここで5は電歪効果素子、6は対向電極、
7,7′はリード線、8は絶縁粉末のスラリー、
9は直流電源、10はガラス容器を示している。
FIG. 5 shows an example of an apparatus for forming an insulating layer on exposed internal electrodes of an electrostrictive element by electrophoresis. Here, 5 is an electrostrictive element, 6 is a counter electrode,
7, 7' are lead wires, 8 is insulating powder slurry,
9 indicates a DC power supply, and 10 indicates a glass container.

なお本実施例では無機絶縁材料の電気泳動法用
スラリーとしては次の組成を用いた。
In this example, the following composition was used as a slurry for electrophoresis of an inorganic insulating material.

ホウケイ酸鉛素ガラス 10wt% エタノール 85wt% ポリビニルブチラール 5wt% この様にして外部絶縁層を形成した、電歪効果
素子に300Vの50Hzの交流電圧を印加し、伸縮振
動を100時間連続で行わせても、絶縁不良その他
電気特性上の問題はなく、絶縁層のクラツク、ハ
クリなども発生せず、電歪素子として実用化が可
能であることが認められた。
Lead borosilicate glass 10wt% Ethanol 85wt% Polyvinyl butyral 5wt% A 300V 50Hz alternating current voltage was applied to the electrostrictive element with the outer insulating layer formed in this way, and stretching vibration was performed continuously for 100 hours. However, there were no problems with electrical properties such as poor insulation, and no cracks or peeling of the insulating layer occurred, and it was confirmed that it could be put to practical use as an electrostrictive element.

(発明の効果) 以上実施例から明らかなように、本発明の構造
によると、内部電極各層毎に、絶縁層が独立して
いるため、電歪効果素子に電圧を印加し電歪効果
による伸縮を起こさせても伸縮に伴う絶縁層のク
ラツク発生が全くなく、絶縁層を形成したことに
よる無電界部による伸縮の妨害作用も全くない。
(Effects of the Invention) As is clear from the above embodiments, according to the structure of the present invention, the insulating layer is independent for each layer of the internal electrode. Even if this occurs, there is no cracking of the insulating layer due to expansion and contraction, and there is no effect of interfering with expansion and contraction due to the no-electric field area due to the formation of the insulating layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2
図は同じく本発明の一実施例を示す断面図、第1
図、第2図において1は電歪材料、2は内部電
極、3,3′は無機絶縁層である。第3図a、お
よびbは従来の積層チツプコンデンサ型の電歪効
果素子の一例を示す断面図および平面図、第4図
a,bは内部電極板を素子全面に形成した構造の
積層型電歪効果素子を示す断面図および平面図、
第3図および第4図において1は電歪材料、2,
2′は内部電極、4,4′は外部電極である。第5
図は電気泳動法によつて絶縁層を形成する装置の
断面図、第5図において5は電歪効果素子、6は
対向電極、7,7′はリード線、8は絶縁粉末の
スラリー、9は直流電源、10はガラス容器であ
る。
Fig. 1 is a perspective view showing one embodiment of the present invention;
The figure is also a sectional view showing one embodiment of the present invention.
2, 1 is an electrostrictive material, 2 is an internal electrode, and 3 and 3' are inorganic insulating layers. Figures 3a and b are cross-sectional views and plan views showing an example of a conventional multilayer chip capacitor type electrostrictive effect element, and Figures 4a and b are multilayer type electrostrictive elements with internal electrode plates formed over the entire surface of the element. A cross-sectional view and a plan view showing a strain effect element,
3 and 4, 1 is an electrostrictive material, 2,
2' is an internal electrode, and 4 and 4' are external electrodes. Fifth
The figure is a cross-sectional view of an apparatus for forming an insulating layer by electrophoresis. In FIG. is a DC power supply, and 10 is a glass container.

Claims (1)

【特許請求の範囲】[Claims] 1 電歪材料の膜または薄板と内部電極とが交互
に積層され、一体となつて焼結された電歪効果素
子であつて、該素子の側端面上の前記内部電極板
露出部とその近傍の電歪材料上のみに無機絶縁層
が直接形成されていることを特徴とする電歪効果
素子。
1. An electrostrictive effect element in which films or thin plates of electrostrictive material and internal electrodes are alternately laminated and sintered as one body, and the internal electrode plate exposed portion on the side end surface of the element and its vicinity An electrostrictive effect element characterized in that an inorganic insulating layer is directly formed only on an electrostrictive material.
JP63071414A 1988-03-24 1988-03-24 Electrostrictive effect element Granted JPH01164080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071414A JPH01164080A (en) 1988-03-24 1988-03-24 Electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071414A JPH01164080A (en) 1988-03-24 1988-03-24 Electrostrictive effect element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57225169A Division JPS59115579A (en) 1982-12-22 1982-12-22 Electrostrictive effect element and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH01164080A JPH01164080A (en) 1989-06-28
JPH0519313B2 true JPH0519313B2 (en) 1993-03-16

Family

ID=13459832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071414A Granted JPH01164080A (en) 1988-03-24 1988-03-24 Electrostrictive effect element

Country Status (1)

Country Link
JP (1) JPH01164080A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156466A (en) * 1989-10-18 1992-10-20 Fujitsu Limited Method and apparatus for adjusting the spacing between head and platen in an impact printer or the like

Also Published As

Publication number Publication date
JPH01164080A (en) 1989-06-28

Similar Documents

Publication Publication Date Title
JPH0256830B2 (en)
JPS6317354B2 (en)
JPH08274381A (en) Stacked piezoelectric actuator and its manufacture
JPH04159785A (en) Electrostrictive effect element
JPH0364979A (en) Electrostrictive effect element
JP2986706B2 (en) Piezoelectric element and piezoelectric actuator using the same
JPS6317355B2 (en)
JPS6132835B2 (en)
JPS58196069A (en) Electrostrictive effect element
JPH0256826B2 (en)
JPH0564873B2 (en)
JPH05218519A (en) Electrostrictive effect element
JPH0519313B2 (en)
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPS61234580A (en) Laminated type electrostriction of piezoelectric element
JPH0256827B2 (en)
JPH06181343A (en) Laminated displacement element and manufacture thereof
JPS6127687A (en) Production of electrostrictive effect element
JPS59219972A (en) Electrostriction effect element
JPH0832131A (en) Laminated piezolectric element and its manufacture
JPH0745971Y2 (en) Electrostrictive effect element
JPH07226542A (en) Multilayered piezoelectric element
JP6898167B2 (en) Laminated piezoelectric element
JPH01184968A (en) Manufacture of laminar piezoelectric element
JPH0279482A (en) Electrostriction effect element and manufacture thereof