JPH01164080A - Electrostrictive effect element - Google Patents

Electrostrictive effect element

Info

Publication number
JPH01164080A
JPH01164080A JP63071414A JP7141488A JPH01164080A JP H01164080 A JPH01164080 A JP H01164080A JP 63071414 A JP63071414 A JP 63071414A JP 7141488 A JP7141488 A JP 7141488A JP H01164080 A JPH01164080 A JP H01164080A
Authority
JP
Japan
Prior art keywords
insulating layer
electrostrictive
internal electrode
exposed
electrostrictive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63071414A
Other languages
Japanese (ja)
Other versions
JPH0519313B2 (en
Inventor
Kazuaki Uchiumi
和明 内海
Atsushi Ochi
篤 越智
Masanori Suzuki
正則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63071414A priority Critical patent/JPH01164080A/en
Publication of JPH01164080A publication Critical patent/JPH01164080A/en
Publication of JPH0519313B2 publication Critical patent/JPH0519313B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure

Abstract

PURPOSE:To completely eliminate the production of a crack in an insulating layer due to expansion and contraction even when a voltage is impressed on an electrostrictive effect element in order to cause the expansion and contraction due to an electrostrictive effect and to completely eliminate a disturbance action of the expansion and contraction due to a non-electric field part when the insulating layer has been formed by a method wherein an inorganic insulating layer is formed only in an exposed part of an internal electrode sheet on a side end face of the element and on an electrostrictive material near the exposed part. CONSTITUTION:An electrostrictive effect element is constituted in such a way that only exposed parts on element side faces of internal electrode sheets 2, 2' exposed to the outside and parts near the internal electrodes on the element side faces of electrostrictive material films 1 are coated with outside electrodes 3, 3'. Because an insulating layer is divided, a stretch is hardly exerted on the insulating layer and a bending stress is not exerted. Accordingly, even when the electrostrictive effect element is expanded and contracted, it is possible to completely eliminate a problem that a crack is produced in the insulating layer or that the insulating layer is stripped off.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、縦効果を利用した電歪効果素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an electrostrictive element that utilizes longitudinal effects.

(従来の技術と本発明が解決しようとする課題)電歪効
果の大きな材料を用いて第3図に示すような積層チップ
コンデンサ構造の素子を構成すると、低電圧で大きな歪
の発生する電歪効果素子が得られる。すなわち、第3図
(a)に示すように、電歪材料からなる膜または薄板1
の間に正の内部電極板2、負の内部電極板2゛を交互に
挾んで積層し、内部電極板2,2”をそれぞれ外部電極
3,3′に接続した構造である。しかし、上述の従来の
電歪効果素子は、同図(b)の平面図から理解されるよ
うに、内部電極板2,2′との重なり部分が素子間の全
面積より小となり、周辺部分では画電極は重なっていな
い。従って、外部電極4,4′間に電圧を印加すると上
記電極の重なり部分のみ電界強度は弱くなり、周辺部分
の電界強度は弱い。このため素子周辺部分は変形しない
ばかりでなく、素子全体の変形を阻害し材料固有の歪量
を得ることができないという欠点がある。さらに、変形
する部分と、変形しない部分との境界に応力集中が起き
、高電圧印加、くり返し印加または長時間印加等により
磯波的に素子が破壊するという欠点もある。
(Prior art and problems to be solved by the present invention) When an element with a multilayer chip capacitor structure as shown in Fig. 3 is constructed using a material with a large electrostrictive effect, a large strain occurs at low voltage. An effect element is obtained. That is, as shown in FIG. 3(a), a film or thin plate 1 made of an electrostrictive material
In this structure, positive internal electrode plates 2 and negative internal electrode plates 2'' are alternately sandwiched and stacked in between, and the internal electrode plates 2 and 2'' are connected to external electrodes 3 and 3', respectively.However, as described above, As can be seen from the plan view of FIG. 2(b), in the conventional electrostrictive effect element, the overlapping part with the internal electrode plates 2 and 2' is smaller than the total area between the elements, and the picture electrode do not overlap.Therefore, when a voltage is applied between the external electrodes 4 and 4', the electric field strength is weak only in the overlapping part of the electrodes, and the electric field strength in the peripheral part is weak.For this reason, the peripheral part of the element not only does not deform; This has the disadvantage that it inhibits the deformation of the entire element and makes it impossible to obtain the amount of strain inherent to the material.Furthermore, stress concentration occurs at the boundary between the deformed part and the non-deformed part, and when high voltage application, repeated application, or long There is also a drawback that the element is destroyed like a wave due to the application of time.

上述の欠点を改良するため、第4図(a)、(b)に示
すような構造にすることが考えられる。すなわち同図(
a)に示すように、内部電極板2,2”を電歪材料め膜
(または薄板)1の全面に交互に形成して積層し、複数
の内部電極板2の端部を相互に接続して外部端子Aに接
続し、複数の内部電極板2′は外部端子Bに接続した構
造である。従って同図(B)に示すように内部電極板2
および2′は素子全面に形成されているので、電極端子
A、B間に電圧を印加すると、電歪材料の膜1内の電界
分布が一様となり、素子は均一に変形し、応力集中も起
らない。すなわち、素子はほぼ材料固有の変形量を示し
かつ破壊しにくくなる。しかし、内部電極板2,2′が
接近しているので、内部電極板2相互間および内部電極
板2゛相互間を電気的に接続することが非常に難しい。
In order to improve the above-mentioned drawbacks, a structure as shown in FIGS. 4(a) and 4(b) may be considered. In other words, the same figure (
As shown in a), internal electrode plates 2, 2'' are alternately formed and stacked on the entire surface of an electrostrictive material film (or thin plate) 1, and the ends of a plurality of internal electrode plates 2 are connected to each other. The structure is such that the internal electrode plates 2' are connected to the external terminal A, and the plurality of internal electrode plates 2' are connected to the external terminal B. Therefore, as shown in FIG.
and 2' are formed on the entire surface of the element, so when a voltage is applied between electrode terminals A and B, the electric field distribution in the electrostrictive material film 1 becomes uniform, the element deforms uniformly, and stress concentration is also reduced. It doesn't happen. In other words, the element exhibits an amount of deformation that is almost inherent to the material and becomes difficult to break. However, since the internal electrode plates 2 and 2' are close to each other, it is very difficult to electrically connect the internal electrode plates 2 to each other and the internal electrode plates 2' to each other.

本発明の目的は、上述の事情に鑑み、素子全面に形成さ
れた内部電極板の表面との近傍の電歪材料上のみに絶縁
層を形成した電歪効果素子を提案することにある。
In view of the above-mentioned circumstances, an object of the present invention is to propose an electrostrictive effect element in which an insulating layer is formed only on the electrostrictive material in the vicinity of the surface of the internal electrode plate formed on the entire surface of the element.

(課題を解決するための手段) すなわち本発明は、電歪材料の膜または薄板と内部電極
とが交互に積層され、一体となって焼結された電歪効果
素子であって該素子の前記内部電極板の端面が露出して
おり、この側端面上に露出した電極に対し、その全面又
は−層おきに無機絶縁層が露出電極の周囲を含む範囲に
形成されている構造である。
(Means for Solving the Problems) That is, the present invention provides an electrostrictive effect element in which films or thin plates of electrostrictive material and internal electrodes are alternately laminated and sintered as a unit. The end face of the internal electrode plate is exposed, and an inorganic insulating layer is formed on the entire surface or every other layer of the electrode exposed on this side end face in a range including the periphery of the exposed electrode.

電極を無機材料で絶縁する場合には、デイツプ法、スク
リーン法などが一般的に行なわれている。しかしながら
、これらの方法では、絶縁層が露出電極の周囲だけでな
く、素子の全面を覆うような絶縁層の構造になり、本発
明にように電歪効果による素子の伸縮が生じると、無機
絶縁層にクラックが生じて、絶縁性を失ったり、無機絶
縁層によって電歪効果が小さくなるなどの不具合が生じ
、実用化が困難であった。
When insulating electrodes with inorganic materials, dip methods, screen methods, etc. are generally used. However, in these methods, the structure of the insulating layer is such that the insulating layer covers not only the periphery of the exposed electrode but also the entire surface of the element, and when the element expands and contracts due to the electrostrictive effect as in the present invention, the inorganic insulation Problems such as cracks occurring in the layer, loss of insulation, and a reduction in the electrostrictive effect due to the inorganic insulating layer made it difficult to put it into practical use.

これは電歪効果素子が電圧を印加することによって伸縮
するが、無機絶縁層は伸縮しないため、無機絶縁層と電
歪効果素子の界面に歪を生じるためと考えられる。
This is thought to be because the electrostrictive element expands and contracts when a voltage is applied, but the inorganic insulating layer does not, causing strain at the interface between the inorganic insulating layer and the electrostrictive element.

しかもここで生ずる歪は素子の寸法が大きくなると伸び
の差も大きくなるため、100%クラックを生ずる結果
となる。
Moreover, as the size of the element increases, the difference in elongation also increases, resulting in 100% cracking.

これを解決する方法として伸縮可能な軟かい有機材料に
よる絶縁層形成が考えられるが、有機物による絶縁では
セラミック、金属などの接着性が少なく、有機材料自身
の耐湿性などの無機材料に比べ悪いため、特に高電圧が
加わるような電歪素子の絶縁としては実用化が困難であ
る。特に積層型の電歪効果素子では、内部電極の間隔が
数十ミクロン−1ミリ程度と非常に狭く、この間に数十
V〜数百Vと高い電圧を加えるため、有機物を含むよう
な絶縁層では実用化は困難である。
One possible solution to this problem is to form an insulating layer using a stretchable soft organic material, but organic insulation has poor adhesion to ceramics, metals, etc., and the organic material itself has poor moisture resistance compared to inorganic materials. In particular, it is difficult to put it into practical use as an insulation for electrostrictive elements to which high voltage is applied. In particular, in stacked electrostrictive elements, the interval between internal electrodes is extremely narrow, on the order of tens of microns to one millimeter, and a high voltage of several tens to hundreds of volts is applied between these electrodes, so an insulating layer containing organic matter is required. Therefore, it is difficult to put it into practical use.

本発明はこのような問題点を全て解決し、電歪効果素子
を伸縮してもクラックが生じることなく、電歪効果素子
の伸縮率を阻害することなく、絶縁性、信頼性の高い無
機絶縁層を形成した電歪効果素子である。
The present invention solves all of these problems, and provides inorganic insulation with high insulation properties and reliability without causing cracks even when the electrostrictive element is expanded and contracted, and without inhibiting the expansion and contraction rate of the electrostrictive element. It is an electrostrictive effect element formed with layers.

(実施例) 次に本発明について実施例を示す図面を参照して詳細に
説明する。
(Example) Next, the present invention will be described in detail with reference to drawings showing examples.

第1図、第2図はそれぞれ本発明の一実施例を示す斜視
図と断面図である。すなわち本発明の電歪効果素子では
、外部に露出した内部電極板2,2′の素子側面におけ
る露出部および電歪材料膜1の素子側面における内部電
極に近い部分のみを外部電極3.3′でコートした構造
であるため、電歪材料の伸縮に対する歪発生が非常に小
さくなるため、絶縁層のクラック発生が全くなくなる構
造となっている。
FIG. 1 and FIG. 2 are a perspective view and a sectional view, respectively, showing an embodiment of the present invention. That is, in the electrostrictive effect element of the present invention, only the exposed portions of the internal electrode plates 2, 2' exposed to the outside on the side surfaces of the device and the portions of the electrostrictive material film 1 on the side surfaces of the device close to the internal electrodes are used as the external electrodes 3.3'. Since the structure is coated with , the strain caused by expansion and contraction of the electrostrictive material is extremely small, resulting in a structure in which cracks in the insulating layer are completely eliminated.

一例として、長さ10mmのPb(Mgl/3Nb2/
3)03を主成分とする電歪材料を用いて積層型電歪効
果素子を試作し、電圧IKV/mmを印加すると伸びて
長さが10.01mmになる。
As an example, a length of 10 mm of Pb(Mgl/3Nb2/
3) A laminated electrostrictive effect element was prototyped using an electrostrictive material containing 03 as a main component, and when a voltage of IKV/mm was applied, it expanded to a length of 10.01 mm.

従って、この表面全面に絶縁層を形成すると、絶縁層に
対しても全体が10.01mmになるような力が加わる
ことになる。さらに積層電歪効果素子の表面全面に絶縁
層を形成し、電歪効果素子を伸縮させると、絶縁層は伸
縮しないため、素子に曲げ応力が加わることになりこれ
も絶縁層および素子のクラック、ハクリの原因となる。
Therefore, if an insulating layer is formed over the entire surface, a force such as a total thickness of 10.01 mm will be applied to the insulating layer as well. Furthermore, when an insulating layer is formed on the entire surface of the laminated electrostrictive element and the electrostrictive element is expanded or contracted, since the insulating layer does not expand or contract, bending stress is applied to the element, which also causes cracks in the insulating layer and the element. It causes peeling.

しかしながら、絶縁層を本発明のように分割することに
よって、絶縁層に加わる伸びはほとんどなく、さらに曲
げ応力も加わらなくなる。従って、電歪効果素子を伸縮
させた場合でも、絶縁層にクラック、ハクリなどの問題
を生ずることを全くなくすことが可能となった。
However, by dividing the insulating layer as in the present invention, almost no elongation is applied to the insulating layer, and furthermore, no bending stress is applied to the insulating layer. Therefore, even when the electrostrictive element is expanded or contracted, problems such as cracks and peeling in the insulating layer can be completely eliminated.

本発明の構造について実施例に基づいて説明する。まず
、マグネシウム・ニオブ酸塩 Pb(Mgl/3Nb2/3)03を主成分とする電歪
材料の粉末を有機バインダーとともに溶媒中に分散しス
ラリー状とする。これをドクターブレードを用いた、キ
ャスティング法によって、厚さ 30μm〜200pmの均一な厚さのセラミック生シー
トとする。このセラミック生シートを 60mmX40mmの矩形に打ち抜き、表面に白金ペー
ストをスクリーン印刷法によって内部電極材料として印
刷する。
The structure of the present invention will be explained based on examples. First, powder of an electrostrictive material containing magnesium niobate Pb(Mgl/3Nb2/3)03 as a main component is dispersed in a solvent together with an organic binder to form a slurry. This is made into a ceramic raw sheet having a uniform thickness of 30 μm to 200 pm by a casting method using a doctor blade. This ceramic raw sheet is punched out into a rectangle of 60 mm x 40 mm, and platinum paste is printed on the surface as an internal electrode material by screen printing.

このセラミック生シートを含むII i 枚のセラミッ
ク生シートを積層圧着し、一体の積層体となす。この積
層体を900°C〜1200°Cの温度で焼結し、焼結
した積層体とする。
II i ceramic green sheets including this ceramic green sheet are laminated and pressed together to form an integral laminate. This laminate is sintered at a temperature of 900°C to 1200°C to obtain a sintered laminate.

この焼結体を5mmX5mmの矩形状にダイヤモンドカ
ッターを用いて小片に切断する。切断した小片素子の内
部電極層の露出した4つのうち相対向する2つの面の内
部電極層上に一層おきにたとえば電極ペーストを塗布ま
たは印刷により形成し電気泳動用の電極として焼付ける
。所定のマスクにより電極を蒸着してもよい。この際前
記2つの面において同じ内部電極層の画側に電極を付け
ないように、該2つの電極を形成する内部電極層が一層
ずれるようにする。このようにして形成した電極にリー
ド線を接続し、これらを−本にまとめる。この素子を電
気泳動槽の中に入れ、前記リード線と対向電極の間に直
流電圧を50V、30秒間印加し、露出した内部電極表
面とその近傍に絶縁層を形成する。この際絶縁層を形成
したくない内部電極露出部には有機材料を形成しておく
、また均一な厚さで絶縁層を形成するために直流電界印
加中ば対向電極が素子周囲を移動するようにするか、対
向電極を素子周面に配置することが望ましい。所定の時
間直流電界を加え、絶縁層形成の終わった素子を900
℃−10分条件で熱処理を行なうと絶縁層が素子表面に
焼付けられる。
This sintered body is cut into small rectangular pieces of 5 mm x 5 mm using a diamond cutter. For example, an electrode paste is formed by coating or printing every other layer on two opposing surfaces of the four exposed internal electrode layers of the cut small piece element, and baked as electrodes for electrophoresis. The electrodes may be deposited using a predetermined mask. At this time, the internal electrode layers forming the two electrodes are further shifted from each other so that electrodes are not attached to the image side of the same internal electrode layer on the two surfaces. Lead wires are connected to the electrodes thus formed, and these are assembled into a book. This element is placed in an electrophoresis tank, and a DC voltage of 50 V is applied between the lead wire and the counter electrode for 30 seconds to form an insulating layer on the exposed internal electrode surface and its vicinity. At this time, an organic material is formed on the exposed parts of the internal electrodes where it is not desired to form an insulating layer, and in order to form an insulating layer with a uniform thickness, the counter electrode is moved around the element while a DC electric field is applied. Alternatively, it is desirable to arrange a counter electrode on the circumferential surface of the element. A DC electric field is applied for a predetermined period of time, and the device with the insulating layer formed is heated to 900°C.
When the heat treatment is performed at -10 minutes at -10 minutes, the insulating layer is baked onto the surface of the element.

第5図は電気泳動法によって、電歪効果素子の露出内部
電極に絶縁層を形成する装置の一例を示す。ここで5は
電歪効果素子、6は対向電極、7,7′はリード線、8
は絶縁粉末のスラリー、9は直流電源、10はガラス容
器を示している。
FIG. 5 shows an example of an apparatus for forming an insulating layer on exposed internal electrodes of an electrostrictive element by electrophoresis. Here, 5 is an electrostrictive element, 6 is a counter electrode, 7 and 7' are lead wires, and 8
9 indicates a slurry of insulating powder, 9 indicates a DC power supply, and 10 indicates a glass container.

なお本実施例では無機絶縁材料の電気泳動法用スラリー
としては次の組成を用いた。
In this example, the following composition was used as a slurry for electrophoresis of an inorganic insulating material.

ホウケイ酸鉛素ガラス    10wt%エタノール 
        85wt%ポリビニルブチラール  
  5wt%この様にして外部絶縁層を形成した、電歪
効果素子に300vの50Hzの交流電圧を印加し、伸
縮振動を100時間連続で行わせても、絶縁不良その他
電気特性上の問題はなく、絶縁層のクラック、ハクリな
とも発生せず、電歪素子として実用化が可能であること
が認められた。
Lead borosilicate glass 10wt% ethanol
85wt% polyvinyl butyral
5 wt% Even if an AC voltage of 300 V and 50 Hz was applied to the electrostrictive effect element with an external insulating layer formed in this manner, and stretching vibration was performed continuously for 100 hours, there were no problems with insulation or other electrical properties. No cracks or peeling occurred in the insulating layer, and it was confirmed that it could be put to practical use as an electrostrictive element.

(発明の効果) 以上実施例から明らかなように、本発明の構造によると
、内部電極各層毎に、絶縁層が独立しているため、電歪
効果素子に電圧を印加し電歪効果による伸縮を起こさせ
ても伸縮に伴う絶縁層のクラック発生が全くなく、絶縁
層を形成したことによる無電界部による伸縮の妨害作用
も全くない。
(Effects of the Invention) As is clear from the above embodiments, according to the structure of the present invention, the insulating layer is independent for each layer of the internal electrode. There is no cracking of the insulating layer due to expansion/contraction even if the expansion/contraction occurs, and there is no interference with expansion/contraction due to the no-electric field area caused by the formation of the insulating layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図は同じ
く本発明の一実施例を示す断面図、第1図、第2図にお
いて1は電歪材料、2は内部電極、3,3′は無機絶縁
層である。第3図(a)、および(b)は従来の積層チ
ップコンデンサ型の電歪効果素子の一例を示す断面図お
よび平面図、第4図(a)、(b)は内部電極板を素子
全面に形成した構造の積層型電歪効果素子を示す断面図
および平面図、第3図および第4図において1は電歪材
料、2,2′は内部電極、4,4′は外部電極である。 第5図は電気泳動法によって絶縁層を形成する装置の断
面図、第5図において5は電歪効果素子、6は対向電極
、7,7′はリード線、8は絶縁粉末ノスラリー、9は
直流電源、10はガラス容器である。
FIG. 1 is a perspective view showing an embodiment of the present invention, and FIG. 2 is a sectional view similarly showing an embodiment of the present invention. In FIGS. 1 and 2, 1 is an electrostrictive material, 2 is an internal electrode, 3 and 3' are inorganic insulating layers. Figures 3(a) and (b) are a cross-sectional view and a plan view showing an example of a conventional multilayer chip capacitor type electrostrictive effect element, and Figures 4(a) and (b) are internal electrode plates shown on the entire surface of the element. 3 and 4, 1 is an electrostrictive material, 2 and 2' are internal electrodes, and 4 and 4' are external electrodes. . FIG. 5 is a sectional view of an apparatus for forming an insulating layer by electrophoresis. In FIG. 5, 5 is an electrostrictive element, 6 is a counter electrode, 7, 7' are lead wires, 8 is an insulating powder noslurry, and 9 is an electrostrictive element. A DC power supply and 10 are glass containers.

Claims (1)

【特許請求の範囲】[Claims] 1.電歪材料の膜または薄板と内部電極とが交互に積層
され、一体となって焼結された電歪効果素子であって、
該素子の側端面上の前記内部電極板露出部とその近傍の
電歪材料上のみに無機絶縁層が直接形成されていること
を特徴とする電歪効果素子。
1. An electrostrictive effect element in which films or thin plates of electrostrictive material and internal electrodes are alternately laminated and sintered as one body,
An electrostrictive effect element characterized in that an inorganic insulating layer is directly formed only on the exposed internal electrode plate portion on the side end face of the element and the electrostrictive material in the vicinity thereof.
JP63071414A 1988-03-24 1988-03-24 Electrostrictive effect element Granted JPH01164080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071414A JPH01164080A (en) 1988-03-24 1988-03-24 Electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071414A JPH01164080A (en) 1988-03-24 1988-03-24 Electrostrictive effect element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57225169A Division JPS59115579A (en) 1982-12-22 1982-12-22 Electrostrictive effect element and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH01164080A true JPH01164080A (en) 1989-06-28
JPH0519313B2 JPH0519313B2 (en) 1993-03-16

Family

ID=13459832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071414A Granted JPH01164080A (en) 1988-03-24 1988-03-24 Electrostrictive effect element

Country Status (1)

Country Link
JP (1) JPH01164080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156466A (en) * 1989-10-18 1992-10-20 Fujitsu Limited Method and apparatus for adjusting the spacing between head and platen in an impact printer or the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156466A (en) * 1989-10-18 1992-10-20 Fujitsu Limited Method and apparatus for adjusting the spacing between head and platen in an impact printer or the like

Also Published As

Publication number Publication date
JPH0519313B2 (en) 1993-03-16

Similar Documents

Publication Publication Date Title
JPS6317354B2 (en)
JPH0256830B2 (en)
JPH08274381A (en) Stacked piezoelectric actuator and its manufacture
JPH04159785A (en) Electrostrictive effect element
JP2986706B2 (en) Piezoelectric element and piezoelectric actuator using the same
JPH0364979A (en) Electrostrictive effect element
JPS6317355B2 (en)
JPS6132835B2 (en)
JP2951129B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JPH0564873B2 (en)
JPH0256826B2 (en)
JPH05218519A (en) Electrostrictive effect element
JPH01164080A (en) Electrostrictive effect element
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JP2779182B2 (en) Laminated piezoelectric electrostrictive element
JPH06181343A (en) Laminated displacement element and manufacture thereof
JPS6127687A (en) Production of electrostrictive effect element
JPS59219972A (en) Electrostriction effect element
JP6898167B2 (en) Laminated piezoelectric element
JPH0745971Y2 (en) Electrostrictive effect element
JPH049390B2 (en)
JPH01184968A (en) Manufacture of laminar piezoelectric element
JPH07226542A (en) Multilayered piezoelectric element
JPS61102078A (en) Laminated piezo-electric element
JPS6225475A (en) Electrostrictive effect element and manufacture thereof