JPH07226542A - Multilayered piezoelectric element - Google Patents

Multilayered piezoelectric element

Info

Publication number
JPH07226542A
JPH07226542A JP6015084A JP1508494A JPH07226542A JP H07226542 A JPH07226542 A JP H07226542A JP 6015084 A JP6015084 A JP 6015084A JP 1508494 A JP1508494 A JP 1508494A JP H07226542 A JPH07226542 A JP H07226542A
Authority
JP
Japan
Prior art keywords
conductive
layer
laminate
laminated
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6015084A
Other languages
Japanese (ja)
Inventor
Yasuo Okawa
康夫 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP6015084A priority Critical patent/JPH07226542A/en
Publication of JPH07226542A publication Critical patent/JPH07226542A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a multilayered piezoelectric element wherein the contraction amount of a propective layer part is relieved, by forming inner electrodes isolated in a non-conducting state on both sides of a laminate, and the imperfect insulation can be surely prevented, by surely connecting original inner electrodes and outer electrodes together in a specified relation. CONSTITUTION:Piezoelectric material 11 and inner electrodes 12 are alternately laminated to form a laminate 10. On the side surface of the laminate 10, conductive protruding parts 16 are exposed so as to correspond with the inner electrodes 12 arranged every other layer. An outer electrode 15 is arranged, via a conducting layer 13, on the side surface of the laminate 10 where the conductive protruding parts 16 are exposed. Thereyby the outer electrode 15 is electrically connected with each of the conductive protruding parts 16 of the inner electrodes 12 arranged every other layer. Non-conducting inner electrodes 17 which are isolated in a non-conducting state in the laminate 10 are formed on both of the end portions in the laminate direction of the laminate 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電材料の薄膜を多数
枚積層し、電圧を印加することにより縦方向の変位を得
る積層型圧電素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated piezoelectric element in which a large number of thin films of piezoelectric material are laminated and a longitudinal displacement can be obtained by applying a voltage.

【0002】[0002]

【従来の技術】従来、主にアクチュエーターとして利用
される積層型圧電素子を製造する場合、一層置きの内部
電極の側面を外部電極に接続するようにしている。そし
て、その製造にあたり、従来の積層コンデンサ方式を用
いると、内部電極面積が素子の断面積より小さいため、
電界が全面に発生せず、しかも、変位を阻害するばかり
でなく、不均一な部分に応力集中が発生し、ついには破
壊するという致命的な欠点がある。また、積層時の位置
決めが難しく、多くても数十枚程度の積層枚数が限界で
あり、同じ印加電圧の場合、素子の変位量は積層枚数に
比例するため、大きな変位量を発生する素子を製造する
ことは困難であった。この欠点を解消するために、圧電
シートの全面に電極を印刷して積層する方法、即ち、内
部電極の面積と素子の面積を等しくする構造が一般的に
なっている。
2. Description of the Related Art Conventionally, in the case of manufacturing a laminated piezoelectric element mainly used as an actuator, the side surface of a single-layer internal electrode is connected to an external electrode. When the conventional multilayer capacitor method is used in the manufacture, the internal electrode area is smaller than the cross-sectional area of the element,
There is a fatal defect that an electric field is not generated on the entire surface, the displacement is hindered, stress concentration occurs in a non-uniform portion, and finally the material is broken. In addition, positioning at the time of stacking is difficult, and the number of stacked layers is limited to several tens at most. For the same applied voltage, the displacement amount of the element is proportional to the number of stacked layers. It was difficult to manufacture. In order to solve this drawback, a method of printing and laminating electrodes on the entire surface of the piezoelectric sheet, that is, a structure in which the area of the internal electrode and the area of the element are made equal is common.

【0003】この場合、一層置きの内部電極を外部電極
に接続するには図1に示すような方法が考えられてい
る。即ち、積層体の互いに反対側の各側面において、そ
の各側面間で一層ずらし、かつそのいずれの側面にも各
一層置きの内部電極の各端部に導電性凸部を露出形成
し、その各導電性凸部が露出形成された積層体の側面に
対し、導電膜を介して外部電極を平板で均一に加圧する
ことにより、前記各導電性凸部に対応する部分の加圧力
を高めてこの部分に対応する内部電極が前記外部電極と
電気的に接続されるようにしている。この場合、前記導
電膜として、導電粒子を含有する層と、同粒子を含有し
ない層との二層構造のものを用いると、前記加圧により
前記導電粒子が同粒子を含有しない層を突き破って前記
導電性凸部及び外部電極に接触し、以って、その導電性
凸部及び外部電極を電気的に接続させている。
In this case, a method as shown in FIG. 1 has been considered to connect the internal electrodes placed on one layer to the external electrodes. That is, on each side surface on the opposite side of the laminated body, the side surfaces are further displaced from each other, and a conductive convex portion is exposed and formed at each end portion of each internal electrode on each side surface. By uniformly pressing the external electrode with a flat plate through the conductive film to the side surface of the laminate in which the conductive protrusions are formed, the pressure applied to the portion corresponding to each conductive protrusion is increased. The internal electrode corresponding to the portion is electrically connected to the external electrode. In this case, when the conductive film has a two-layer structure of a layer containing conductive particles and a layer not containing the same particles, the conductive particles break through the layer not containing the same particles by the pressure. The conductive protrusion and the external electrode are brought into contact with each other, so that the conductive protrusion and the external electrode are electrically connected.

【0004】また、この種の圧電素子は縦効果を利用す
るため、その変位方向の両端部は積層部分の圧電材料膜
よりも数倍〜数十倍の厚さの圧電材料のみの部分を保護
層として設ける場合が多い。この場合、内部電極と交互
に重なる積層部分の圧電材料と、保護層部分の圧電材料
との焼結時の収縮量の違いから割れや剥がれが起こるた
め、図1に示すように、素子の変位には寄与しない内部
電極を印刷した層を段階的に積層し、収縮量の差を緩和
させて割れや剥がれを防いでいる。
Further, since this kind of piezoelectric element utilizes the vertical effect, both ends in the displacement direction protect only a portion of the piezoelectric material having a thickness several to several tens of times thicker than the piezoelectric material film of the laminated portion. It is often provided as a layer. In this case, cracking or peeling occurs due to the difference in shrinkage amount during sintering between the piezoelectric material of the laminated layer and the piezoelectric material of the protective layer that alternately overlap with the internal electrodes. Layers printed with internal electrodes that do not contribute to the are gradually laminated to reduce the difference in shrinkage and prevent cracking and peeling.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記加
圧に用いる前記平板は、導電性凸部の高さのばらつきに
対応するために、その表面にある程度のクッション性を
持たせてあり、図1に示されるように、積層体の両端部
で内部電極の配置間隔が大きくなると、本来絶縁される
べき内部電極の端部が導通してしまい、圧電素子として
の機能を果たさなくなる。即ち、積層体の中間部分では
導電性凸部の間隔が狭いために問題ないが、両端部では
導電性凸部の間隔が広くなるため、加圧する前記平板が
導電性凸部のない内部電極まで同様の圧力で加圧するこ
とになる。その結果、この内部電極が反対側の側面の外
部電極とつながるため、本来絶縁されるべき層が全て導
通してしまい、圧電素子としての機能を全く持たなくな
るという問題点があった。
However, the flat plate used for the pressurizing has a certain cushioning property on its surface in order to cope with the variation in the height of the conductive convex portion. As shown in (3), when the arrangement interval of the internal electrodes becomes large at both ends of the laminated body, the ends of the internal electrodes, which should be originally insulated, become conductive, and the piezoelectric element does not function. That is, since there is no problem because the distance between the conductive protrusions is small in the middle portion of the laminated body, the distance between the conductive protrusions becomes wide at both ends, so that the flat plate to be pressed does not reach the internal electrodes without the conductive protrusions. The same pressure is applied. As a result, since the internal electrode is connected to the external electrode on the opposite side surface, all the layers that should originally be insulated are brought into conduction, and there is a problem that the piezoelectric element has no function at all.

【0006】本発明は、上述した問題点を解決するため
になされたものであり、積層体の両端部に非導通状態に
分離させた内部電極を設けて、保護層部分の収縮量を緩
和させると共に、本来の各内部電極と外部電極とを所定
の関係で確実に接続してその絶縁不良を確実に防止する
ことができる積層型圧電素子を提供することを目的とし
ている。
The present invention has been made to solve the above-mentioned problems, and provides internal electrodes separated in a non-conducting state at both ends of the laminate to reduce the amount of contraction of the protective layer portion. At the same time, it is an object of the present invention to provide a multilayer piezoelectric element capable of surely connecting the original internal electrodes and external electrodes in a predetermined relationship and reliably preventing insulation failure thereof.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明の積層型圧電素子は、圧電材料と内部電極と
が交互に積層された積層体の側面に、一層置きの内部電
極に対応させて導電性凸部を露出させ、その導電性凸部
が露出した積層体の側面に導電層を介して外部電極を配
置することにより、前記一層置きの内部電極の各導電性
凸部に前記外部電極を電気的に接続するようにした積層
型圧電素子において、前記積層体の積層方向における両
端部分に配置された少なくとも一つの内部電極を、それ
ぞれ積層体の内部で非導通状態に分離させたものであ
る。
In order to achieve this object, a laminated piezoelectric element of the present invention has a layered structure in which piezoelectric materials and internal electrodes are alternately laminated on a side surface of the laminated body. Correspondingly, by exposing the conductive convex portion, and by disposing the external electrode via the conductive layer on the side surface of the laminate in which the conductive convex portion is exposed, the conductive convex portions of the one-layer-placed internal electrodes are formed. In the laminated piezoelectric element configured to electrically connect the external electrodes, at least one internal electrode arranged at both end portions in the laminating direction of the laminated body is separated into a non-conducting state inside the laminated body. It is a thing.

【0008】また、前記積層体の内部で非導通状態に分
離した前記内部電極は、複数の導電部をほぼ格子状や波
状等に断続配列した印刷パターンによって構成すること
ができる。
Further, the internal electrodes separated in a non-conducting state inside the laminated body can be formed by a printed pattern in which a plurality of conductive portions are intermittently arranged in a substantially lattice pattern or a wavy pattern.

【0009】[0009]

【作用】前記の構成を有する本発明の積層型圧電素子に
よれば、積層体の両端部に非導通常態に分離した内部電
極を設けたので、外部電極を積層体の側面に圧接配置す
る際、仮に前記非導通状態の内部電極の端部が外部電極
に接続されたとしても、その内部電極は積層体の内部で
途切れているため、反対側の側面の外部電極に電気的に
接続されることがない。また、前記非導通状態に分離し
た内部電極を、複数の導電部がほぼ格子状や波状等に断
続配列された印刷パターンとすることにより、積層体の
両端保護層部分の収縮が均一になり、積層の際の位置決
めをする必要がない。
According to the multi-layer piezoelectric element of the present invention having the above-mentioned structure, since the internal electrodes which are separated in a non-conventional state are provided at both ends of the laminate, when the external electrodes are arranged in pressure contact with the side surface of the laminate. , Even if the end of the non-conducting internal electrode is connected to the external electrode, since the internal electrode is interrupted inside the laminated body, it is electrically connected to the external electrode on the opposite side surface. Never. Further, the internal electrode separated in the non-conducting state, by forming a plurality of conductive portions in a printing pattern that is intermittently arranged in a grid or wavy form, the contraction of the protective layer portion at both ends of the laminate becomes uniform, There is no need for positioning during stacking.

【0010】[0010]

【実施例】以下に、本発明を具体化した一実施例を図面
に基づいて詳細に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

【0011】図1は積層型圧電素子の断面図であって、
同図の(a)は中間部を破断して示す積層型圧電素子の
全体の断面図であり、同図の(b)は同図(a)の点線
枠内の拡大断面図である。同図において、膜状の圧電材
料11と内部電極12とが交互に積層された積層体10
の積層方向の両端部には、収縮緩和用の二層宛の内部電
極(以下非導通内部電極と言う)17及び保護層18が
形成される。前記各非導通内部電極17は、積層体10
の内部で非導通状態に分離され、平面的には図2に示さ
れるように、多数の導電部17Aがディンプル状に断続
配列された印刷パターンによって構成される。この断続
配列の形態としては、他にほぼ格子状や波状としてもよ
い。また、この非導通内部電極17は、一層だけ設けて
もよいと共に、三層以上設けてもよい。但し、前記収縮
緩和を確実に果たすには少なくとも二から三層設けるこ
とが望ましい。
FIG. 1 is a sectional view of a laminated piezoelectric element.
(A) of the same figure is a sectional view of the whole laminated piezoelectric element shown by breaking the intermediate part, and (b) of the same figure is an enlarged sectional view within the dotted line frame of (a) of the same figure. In the figure, a laminated body 10 in which a film-shaped piezoelectric material 11 and internal electrodes 12 are alternately laminated
An internal electrode (hereinafter referred to as a non-conductive internal electrode) 17 and two protective layers 18 for shrinkage relaxation are formed at both ends in the stacking direction. Each of the non-conducting internal electrodes 17 has a laminated body 10
As shown in FIG. 2, the conductive portions 17A are separated from each other in a non-conducting state in a plan view, and each of the conductive portions 17A is formed by a printing pattern in which the conductive portions 17A are intermittently arranged in a dimple shape. Other forms of the intermittent arrangement may be a lattice shape or a wave shape. The non-conducting internal electrode 17 may be provided in only one layer or in three or more layers. However, it is desirable to provide at least two to three layers in order to surely perform the shrinkage relaxation.

【0012】また、前記積層体10の互いに反対向きの
各側面においては、その各側面間で一層ずらし、かつそ
のいずれの側面にも各一層置きの内部電極12の端部に
対応させて導電性凸部16が形成されている。さらに、
その各導電性凸部16が形成された前記各側面には、そ
れぞれその全面に亙って導電膜13が形成され、その上
には外部電極として銅箔15が形成される。その銅箔1
5は導電部14及び導電性凸部16を介して内部電極1
2と電気的に接続されている。前記導電膜13は、導電
粒子31を含有する外層13aと、導電粒子31を含有
しない内層13bとから構成されている。
Further, on the opposite side surfaces of the laminated body 10, the side surfaces are further displaced from each other, and any side surface thereof is made to correspond to the end portion of the internal electrode 12 of each layer, and the side surface is electrically conductive. The convex portion 16 is formed. further,
A conductive film 13 is formed over the entire surface of each of the side surfaces on which the conductive convex portions 16 are formed, and a copper foil 15 is formed thereon as an external electrode. That copper foil 1
Reference numeral 5 denotes the internal electrode 1 via the conductive portion 14 and the conductive convex portion 16.
2 is electrically connected. The conductive film 13 is composed of an outer layer 13 a containing conductive particles 31 and an inner layer 13 b containing no conductive particles 31.

【0013】以下に、積層型圧電素子を製造方法につい
て説明する。
A method of manufacturing the laminated piezoelectric element will be described below.

【0014】先ず、PZT(チタン酸ジルコン酸鉛)を
主成分とする圧電材料11を所望の組成に混合した後、
850℃で仮焼成した粉末に5重量部のバインダーと微
量の可塑材及び消泡剤を添加し、有機溶媒中に分散させ
スラリー状にする。このスラリーをドクターブレード法
により所定の厚さに成形されたグリーンシート上に内部
電極12としてのPdペーストを全面にスクリーン印刷
したものと、図2に示すように、ディンプル状にスクリ
ーン印刷した収縮緩和用の非導通内部電極17を用意す
る。
First, after the piezoelectric material 11 containing PZT (lead zirconate titanate) as a main component is mixed to a desired composition,
To the powder calcined at 850 ° C., 5 parts by weight of a binder, a small amount of a plasticizer and a defoaming agent are added, and dispersed in an organic solvent to form a slurry. This slurry was screen-printed on the entire surface with a Pd paste as the internal electrodes 12 on a green sheet formed into a predetermined thickness by the doctor blade method, and as shown in FIG. A non-conducting internal electrode 17 is prepared.

【0015】この後、所定寸法に打ち抜き、全面に印刷
したものを150枚数積層し、その両端に電極を印刷し
ていないグリーンシートを数枚重ね、ディンプル状に印
刷した非導通内部電極17を挟み、さらに、印刷してな
いシートを数枚重ねて熱プレスにより一体化する。脱脂
後、約1200℃で焼結を行い、図3に示すように、内
部電極12が一層置きに露出するような位置で切断した
焼結体21に、仮の外部電極22、23を塗布焼き付け
し、さらに、別の一対の側面24、25が露出するよう
に切断する。
After that, 150 sheets each having a predetermined size punched and printed on the entire surface are laminated, and several green sheets on which electrodes are not printed are stacked on both ends thereof, and the non-conductive internal electrodes 17 printed in a dimple shape are sandwiched therebetween. Further, several unprinted sheets are stacked and integrated by hot pressing. After degreasing, sintering is performed at about 1200 ° C., and as shown in FIG. 3, temporary external electrodes 22 and 23 are applied and baked onto a sintered body 21 cut at a position where the internal electrodes 12 are exposed in alternate layers. Then, further cutting is performed so that another pair of side surfaces 24, 25 is exposed.

【0016】次に、焼結体21の一方の側面24におい
て、導電性凸部16を形成する内部電極12の端面部分
以外の側面部分と、他方の側面25の全面とをテープで
マスキングした状態で、仮の外部電極22に直流電源の
負極を接続し、ニッケルメッキ浴中に沈める。この状態
で50mAの電流を約15分間流すと、仮の外部電極2
2につながる内部電極12の端面にニッケルメッキが成
長し、マスキングテープを剥すと、図4に示すように、
ニッケルメッキ製の導電性凸部16が一層置きに形成さ
れた状態になる。同様に、反対側の側面25にも一層ず
らした内部電極12の端面に導電性凸部16を形成すべ
く、既に導電性凸部16が形成された側面24の全体
と、側面25の一部分とをテープでマスキングして保護
した後、負極を仮の外部電極23に接続してニッケルメ
ッキを成長させる。これにより、側面25においても、
側面24と一層づつずれて導電性凸部16が形成され
る。このとき焼結体21の上下端部の収縮緩和用の非導
通内部電極17はディンプル状に印刷されているため、
電流が流れずその非導通内部電極17の端部には導電性
凸部16が形成されない。
Next, on one side surface 24 of the sintered body 21, a side surface portion other than the end surface portion of the internal electrode 12 forming the conductive convex portion 16 and the other side surface 25 are masked with tape. Then, the negative electrode of the DC power source is connected to the temporary external electrode 22 and immersed in the nickel plating bath. If a current of 50 mA is applied for about 15 minutes in this state, the temporary external electrode 2
When nickel plating grows on the end surface of the internal electrode 12 connected to 2 and the masking tape is peeled off, as shown in FIG.
The conductive protrusions 16 made of nickel plating are formed in alternate layers. Similarly, in order to form the conductive convex portion 16 on the end surface of the internal electrode 12 which is further shifted on the opposite side surface 25, the entire side surface 24 on which the conductive convex portion 16 has already been formed and a part of the side surface 25 are formed. Is masked with a tape to protect it, and then the negative electrode is connected to the temporary external electrode 23 to grow nickel plating. As a result, even on the side surface 25,
The conductive protrusions 16 are formed so as to be offset from the side surfaces 24 one by one. At this time, since the non-conducting internal electrodes 17 for relaxing shrinkage at the upper and lower ends of the sintered body 21 are printed in a dimple shape,
Since no current flows, the conductive protrusion 16 is not formed at the end of the non-conducting internal electrode 17.

【0017】洗浄後、直流電源の負極を仮の外部電極2
2,23に接続し、所定の顔料を添加したエポキシカチ
オン電着塗料中に沈め100Vの電圧を2分間かける
と、図5に示すように、導電性凸部16が形成されてい
る内部電極12には、導電性凸部16の表面に、導電性
凸部16が形成されていない内部電極12には、その端
部に、それぞれ前記内層13bとなるエポキシカチオン
電着塗料13cが電着される。その後、オーブン中に入
れて150℃で30分間加熱処理すると、エポキシ樹脂
成分が硬化する過程で流動性を持つため、図6に示すよ
うに平坦化され、導電粒子を含有しない内層13bとな
る。
After cleaning, the negative electrode of the DC power supply is used as a temporary external electrode 2.
2, 23, and immersed in an epoxy cation electrodeposition paint containing a predetermined pigment, and a voltage of 100 V was applied for 2 minutes. As a result, as shown in FIG. In the inner electrode 12 where the conductive protrusion 16 is not formed on the surface of the conductive protrusion 16, the epoxy cation electrodeposition coating 13c to be the inner layer 13b is electrodeposited on the end portion thereof. . After that, when placed in an oven and subjected to heat treatment at 150 ° C. for 30 minutes, the epoxy resin component has fluidity in the process of curing, so that it is flattened as shown in FIG. 6 and becomes the inner layer 13b containing no conductive particles.

【0018】また、焼結体21とは別に図7に示すよう
に銅箔15上に導電性粒子31として平均粒径20〜3
0μmの銅粒子を含有させた熱硬化性のエポキシ系接着
剤を50μm程度の厚さに均一に塗布したもの(導電性
粒子31を含有する外層13a)を用意しておく。これ
を図8に示すように、焼結体21の側面24、25に対
し、それぞれの導電性凸部16にかかるような大きさに
切断し、導電性粒子31を含有しない内層13bと導電
性粒子31を含有する外層13aとが向かい合うように
仮止めする。この導電性粒子31を含有しない内層13
bと導電性粒子31を含有する外層13aとは協働して
導電膜13を構成している。
Separately from the sintered body 21, as shown in FIG. 7, conductive particles 31 are formed on the copper foil 15 and have an average particle size of 20 to 3
A thermosetting epoxy-based adhesive containing 0 μm copper particles uniformly applied to a thickness of about 50 μm (outer layer 13a containing conductive particles 31) is prepared. As shown in FIG. 8, the side surfaces 24 and 25 of the sintered body 21 are cut into a size so as to cover the respective conductive protrusions 16, and the inner layer 13b containing no conductive particles 31 and the conductive layer 31b are electrically conductive. Temporary fixing is performed so that the outer layer 13a containing the particles 31 faces each other. Inner layer 13 containing no conductive particles 31
b and the outer layer 13a containing the conductive particles 31 cooperate with each other to form the conductive film 13.

【0019】そして、ほぼ180℃に熱した一対の平面
状の加圧用治具(図8は一側面側のみ図示)53で挟
み、数kgの荷重をかけて熱圧着すると、導電性凸部1
6の存在により、その凸部付近のみが圧縮されて、図9
に示すように、この圧縮された部分において、導電性粒
子31が、導電性粒子31を含有しない内層13bを突
き破り、導電性凸部16と接触し、かつ外部電極である
銅箔15とも接触して導電部14となり、一層置きに内
部電極12と銅箔15とが電気的に接続された状態とな
る。この場合、収縮緩和用の非導通内部電極17の本来
絶縁されるべき端部で導通してしまったとしても、この
非導通内部電極17が積層体10の内部で途切れている
ため、短絡することが避けられる。
Then, it is sandwiched by a pair of flat pressing jigs 53 (only one side is shown in FIG. 8) heated to approximately 180 ° C., and a load of several kg is applied to perform thermocompression bonding.
Due to the presence of 6, only the vicinity of the convex portion is compressed, and FIG.
As shown in FIG. 5, in this compressed portion, the conductive particles 31 penetrate the inner layer 13b that does not contain the conductive particles 31, contact the conductive protrusions 16 and also contact the copper foil 15 that is an external electrode. Thus, the conductive portion 14 is formed, and the internal electrodes 12 and the copper foils 15 are electrically connected every other layer. In this case, even if the non-conducting internal electrode 17 for shrinkage relaxation conducts at the end that should be originally insulated, the non-conducting internal electrode 17 is interrupted inside the laminated body 10 and therefore short-circuited. Can be avoided.

【0020】このように、互いに反対側の側面で層を一
層分ずらして一層置きの各内部電極12を外部電極15
に接続した焼結体21は、素子1個分に切断された後、
銅箔15の一部に電力供給用のリード線を取り付け、樹
脂外装及び分極処理を施して完成品となる。
In this way, the layers are staggered on the opposite side surfaces to separate the internal electrodes 12 from each other by one layer.
After the sintered body 21 connected to is cut into one element,
A lead wire for power supply is attached to a part of the copper foil 15, and a resin sheath and polarization treatment are applied to complete the product.

【0021】[0021]

【発明の効果】以上説明したことから明かなように、本
発明の積層型圧電素子によれば、積層体の積層方向の両
端部の内部電極を、それぞれ積層体の内部で非導通状態
に分離させたので、前記積層体の両端部の保護層部分の
収縮量の緩和効果を持ったまま、本来の内部電極と外部
電極とを確実に接続することができ、その絶縁不良を確
実に防止することができる。
As is apparent from the above description, according to the laminated piezoelectric element of the present invention, the internal electrodes at both ends of the laminated body in the laminating direction are separated from each other inside the laminated body to be in a non-conducting state. Therefore, it is possible to reliably connect the original internal electrode and external electrode while maintaining the effect of alleviating the amount of contraction of the protective layer portions at both ends of the laminate, and reliably prevent the insulation failure. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧電素子の断面図である。FIG. 1 is a sectional view of a piezoelectric element.

【図2】収縮緩和用の内部電極の印刷パターンである。FIG. 2 is a printed pattern of internal electrodes for shrinkage relaxation.

【図3】切断された積層焼結体の斜視図である。FIG. 3 is a perspective view of a cut laminated sintered body.

【図4】導電性凸部が形成された状態の積層焼結体の斜
視図である。
FIG. 4 is a perspective view of a laminated sintered body in which conductive protrusions are formed.

【図5】電着塗装された素子表層の状態を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing a state of an element surface layer on which electrodeposition coating is applied.

【図6】電着塗料が熱により流動しながら硬化する状態
を示す断面図である。
FIG. 6 is a cross-sectional view showing a state in which an electrodeposition coating composition is cured while flowing by heat.

【図7】銅箔に導電粒子を含有する層を形成した状態示
す断面図である。
FIG. 7 is a cross-sectional view showing a state in which a layer containing conductive particles is formed on a copper foil.

【図8】電着層および導電膜を形成した銅箔を加圧する
状態を示す断面図である。
FIG. 8 is a cross-sectional view showing a state in which a copper foil having an electrodeposition layer and a conductive film is pressed.

【図9】加圧により導電部が形成された状態を示す説明
図である。
FIG. 9 is an explanatory diagram showing a state in which a conductive portion is formed by applying pressure.

【符号の説明】[Explanation of symbols]

11 圧電材料 12 内部電極 13 導電膜 13a 外層 13b 内層 14 導電部 15 銅箔 16 導電性凸部 17 非導通内部電極 11 piezoelectric material 12 internal electrode 13 conductive film 13a outer layer 13b inner layer 14 conductive portion 15 copper foil 16 conductive convex portion 17 non-conductive internal electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧電材料と内部電極とが交互に積層され
た積層体の側面に、一層置きの内部電極に対応させて導
電性凸部を露出させ、その導電性凸部が露出した積層体
の側面に導電層を介して外部電極を配置することによ
り、前記一層置きの内部電極の各導電性凸部に前記外部
電極を電気的に接続するようにした積層型圧電素子にお
いて、 前記積層体の積層方向における両端部分に配置された少
なくとも一つの内部電極を、それぞれ積層体の内部で非
導通状態に分離させたことを特徴とする積層型圧電素
子。
1. A laminated body in which a conductive convex portion is exposed on a side surface of a laminated body in which piezoelectric materials and internal electrodes are alternately laminated so as to correspond to internal electrodes placed one layer apart, and the conductive convex portions are exposed. In the multilayer piezoelectric element, the external electrodes are electrically connected to the conductive protrusions of the one-layer-placed internal electrodes by disposing external electrodes on the side surfaces of the multilayer body. 2. A laminated piezoelectric element, wherein at least one internal electrode arranged at both end portions in the stacking direction is separated in a non-conductive state inside the stacked body.
【請求項2】 前記積層体の内部で非導通状態に分離し
た前記内部電極を、多数の導電部がほぼ格子状や波状等
に断続配列された印刷パターンによって構成したことを
特徴とする請求項1に記載の積層型圧電素子。
2. The internal electrode separated in a non-conducting state inside the laminated body is formed by a printing pattern in which a large number of conductive portions are intermittently arranged in a substantially lattice shape, a wavy shape, or the like. 1. The laminated piezoelectric element according to 1.
JP6015084A 1994-02-09 1994-02-09 Multilayered piezoelectric element Pending JPH07226542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6015084A JPH07226542A (en) 1994-02-09 1994-02-09 Multilayered piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6015084A JPH07226542A (en) 1994-02-09 1994-02-09 Multilayered piezoelectric element

Publications (1)

Publication Number Publication Date
JPH07226542A true JPH07226542A (en) 1995-08-22

Family

ID=11878986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6015084A Pending JPH07226542A (en) 1994-02-09 1994-02-09 Multilayered piezoelectric element

Country Status (1)

Country Link
JP (1) JPH07226542A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112809A (en) * 2006-10-30 2008-05-15 Kyocera Corp Laminated piezoelectric element, injection apparatus provided with the same element, and fuel injection system provided with the same apparatus
JP2008211054A (en) * 2007-02-27 2008-09-11 Tdk Corp Laminated piezoelectric element
JP2008251865A (en) * 2007-03-30 2008-10-16 Kyocera Corp Stacked piezoelectric device, injection apparatus equipped with this, and fuel injection system
JP5270578B2 (en) * 2007-12-26 2013-08-21 京セラ株式会社 Multilayer piezoelectric element, injection device including the same, and fuel injection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112809A (en) * 2006-10-30 2008-05-15 Kyocera Corp Laminated piezoelectric element, injection apparatus provided with the same element, and fuel injection system provided with the same apparatus
JP2008211054A (en) * 2007-02-27 2008-09-11 Tdk Corp Laminated piezoelectric element
JP2008251865A (en) * 2007-03-30 2008-10-16 Kyocera Corp Stacked piezoelectric device, injection apparatus equipped with this, and fuel injection system
JP5270578B2 (en) * 2007-12-26 2013-08-21 京セラ株式会社 Multilayer piezoelectric element, injection device including the same, and fuel injection system

Similar Documents

Publication Publication Date Title
JP2006203070A (en) Lamination piezoelectric element
JPS6317354B2 (en)
JPH08274381A (en) Stacked piezoelectric actuator and its manufacture
JPH07226541A (en) Multilayered piezoelectric element
JPS6127688A (en) Electrostrictive effect element and production thereof
JPH07226542A (en) Multilayered piezoelectric element
JPH07283453A (en) Laminated piezoelectric element
JPS62211974A (en) Laminated piezoelectric element and manufacture thereof
JPS6132835B2 (en)
JPS63142875A (en) Piezoelectric laminated actuator
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPH08213274A (en) Manufacture of multilayer ceramic electronic part
JPH0832131A (en) Laminated piezolectric element and its manufacture
JPH07154006A (en) Multilayer piezoelectric element and fabrication thereof
JPH06224483A (en) Laminated piezoelectric element
JPH0851240A (en) Multilayer piezoelectric element
JPH07162049A (en) Multilayer piezoelectric element
JPH07240545A (en) Laminated piezoelectric element
JP3237966B2 (en) Multilayer piezoelectric element
JPH07106655A (en) Multilayer piezoelectric element
JP2000332312A (en) Manufacture of laminated piezoelectric ceramic part
JPH07111346A (en) Laminated type piezoelectric device
JPH07283451A (en) Laminated piezoelectric element
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
JPH0923030A (en) Manufacture of laminated piezoelectric element