JPH0832131A - Laminated piezolectric element and its manufacture - Google Patents

Laminated piezolectric element and its manufacture

Info

Publication number
JPH0832131A
JPH0832131A JP16811494A JP16811494A JPH0832131A JP H0832131 A JPH0832131 A JP H0832131A JP 16811494 A JP16811494 A JP 16811494A JP 16811494 A JP16811494 A JP 16811494A JP H0832131 A JPH0832131 A JP H0832131A
Authority
JP
Japan
Prior art keywords
conductive
insulating film
film
laminated body
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16811494A
Other languages
Japanese (ja)
Inventor
Yasuo Okawa
康夫 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP16811494A priority Critical patent/JPH0832131A/en
Publication of JPH0832131A publication Critical patent/JPH0832131A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To surely connect and insulate external electrodes to and from internal electrodes in a laminated piezoelectric element used as an actuator. CONSTITUTION:Conductive projecting sections 16 are formed at every other layer on the side face of a laminated body constituted by alternately piling up piezoelectric material films 11 and internal electrodes 12 and an insulating film 13 containing glass beads 17 is formed in the laminating direction of the laminated body so that the film 13 can cover all piezoelectric material films 11. In addition, copper foil 15 carrying conductive particles 31 adhering to the surface of the foil 15 is formed on the film 13 as external electrodes and the external electrodes are electrically connected to the internal electrodes 12 through the projecting sections 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電材料の薄膜を多数
枚積層し、電圧を印加することにより縦方向の変位を得
る積層型圧電素子並びにその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated piezoelectric element in which a large number of thin films of piezoelectric material are laminated and a longitudinal displacement can be obtained by applying a voltage, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、積層型の圧電素子を製造する場
合、内部電極を一層おきに接続する必要があるが、従来
の積層コンデンサ方式を用いると内部電極面積が素子の
断面積より小さいため電界が全面に発生せず変位を阻害
するばかりでなく不均一な部分に応力集中が発生しつい
には破壊するという致命的な欠点がある。また、積層時
の位置決めが難しく多くても数十枚程度の積層枚数が限
界であり、同じ印加電圧の場合素子の変位量は積層枚数
に比例するため、大きな変位量を発生する素子を製造す
るのは困難であった。
2. Description of the Related Art Conventionally, when a laminated piezoelectric element is manufactured, it is necessary to connect internal electrodes every other layer. However, when the conventional laminated capacitor method is used, the internal electrode area is smaller than the cross-sectional area of the element, so that the electric field However, there is a fatal defect that not only does not occur on the entire surface but hinders the displacement, but also stress concentration occurs on a non-uniform part and eventually breaks. In addition, it is difficult to perform positioning during stacking, and the number of stacked sheets is limited to several tens at most, and the displacement amount of the element is proportional to the number of stacked layers at the same applied voltage. Therefore, an element that generates a large displacement amount is manufactured. It was difficult.

【0003】そして、この欠点を解消するために圧電シ
ートの全面に電極を印刷して積層する方法、すなわち内
部電極の面積と素子の面積を等しくする構造が一般的に
なっている。
In order to solve this drawback, a method of printing and laminating electrodes on the entire surface of the piezoelectric sheet, that is, a structure in which the area of the internal electrode and the area of the element are equalized is common.

【0004】この場合、図8に示されるような方法で内
部電極を一層おきに接続する。すなわち図8で、圧電材
料11と内部電極12とが交互に重なる積層体の側面に
おいて、一層おきに導電性凸部16が形成されるととも
に、素子の積層方向に全ての圧電材料11にかかるよう
に絶縁層13bと導電性粒子31を含有する層13aが
形成され、導電膜13をなしている。その上には外部電
極として銅箔15が形成され、導電性粒子31を介して
導電性凸部16ひいては内部電極12と電気的に接続さ
れている。
In this case, the internal electrodes are connected every other layer by the method shown in FIG. That is, in FIG. 8, the conductive protrusions 16 are formed every other layer on the side surface of the stacked body in which the piezoelectric material 11 and the internal electrode 12 are alternately overlapped, and all the piezoelectric materials 11 are arranged in the stacking direction of the element. The insulating layer 13b and the layer 13a containing the conductive particles 31 are formed on the surface of the insulating layer 13b to form the conductive film 13. A copper foil 15 is formed thereon as an external electrode, and is electrically connected to the conductive convex portion 16 and further to the internal electrode 12 via the conductive particles 31.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図8に
示す構造の圧電素子では、絶縁膜を突き破り、外部電極
と内部電極を接続する媒体として導電性粒子を用いてい
るため、以下のような問題がたびたび起こっていた。つ
まり、粒子の大きさのばらつきや分散状態により、導電
性凸部のない、本来絶縁されるべき層が導通してしまっ
たり、導通しないまでも十分な絶縁抵抗値が得られず
に、素子の駆動に支障をきたすということなどである。
However, in the piezoelectric element having the structure shown in FIG. 8, since conductive particles are used as a medium for breaking through the insulating film and connecting the external electrode and the internal electrode, the following problems occur. Was happening often. In other words, due to the variation in particle size and the dispersed state, a layer that is not electrically conductive and is supposed to be insulated becomes conductive, or a sufficient insulation resistance value cannot be obtained until it does not become conductive. That is, it causes trouble in driving.

【0006】本発明は、上述した問題点を解決するため
になされたものであり、外部電極と内部電極を確実に接
続および絶縁することを目的としている。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to reliably connect and insulate an external electrode and an internal electrode.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の積層型圧電素子は、交互に積層された複数の
圧電材料と複数の内部電極とからなる積層体と、その積
層体の側面に露出する内部電極の端部に一体的に形成さ
れた導電性凸部と、積層体の側面上において導電性凸部
を覆うようにして連続して形成されるとともに少なくと
も一層構造をなす絶縁膜と、その絶縁膜上に連続して形
成されるとともに、圧縮されることにより選択的に絶縁
膜を突き破って導電性凸部と電気的に接続された外部電
極と、その外部電極による絶縁膜の突き破りを防止する
ために、導電性凸部間の谷部の絶縁膜中に密に介在され
た非導電性粒子とを備えている。
In order to achieve this object, a laminated piezoelectric element of the present invention comprises a laminated body composed of a plurality of piezoelectric materials and a plurality of internal electrodes alternately laminated, and a laminated body of the laminated body. Insulation forming a conductive convex portion integrally formed at the end of the internal electrode exposed on the side surface and continuously formed on the side surface of the laminated body so as to cover the conductive convex portion and forming at least one layer structure. A film, an external electrode that is formed continuously on the insulating film, is selectively compressed to break through the insulating film, and is electrically connected to the conductive protrusion, and an insulating film formed by the external electrode. In order to prevent the breakage of the non-conductive particles, the non-conductive particles densely interposed in the insulating film in the valley portion between the conductive convex portions are provided.

【0008】また、非導電粒子の粒径は、導電性凸部の
高さと同程度であることが望ましい。
Further, it is desirable that the particle diameter of the non-conductive particles is approximately the same as the height of the conductive convex portions.

【0009】更に、外部電極は、導電性膜とその膜に塗
布された導電性粒子とを含んで構成されていることが望
ましい。
Further, it is desirable that the external electrode comprises a conductive film and conductive particles applied to the film.

【0010】[0010]

【作用】上記の構成を有する本発明の積層型圧電素子に
おいては、外部電極が絶縁膜上に圧縮形成されると、選
択的に絶縁膜を突き破って導電性凸部と電気的に接続さ
れ、また、導電性凸部間の谷部では絶縁膜中の非導電性
粒子がその外部電極による絶縁膜の突き破りを防止す
る。
In the laminated piezoelectric element of the present invention having the above-mentioned structure, when the external electrode is compressed and formed on the insulating film, it selectively breaks through the insulating film and is electrically connected to the conductive convex portion, Further, in the valleys between the conductive protrusions, the non-conductive particles in the insulating film prevent the external electrodes from breaking through the insulating film.

【0011】[0011]

【実施例】以下、本発明の一実施例について説明する。EXAMPLES An example of the present invention will be described below.

【0012】図1に本発明による積層型圧電素子の断面
図を示す。圧電材料膜11と内部電極12とが交互に重
なる積層体の側面において一層おきに導電性凸部16が
形成され、素子の積層方向に全ての圧電材料膜にかかる
ように、非導電性粒子としてのガラスビーズ17を含有
した絶縁膜13が形成されている。さらにその上には外
部電極として導電性粒子31の付いた銅箔15が形成さ
れ、導電性凸部16を介して内部電極12と電気的に接
続されている。
FIG. 1 is a sectional view of a laminated piezoelectric element according to the present invention. As the conductive convex portions 16 are formed every other layer on the side surface of the stacked body in which the piezoelectric material films 11 and the internal electrodes 12 are alternately overlapped with each other, the conductive convex portions 16 are formed as non-conductive particles so as to cover all piezoelectric material films in the stacking direction of the element. The insulating film 13 containing the glass beads 17 is formed. Furthermore, a copper foil 15 with conductive particles 31 is formed thereon as an external electrode, and is electrically connected to the internal electrode 12 via the conductive convex portion 16.

【0013】以下、本発明を具体化した一実施例を図面
を参照して説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0014】PZTを主成分とする圧電材料を所望の組
成に混合した後、850℃で仮焼成した粉末に5重量部
のバインダーと微量の可塑材および消泡剤を添加し、有
機溶媒中に分散させスラリー状にする。このスラリーを
ドクターブレード法により所定の厚さに成形しグリーン
シートとする。
After mixing a piezoelectric material containing PZT as a main component to a desired composition, 5 parts by weight of a binder and a small amount of a plasticizer and an antifoaming agent were added to powder calcined at 850 ° C. and then added to an organic solvent. Disperse into a slurry. This slurry is formed into a green sheet by a doctor blade method to a predetermined thickness.

【0015】このグリーンシート上に内部電極12とし
てPdペーストをスクリーン印刷し、所定寸法に打ち抜
いたものを所定枚数積層し熱プレスにより一体化する。
脱脂後、約1200℃で焼結を行い図2に示すように内
部電極12が一層おきに露出するような位置で切断した
焼結体21に仮の外部電極22、23を塗布焼き付け
し、さらに別の一対の側面24、25が露出するように
切断する。
A Pd paste is screen-printed as the internal electrodes 12 on the green sheet, and a predetermined number of punched products having a predetermined size are stacked and integrated by hot pressing.
After degreasing, sintering is performed at about 1200 ° C., and temporary external electrodes 22 and 23 are applied and baked onto the sintered body 21 cut at positions where the internal electrodes 12 are exposed every other layer as shown in FIG. It cuts so that another pair of side surfaces 24 and 25 may be exposed.

【0016】片方の側面25全体ともう一方の側面24
の凸部を形成する以外の部分をテープでマスキングし、
直流電源の負極に仮の外部電極22を接続してニッケル
メッキ浴中に沈める。この状態で50mAの電流を約5
分間流すと仮の外部電極22につながる内部電極にニッ
ケルメッキが成長し、マスキングテープを剥すと図3の
ように一層おきに凸部が形成された状態になる。
The entire one side surface 25 and the other side surface 24
Mask the part other than the convex part of the tape with tape,
A temporary external electrode 22 is connected to the negative electrode of the DC power source and immersed in a nickel plating bath. In this state, the current of 50mA is about 5
After flowing for a minute, nickel plating grows on the internal electrodes connected to the temporary external electrodes 22, and when the masking tape is peeled off, convex portions are formed every other layer as shown in FIG.

【0017】次に反対側の側面25にも同様に凸部を形
成する。先ず、既に凸部の形成された側面24の全体と
側面25の一部をマスキングして保護した後、負極を仮
の外部電極23に接続してニッケルメッキを成長させて
側面24と一層ずつずれて凸部が形成される。
Next, a convex portion is similarly formed on the side surface 25 on the opposite side. First, after masking and protecting the entire side surface 24 and a part of the side surface 25 on which the convex portion has already been formed, the negative electrode is connected to the temporary external electrode 23 and nickel plating is grown to shift the side surface 24 layer by layer. A convex portion is formed.

【0018】洗浄後、直流電源の負極を仮の外部電極2
2、23に接続し、所定量の顔料と粒径約30μmのガ
ラスビーズ17を添加したエポキシカチオン電着塗料浴
中に沈め、100Vの電圧を2分間かけると、図4に示
すように内部電極12の端部に塗料がガラスビーズ17
とともに電着される。その後、オーブン中で150℃で
30分間加熱処理すると、エポキシ樹脂成分が硬化する
過程で流動性を持つため、図5に示すように平坦化され
ると同時に導電性凸部16間にガラスビーズ17が流
れ、絶縁膜13となる。
After washing, the negative electrode of the DC power supply is used as a temporary external electrode 2.
2 and 23, and submerged in an epoxy cation electrodeposition paint bath to which a predetermined amount of pigment and glass beads 17 having a particle size of about 30 μm were added, and a voltage of 100 V was applied for 2 minutes, as shown in FIG. Paint on the end of 12 is glass beads 17
It is electrodeposited with. After that, when heat-treated at 150 ° C. for 30 minutes in an oven, since the epoxy resin component has fluidity in the process of hardening, it is flattened as shown in FIG. Flows and becomes the insulating film 13.

【0019】また、焼結体21とは別に、図6に示すよ
うに銅箔15上に平均粒径20〜30μmの銅粉末によ
る導電性粒子31を含有させた接着剤、たとえば熱硬化
性のエポキシ系接着剤を50μm程度の厚さに均一に塗
布したものを用意しておく。これを図7に示すように焼
結体21の側面24、25にそれぞれの導電性凸部16
にかかるような大きさに切断し仮止めする。そして、ほ
ぼ180℃に熱した一対の平面状の加圧用治具(図7は
一側面がわのみ図示)53ではさみ数kgの荷重をかけ
て熱圧着すると、導電性凸部16の部分のみが他の部分
よりも高い圧力で部分的に加圧されることとなる。
Separately from the sintered body 21, as shown in FIG. 6, an adhesive agent containing, for example, a conductive particle 31 made of copper powder having an average particle size of 20 to 30 μm on the copper foil 15, such as a thermosetting adhesive. An epoxy adhesive is applied uniformly to a thickness of about 50 μm. As shown in FIG. 7, each of the conductive projections 16 is formed on the side surfaces 24 and 25 of the sintered body 21.
Cut it to the size that it will touch and temporarily fix it. When a pair of flat pressing jigs (only one side is shown in FIG. 7) 53 heated to approximately 180 ° C. are subjected to thermocompression bonding with a load of several kg of scissors, only the conductive convex portions 16 are formed. Will be partly pressurized at a higher pressure than the other parts.

【0020】その結果、図1に示すように加圧された部
分のみ銅箔15の導電性粒子31が絶縁膜13を突き破
り、導電性凸部16と接触し内部電極12を一層おきに
接続する。このとき、ガラスビーズ17の存在により絶
縁膜13の厚さが確保され、導電性凸部16のない内部
電極12は完全に絶縁される。
As a result, as shown in FIG. 1, the conductive particles 31 of the copper foil 15 pierce the insulating film 13 only in the pressed portion and come into contact with the conductive protrusions 16 to connect the internal electrodes 12 every other layer. . At this time, the thickness of the insulating film 13 is ensured by the presence of the glass beads 17, and the internal electrode 12 having no conductive protrusion 16 is completely insulated.

【0021】このようにして対抗する側面で一層おきに
接続された焼結体21は素子1個分に切断された後、銅
箔15の一部に電力供給用のリード線を取り付け、樹脂
外装および分極処理を施して完成品となる。
In this way, the sintered bodies 21, which are connected to each other on opposite sides, are cut into one element, and then a lead wire for power supply is attached to a part of the copper foil 15, and a resin sheath is formed. And polarization treatment is applied to complete the product.

【0022】このように、本実施例においては、導電性
凸部16間の谷部に非導電性のガラスビーズ17が密に
存在するため、導電性粒子31の大きさにばらつきがあ
ったり、分散状態が良くない場合でも、絶縁される部分
の膜厚が確保され、導電性粒子31が導電性凸部16の
ない内部電極12に届いたり、接近したりせず完全に絶
縁される。
As described above, in this embodiment, since the non-conductive glass beads 17 are densely present in the valleys between the conductive convex portions 16, the size of the conductive particles 31 may vary. Even when the dispersed state is not good, the film thickness of the insulated portion is ensured, and the conductive particles 31 are completely insulated without reaching or approaching the internal electrode 12 without the conductive convex portion 16.

【0023】尚、本発明は上述した実施例に限定される
ものではなく、その主旨を逸脱しない限り種々の変更を
加えることができる。たとえばガラスビーズの代わりに
アルミナや樹脂等の絶縁体の粒子を用いても同様の効果
が得られる。
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention. For example, the same effect can be obtained by using particles of an insulator such as alumina or resin instead of glass beads.

【0024】[0024]

【発明の効果】以上説明したことから明かなように、本
発明の積層型圧電素子は外部電極と内部電極を一層おき
に確実に接続および絶縁することができるため、信頼性
と歩留りの向上となる。
As is apparent from the above description, the multilayer piezoelectric element of the present invention can reliably connect and insulate the external electrodes and the internal electrodes for every other layer, thereby improving reliability and yield. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例の積層型圧電素子の一
部断面図である。
FIG. 1 is a partial cross-sectional view of a laminated piezoelectric element according to an embodiment of the present invention.

【図2】図2は上記積層型圧電素子の製造過程における
切断された積層焼結体の斜視図である。
FIG. 2 is a perspective view of a cut laminated sintered body in a manufacturing process of the laminated piezoelectric element.

【図3】図3は上記製造過程における導電性凸部が形成
された状態の焼結体の斜視図である。
FIG. 3 is a perspective view of a sintered body in a state where conductive protrusions are formed in the above manufacturing process.

【図4】図4は上記製造工程におけるガラスビーズを含
む電着塗料が電着された状態を示す一部断面図である。
FIG. 4 is a partial cross-sectional view showing a state where the electrodeposition coating material containing glass beads is electrodeposited in the above manufacturing process.

【図5】図5は上記製造工程におけるガラスビーズと電
着塗料が加熱により流動した状態を示す一部断面図であ
る。
FIG. 5 is a partial cross-sectional view showing a state in which the glass beads and the electrodeposition coating material are fluidized by heating in the above manufacturing process.

【図6】図6は上記製造工程における銅箔に導電粒子を
含有する層を形成した状態を示す一部断面図である。
FIG. 6 is a partial cross-sectional view showing a state in which a layer containing conductive particles is formed on the copper foil in the above manufacturing process.

【図7】図7は上記製造工程における電着層および銅箔
を加圧する状態を説明するための説明図である。
FIG. 7 is an explanatory diagram for explaining a state in which the electrodeposition layer and the copper foil are pressed in the above manufacturing process.

【図8】図8は従来の積層型圧電素子の一部断面図であ
る。
FIG. 8 is a partial cross-sectional view of a conventional laminated piezoelectric element.

【符号の説明】[Explanation of symbols]

11 圧電材料膜 12 内部電極 13 絶縁膜 15 銅薄 16 導電性凸部 17 ガラスビーズ 31 導電性粒子 11 Piezoelectric Material Film 12 Internal Electrodes 13 Insulating Film 15 Copper Thin 16 Conductive Convex Part 17 Glass Beads 31 Conductive Particles

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 交互に積層された複数の圧電材料と複数
の内部電極とからなる積層体と、 その積層体の側面に露出する前記内部電極の端部に一体
的に形成された導電性凸部と、 前記積層体の側面上において前記導電性凸部を覆うよう
にして連続して形成されるとともに少なくとも一層構造
をなす絶縁膜と、 その絶縁膜上に連続して形成されるとともに、圧縮され
ることにより選択的に絶縁膜を突き破って前記導電性凸
部と電気的に接続された外部電極と、 その外部電極による前記絶縁膜の突き破りを防止するた
めに、前記導電性凸部間の谷部の絶縁膜中に密に介在さ
れた非導電性粒子とを備えたことを特徴とする積層型圧
電素子。
1. A laminated body composed of a plurality of piezoelectric materials and a plurality of internal electrodes that are alternately laminated, and a conductive protrusion integrally formed at an end of the internal electrode exposed on a side surface of the laminated body. An insulating film that is continuously formed on the side surface of the laminated body so as to cover the conductive convex portion and has at least a single layer structure, and that is continuously formed on the insulating film and is compressed. An external electrode selectively pierced through the insulating film and electrically connected to the conductive convex portion, and between the conductive convex portion in order to prevent the external electrode from piercing the insulating film. A multi-layer piezoelectric element, comprising: non-conductive particles densely interposed in an insulating film in a valley.
【請求項2】 前記非導電粒子の粒径が導電性凸部の高
さと同程度であることを特徴とする請求項1記載の積層
型圧電素子。
2. The multilayer piezoelectric element according to claim 1, wherein the particle diameter of the non-conductive particles is approximately the same as the height of the conductive protrusions.
【請求項3】 前記外部電極は、導電性膜とその膜に塗
布された導電性粒子とを含んで構成されていることを特
徴とする請求項1記載の積層型圧電素子。
3. The multilayer piezoelectric element according to claim 1, wherein the external electrode includes a conductive film and conductive particles applied to the film.
【請求項4】 複数の圧電材料と複数の内部電極とをそ
れぞれ交互に積層させて積層体を作成する工程と、 その積層体の側面に露出する前記内部電極の端部に導電
性凸部を一体的に形成する工程と、 前記積層体の側面上に前記導電性凸部を覆うように、非
導電性粒子を含む絶縁膜を形成する工程と、 導電性膜とその膜に塗布された導電性粒子とを含む外部
電極が選択的に絶縁膜を突き破って前記導電性凸部と電
気的に接続するように、外部電極を前記絶縁膜に圧縮さ
せる工程とを備えたことを特徴とする積層型圧電素子の
製造方法。
4. A step of forming a laminated body by alternately laminating a plurality of piezoelectric materials and a plurality of internal electrodes, and a conductive convex portion at an end of the internal electrode exposed on a side surface of the laminated body. A step of integrally forming, a step of forming an insulating film containing non-conductive particles on the side surface of the laminated body so as to cover the conductive convex portion, a conductive film and a conductive film applied to the film. And a step of compressing the external electrode into the insulating film so that the external electrode including the conductive particles selectively penetrates through the insulating film and is electrically connected to the conductive convex portion. Method of manufacturing a piezoelectric element.
JP16811494A 1994-07-20 1994-07-20 Laminated piezolectric element and its manufacture Pending JPH0832131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16811494A JPH0832131A (en) 1994-07-20 1994-07-20 Laminated piezolectric element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16811494A JPH0832131A (en) 1994-07-20 1994-07-20 Laminated piezolectric element and its manufacture

Publications (1)

Publication Number Publication Date
JPH0832131A true JPH0832131A (en) 1996-02-02

Family

ID=15862119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16811494A Pending JPH0832131A (en) 1994-07-20 1994-07-20 Laminated piezolectric element and its manufacture

Country Status (1)

Country Link
JP (1) JPH0832131A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411012B2 (en) * 1999-12-08 2002-06-25 Tdk Corporation Multilayer piezoelectric element and method of producing the same
US6798123B2 (en) * 2000-11-06 2004-09-28 Ceramtec Ag Innovative Ceramic Engineering External electrodes on piezoceramic multilayer actuators
US9833351B2 (en) 2007-02-19 2017-12-05 Spidertech Inc. Precut adhesive body support articles and support system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411012B2 (en) * 1999-12-08 2002-06-25 Tdk Corporation Multilayer piezoelectric element and method of producing the same
US6798123B2 (en) * 2000-11-06 2004-09-28 Ceramtec Ag Innovative Ceramic Engineering External electrodes on piezoceramic multilayer actuators
US9833351B2 (en) 2007-02-19 2017-12-05 Spidertech Inc. Precut adhesive body support articles and support system

Similar Documents

Publication Publication Date Title
EP0247540B1 (en) Electrostriction effect element
JPH07226541A (en) Multilayered piezoelectric element
JPH0256830B2 (en)
JPS63153870A (en) Electrostrictive effect element
JPH0832131A (en) Laminated piezolectric element and its manufacture
JPH07283453A (en) Laminated piezoelectric element
JPS6132835B2 (en)
JPS63142875A (en) Piezoelectric laminated actuator
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPH07226542A (en) Multilayered piezoelectric element
JPH07162049A (en) Multilayer piezoelectric element
JPH07111346A (en) Laminated type piezoelectric device
JPH07106655A (en) Multilayer piezoelectric element
JP3237966B2 (en) Multilayer piezoelectric element
JPH07154006A (en) Multilayer piezoelectric element and fabrication thereof
JPH07142780A (en) Manufacture of multilayer piezoelectric device
JPH07283451A (en) Laminated piezoelectric element
JPH0851240A (en) Multilayer piezoelectric element
JPH06283776A (en) Multilayer piezoelectric element
JPH0864882A (en) Layered piezoelectric element and manufacture
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
JPH07283452A (en) Laminated piezoelectric element
JPH0745971Y2 (en) Electrostrictive effect element
JPH0758373A (en) Stacked piezoelectric element
JPH0758372A (en) Stacked piezoelectric element