JPH0758373A - Stacked piezoelectric element - Google Patents

Stacked piezoelectric element

Info

Publication number
JPH0758373A
JPH0758373A JP5203877A JP20387793A JPH0758373A JP H0758373 A JPH0758373 A JP H0758373A JP 5203877 A JP5203877 A JP 5203877A JP 20387793 A JP20387793 A JP 20387793A JP H0758373 A JPH0758373 A JP H0758373A
Authority
JP
Japan
Prior art keywords
conductive
piezoelectric element
conductive film
convex portion
laminated piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5203877A
Other languages
Japanese (ja)
Inventor
Yasuo Imoto
保雄 井元
Yasuo Okawa
康夫 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP5203877A priority Critical patent/JPH0758373A/en
Publication of JPH0758373A publication Critical patent/JPH0758373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To simplify the process of connection with every other inner electrode, and also, prevent the inferiority of connection such as short circuit, etc., in a stacked piezoelectric element used as an actuator. CONSTITUTION:In a piezoelectric element where piezoelectric material films 11 and inner electrodes 12 are stacked alternately, conductive projections 16 consisting of nickel chromium are made alternately at the ends of inner electrodes 12 exposed at the side, and flat sections 16a are made by polishing the pointed ends of the conductive projections 16, and a conductive film 13, which contains copper powder 31, is formed thereon. And, a copper foil (outer electrode) 15 and alternate conductive projections 16, in its turn inner electrodes 12 are electrically connected with each other by partially compressing the conductive films 13 by the projections 16, and arranging them so that the conductive particles 31 in compressed sections may contact with the flat sections 16 of the projections thereby selectively making them conductive sections 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電材料の薄膜を多数
枚積層し、電圧を印加することにより縦方向の変位を得
る積層型圧電素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated piezoelectric element in which a large number of thin films of piezoelectric material are laminated and a longitudinal displacement can be obtained by applying a voltage.

【0002】[0002]

【従来の技術】積層型圧電素子を製造する場合、内部電
極を一層おきに接続する必要があるが、従来の積層コン
デンサ方式を用いると、内部電極面積が素子の断面積よ
り小さいため電界が全面に発生せず、変位を阻害するば
かりでなく不均一な部分に応力集中が発生し、ついには
破壊するという致命的な欠点がある。また、積層時の位
置決めが難しく、多くても数十枚程度の積層枚数が限界
であり、同じ印加電圧の場合、素子の変位量は積層枚数
に比例するため、大きな変位量を発生する素子を製造す
るのは困難であった。
2. Description of the Related Art When manufacturing a laminated piezoelectric element, it is necessary to connect internal electrodes every other layer. However, when the conventional multilayer capacitor method is used, the internal electrode area is smaller than the cross-sectional area of the element and the electric field is However, there is a fatal defect that not only does it not occur, but the displacement is hindered and stress concentration occurs in a non-uniform part, and finally it breaks. In addition, positioning at the time of stacking is difficult, and the number of stacked layers is limited to several tens at most. For the same applied voltage, the displacement amount of the element is proportional to the number of stacked layers. It was difficult to manufacture.

【0003】この欠点を解消するために、圧電シートの
全面に電極を印刷して積層する方法、すなわち、内部電
極の面積と素子の断面積を等しくする構造が一般的にな
っているが、このよえな構造の場合、内部電極を一層お
きに接続するためには、特開昭63−17354号公報
に開示されるような方法(図9)や、特開昭62−21
1974号公報に開示されるような方法(図10)を用
いて絶縁処理しなければならない。すなわち、図9に示
す積層型圧電素子では、一層おきにガラス等の絶縁物
(絶縁層)41をスクリーン印刷や電気泳動法により付
着させた後、焼き付けて固着し、その上から外部電極と
なる銀ペースト42を塗布して、内部電極43を一層お
きに接続している。また、図10(a),(b)に示す
積層型圧電素子では、同じくガラス等の絶縁層51を形
成し、一層おきに内部電極53と絶縁層51上に形成さ
れた外部電極52とが電気的に接続されている。
In order to solve this drawback, a method of printing and laminating electrodes on the entire surface of the piezoelectric sheet, that is, a structure in which the area of the internal electrode and the cross-sectional area of the element are made equal is common. In the case of a different structure, in order to connect the internal electrodes in every other layer, the method disclosed in JP-A-63-17354 (FIG. 9) and JP-A-62-21 are used.
Insulation must be performed using the method disclosed in Japanese Patent Publication No. 1974 (FIG. 10). That is, in the laminated piezoelectric element shown in FIG. 9, an insulating material (insulating layer) 41, such as glass, is attached every other layer by screen printing or electrophoresis, and then baked and fixed to form an external electrode. The silver paste 42 is applied to connect the internal electrodes 43 every other layer. In the laminated piezoelectric element shown in FIGS. 10A and 10B, an insulating layer 51 made of glass or the like is also formed, and an internal electrode 53 and an external electrode 52 formed on the insulating layer 51 are provided every other layer. It is electrically connected.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図9お
よび図10に示す構造の圧電素子では、素子の側面上に
絶縁層を形成する工程と、その上から内部電極を接続す
るための外部電極の形成する工程が必要になるが、いず
れの場合も絶縁層を先に形成し、その後に外部電極を形
成することになるため、同時に行うことができず工程数
が多くなるという欠点がある。また、図9に示す構造の
圧電素子の場合、側面に露出する内部電極43の端部に
一層おきに絶縁層41が形成されているが、その方法と
してスクリーン印刷を用いた場合は、非常に正確な位置
精度が必要であり、印刷のズレに加えて印刷のカスレ、
滲み等で本来接続される部分が導通不良になったり、絶
縁される部分が短絡したりすることがあった。電気泳動
法の場合も、素子の駆動電圧に耐えられるだけの厚さの
絶縁層41を均一に形成することは難しく、同じく絶縁
破壊による短絡等の問題があった。
However, in the piezoelectric element having the structure shown in FIGS. 9 and 10, the step of forming an insulating layer on the side surface of the element and the external electrode for connecting the internal electrode from the step are formed. Although a forming step is required, in either case, since the insulating layer is formed first and then the external electrode is formed, there is a disadvantage that the steps cannot be performed simultaneously and the number of steps increases. Further, in the case of the piezoelectric element having the structure shown in FIG. 9, the insulating layers 41 are formed every other layer at the end portions of the internal electrodes 43 exposed on the side surface. However, when screen printing is used as the method, it is very difficult. Accurate position accuracy is required, and in addition to printing misalignment, printing misalignment,
In some cases, due to bleeding or the like, the originally connected portion may have poor continuity, or the insulated portion may be short-circuited. Also in the case of the electrophoretic method, it is difficult to uniformly form the insulating layer 41 having a thickness that can withstand the driving voltage of the device, and there is a problem such as a short circuit due to dielectric breakdown.

【0005】一方、図10に示す構造の圧電素子では、
絶縁層51を比較的容易に形成できるが、絶縁層51上
の外部電極52と内部電極53との接続法が難しく、ス
クリーン印刷の場合では位置精度の問題に加えて、素子
面と絶縁層の段差があるため、その段差部分では導電材
ペーストの印刷が難しく、導通不良や短絡不良が問題に
なっていた。さらに、いずれの方法を用いても、絶縁層
や外部電極ペーストを高温で焼成する工程が入り、製造
コストを押し上げる原因になっていた。
On the other hand, in the piezoelectric element having the structure shown in FIG.
Although the insulating layer 51 can be formed relatively easily, it is difficult to connect the external electrode 52 and the internal electrode 53 on the insulating layer 51, and in the case of screen printing, in addition to the problem of positional accuracy, the device surface and the insulating layer are not easily separated. Since there is a step, it is difficult to print the conductive material paste on the step, and there is a problem of conduction failure and short circuit failure. Furthermore, whichever method is used, a step of firing the insulating layer and the external electrode paste at a high temperature is involved, which causes a rise in manufacturing cost.

【0006】本発明は、上述した問題点を解決するため
になされたものであり、絶縁層を形成する工程を省き工
程を簡略化するととともに、特別な位置決めを必要とし
ないで外部電極と内部電極とを確実に接続し、導通不良
や絶縁不良を防止することを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and simplifies the process by omitting the step of forming an insulating layer, and at the same time, does not require special positioning, and external electrodes and internal electrodes. The purpose is to reliably connect and to prevent conduction failure and insulation failure.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の積層型圧電素子は、その側面上に露出する内
部電極の端部に形成された導電性凸部と、圧電素子の側
面上に連続して形成されるとともに、圧縮することによ
り選択的に導電性を持たせることができる導電膜と、そ
の導電膜上に連続して形成されるとともに、前記導電性
凸部と導電膜を介して電気的に接続された外部電極とを
備え、さらに、前記導電性凸部は、その先端が平坦に形
成されている。また、導電性凸部は金属メッキにより形
成され、その先端が機械加工にて平坦に形成されてい
る。さらに、導電膜は、導電性粒子を含有する樹脂接着
剤によって構成されている。
In order to achieve this object, a laminated piezoelectric element of the present invention has a conductive convex portion formed on an end portion of an internal electrode exposed on the side surface and a side surface of the piezoelectric element. A conductive film which is continuously formed on the conductive film and can be selectively made conductive by compression, and the conductive convex portion and the conductive film which are continuously formed on the conductive film. And an external electrode electrically connected to the conductive convex portion, and the tip of the conductive convex portion is formed flat. The conductive protrusion is formed by metal plating, and its tip is formed flat by machining. Further, the conductive film is made of a resin adhesive containing conductive particles.

【0008】[0008]

【作用】上記の構成を有する本発明の積層型圧電素子
は、素子の側面において外部電極および導電膜のみがあ
るにすぎず、絶縁層の形成工程が省略できるとともに、
高温での焼成工程もないため工程が大幅に短縮される。
また、素子側面の導電性凸部によって導電膜を圧縮し、
選択的に導電性を持たせることができるため、位置決め
が不要であり、さらに、導電性凸部の先端が平坦に形成
され、導電性粒子との接触面積が増加するため、安定し
た導電性を持たせることができ、その電気的な接続をよ
り確実なものとし得る。
In the laminated piezoelectric element of the present invention having the above structure, only the external electrodes and the conductive film are provided on the side surface of the element, and the step of forming the insulating layer can be omitted.
Since there is no firing process at high temperature, the process is shortened significantly.
In addition, the conductive film is compressed by the conductive protrusions on the side surface of the element,
Since it is possible to selectively give conductivity, positioning is unnecessary, and since the tips of the conductive protrusions are formed flat and the contact area with the conductive particles increases, stable conductivity is ensured. It can be provided and the electrical connection can be made more reliable.

【0009】また、導電性凸部は、露出している内部電
極の端部に対して金属メッキにより精度よく形成できる
とともに、その先端が機械加工によって平坦とされると
同時に、メッキによる高さの不揃いも解消され、一層お
きの内部電極をその全てにわたって確実に接続すること
ができる。
Further, the conductive convex portion can be accurately formed by metal plating with respect to the exposed end portion of the internal electrode, and at the same time the tip thereof is flattened by machining, and at the same time, the height by plating is increased. Misalignment is also eliminated, and it is possible to reliably connect every other internal electrode.

【0010】さらに、導電膜を、導電性粒子を含有した
樹脂接着剤によって構成しているため、高温で焼き付け
たりするなどの工程が必要でなく、素子の製造コストを
抑えることができる。
Further, since the conductive film is made of a resin adhesive containing conductive particles, a process such as baking at high temperature is not required, and the manufacturing cost of the element can be suppressed.

【0011】[0011]

【実施例】以下、本発明を具体化した一実施例を図面を
参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は、本発明による積層型圧電素子の断
面図であり、圧電材料膜11と内部電極12とが交互に
重なる積層体の側面において、一層おきに導電性凸部1
6が形成されるとともに、素子の積層方向に全ての圧電
材料膜11にかかるように導電膜13が形成され、導電
性凸部16に接して一層おきに導電部14を持ってい
る。さらに、その導電膜13上には外部電極として銅箔
15が形成され、導電部14を介して導電性凸部16ひ
いては内部電極12と電気的に接続されている。導電膜
13は、導電性粒子を含有し、かつその含有濃度を膜厚
方向に連続的に変化せしめた1層構造になっている。
FIG. 1 is a cross-sectional view of a laminated piezoelectric element according to the present invention, in which a conductive convex portion 1 is provided every other layer on a side surface of a laminated body in which piezoelectric material films 11 and internal electrodes 12 are alternately superposed.
6 is formed, the conductive film 13 is formed so as to cover all the piezoelectric material films 11 in the stacking direction of the element, and the conductive parts 14 are in contact with the conductive convex parts 16 and the conductive parts 14 are provided in every other layer. Further, a copper foil 15 is formed as an external electrode on the conductive film 13, and is electrically connected to the conductive convex portion 16 and the internal electrode 12 via the conductive portion 14. The conductive film 13 has a one-layer structure in which conductive particles are contained and the concentration of the particles is continuously changed in the film thickness direction.

【0013】次に、図1に示される積層型圧電素子の製
造方法を図2〜図7を参照して説明する。
Next, a method of manufacturing the laminated piezoelectric element shown in FIG. 1 will be described with reference to FIGS.

【0014】先ず、PZTを主成分とする圧電材料を所
望の組成に混合した後、850℃で仮焼成した粉末に5
重量部のバインダーと微量の可塑材および消泡剤を添加
し、有機溶媒中に分散させスラリー状にする。このスラ
リーをドクターブレード法により所定の厚さに成形しグ
リーンシートとする。このグリーンシート上に内部電極
12としてPdペーストをスクリーン印刷し、所定寸法
に打ち抜いたものを所定枚数積層し熱プレスにより一体
化する。脱脂後、約1200℃で焼結を行い、図2に示
すように、内部電極12が一層おきに露出するような位
置で切断した焼結体21に、仮の外部電極22、23を
塗布焼き付けし、さらに別の一対の側面24、25が露
出するように切断する。
First, a piezoelectric material containing PZT as a main component is mixed in a desired composition, and then the powder is calcined at 850.degree.
A binder and a small amount of a plasticizer and an antifoaming agent are added in parts by weight and dispersed in an organic solvent to form a slurry. This slurry is formed into a green sheet by a doctor blade method to a predetermined thickness. Pd paste is screen-printed as the internal electrodes 12 on the green sheet, and a predetermined number of punched out pieces are stacked and integrated by hot pressing. After degreasing, sintering is performed at about 1200 ° C., and as shown in FIG. 2, temporary external electrodes 22 and 23 are applied and baked onto the sintered body 21 cut at positions where the internal electrodes 12 are exposed every other layer. Then, cutting is performed so that another pair of side surfaces 24 and 25 is exposed.

【0015】そして、図3に示すように、焼結体21の
一方の側面24において、導電性凸部を形成する以外の
部分をテープでマスキングし、かつ他方の側面25全体
をテープでマスキングした状態で、直流電源の負極に仮
の外部電極22を接続してニッケルメッキ浴中に沈め
る。この状態で50mAの電流を約5分間流すと、仮の
外部電極22につながる内部電極12の端面にニッケル
メッキが成長し、マスキングテープを剥すと、図4に示
すように、ニッケルメッキ製の導電性凸部16が一層お
きに形成された状態となる。
Then, as shown in FIG. 3, on one side surface 24 of the sintered body 21, a portion other than the portion where the conductive convex portion is formed is masked with a tape, and the other side surface 25 is entirely masked with a tape. In this state, a temporary external electrode 22 is connected to the negative electrode of the DC power source and immersed in the nickel plating bath. When a current of 50 mA is applied for about 5 minutes in this state, nickel plating grows on the end surface of the internal electrode 12 connected to the temporary external electrode 22, and when the masking tape is peeled off, as shown in FIG. The convex portions 16 are formed in alternate layers.

【0016】次に、反対側の側面25にも層をずらして
導電性凸部16を形成するべく、すでに導電性凸部16
が形成された側面24の全体と、側面25の一部分とを
テープでマスキングして保護した後、負極を仮の外部電
極23に接続してニッケルメッキを成長させる。これに
より、側面25においても側面24と一層ずつずれて導
電性凸部16が形成される。
Next, in order to form the conductive convex portion 16 also on the opposite side surface 25 by shifting the layer, the conductive convex portion 16 has already been formed.
After masking the entire side surface 24 on which is formed and a part of the side surface 25 with tape, the negative electrode is connected to the temporary external electrode 23 and nickel plating is grown. As a result, the conductive protrusions 16 are also formed on the side surfaces 25 so as to be offset by one layer from the side surfaces 24.

【0017】次いで、導電性凸部16の先端に平坦部1
6аを形成するべく、研磨などの機械加工により、側面
24,25の各導電性凸部16の先端を削り、高さを均
一に揃える。
Next, the flat portion 1 is attached to the tip of the conductive convex portion 16.
In order to form 6a, the tips of the conductive convex portions 16 on the side surfaces 24 and 25 are ground by machining such as polishing to make the heights uniform.

【0018】焼結体21とは別に、図5に示すように銅
箔15上に平均粒径20〜30μmの銅粉末(導電性粒
子)31を含有させた樹脂接着剤、たとえば、熱硬化性
のエポキシ系接着剤を70μm程度の厚さに均一に塗布
し、硬化温度よりも低い温度で加熱して軟化状態にし、
銅粉末(導電性粒子)31を比重差により沈降させ、さ
らに半硬化の状態にする。これによって、銅粉末(導電
性粒子)31の含有濃度を膜厚方向に連続的に変化せし
めた1層構造の導電膜13、すなわち、銅箔15に近い
がわほど銅粉末(導電性粒子)31の含有濃度が高く、
銅箔15から離れるほど含有濃度が低くなり、ついには
銅粉末(導電性粒子)31をほとんど含有しない、ある
いは全く含有しない1層構造の導電膜13を形成する。
Aside from the sintered body 21, as shown in FIG. 5, a resin adhesive containing copper powder (conductive particles) 31 having an average particle size of 20 to 30 μm on the copper foil 15, for example, thermosetting. Epoxy adhesive of 1 is evenly applied to a thickness of about 70 μm, and heated at a temperature lower than the curing temperature to make it softened
The copper powder (conductive particles) 31 is made to settle due to the difference in specific gravity, and is further in a semi-cured state. As a result, the conductive layer 13 has a one-layer structure in which the content concentration of the copper powder (conductive particles) 31 is continuously changed in the film thickness direction, that is, the copper powder (conductive particles) is closer to the copper foil 15. The content concentration of 31 is high,
The farther away from the copper foil 15, the lower the content concentration, and finally, the conductive film 13 having a one-layer structure containing little or no copper powder (conductive particles) 31 is formed.

【0019】次に、この導電膜13を素子一個分の必要
寸法に切断し、たとえば、素子の幅より狭い幅で切断
し、導電性凸部16が形成された焼結体21の側面2
4、25に、それぞれ導電性凸部16にかかるような長
さで仮止めする。そして、一対の平面状の加圧用治具
(図6は一側面がわのみ図示)35で挟み、均一に荷重
をかけながら全体を150℃で30分間加熱すると、導
電性凸部16の存在により、その凸部付近の導電膜13
のみが圧縮されて、図6に示すように、銅箔15がわに
位置する含有濃度の高い銅粉末(導電性粒子)31が、
含有濃度の低い部分を突き破って導電性凸部16の平坦
部16aと接触し、かつ外部電極である銅箔15とも接
触して、導電部14となり、さらに、導電膜13が熱に
より硬化して、同膜13および銅箔15が素子本体に接
着され、一層おきに内部電極12と銅箔15とが電気的
に接続された形となる。
Next, the conductive film 13 is cut into a required size for one element, for example, a width narrower than the width of the element, and the side surface 2 of the sintered body 21 on which the conductive convex portion 16 is formed.
4 and 25 are temporarily fixed to the conductive convex portions 16 with such lengths. Then, it is sandwiched between a pair of planar pressing jigs (one side is shown in FIG. 6) 35, and the whole is heated at 150 ° C. for 30 minutes while applying a uniform load. , The conductive film 13 near the protrusion
As shown in FIG. 6, only the copper powder (conductive particles) 31 having a high content concentration, in which the copper foil 15 is located on the ridge, is compressed.
It penetrates through the portion having a low content concentration and comes into contact with the flat portion 16a of the conductive convex portion 16 and also comes into contact with the copper foil 15 which is an external electrode to become the conductive portion 14, and the conductive film 13 is further cured by heat. The film 13 and the copper foil 15 are adhered to the element body, and the internal electrodes 12 and the copper foil 15 are electrically connected every other layer.

【0020】このように、対向する側面で層をずらして
一層おきに接続された焼結体21は、図7に破線で示す
位置で素子1個分に切断された後、銅箔15の一部に電
力供給用のリード線を取り付け、樹脂外装および分極処
理を施して完成品となる。
As described above, the sintered body 21 in which layers are staggered on the opposite side faces and connected every other layer is cut into one element at a position shown by a broken line in FIG. A lead wire for power supply is attached to the part, and a resin sheath and polarization treatment are applied to complete the product.

【0021】なお、導電膜13は、図8に他の実施例と
して示すような2層構造の導電膜33であつてもよい。
すなわち、図8に示すように、銅箔15上に平均粒径2
0〜30μmの銅粉末(導電性粒子)31を含有させた
樹脂接着剤、たとえば、熱硬化性のエポキシ系接着剤を
50μm程度の厚さに均一に塗布し、硬化温度よりも低
い温度で加熱して半硬化の状態にし、さらに、その上に
接着剤のみを同様に均一に塗布、加熱して半硬化させ
る。これによって、銅粉末(導電性粒子)31を含有し
たエポキシ系接着剤からなる層33aと、エポキシ系接
着剤のみからなる層33bとの、2層構造の導電膜33
を形成する。
The conductive film 13 may be a conductive film 33 having a two-layer structure as shown in FIG. 8 as another embodiment.
That is, as shown in FIG.
A resin adhesive containing 0 to 30 μm of copper powder (conductive particles) 31, for example, a thermosetting epoxy adhesive is uniformly applied to a thickness of about 50 μm and heated at a temperature lower than the curing temperature. Then, a semi-cured state is obtained, and further, only the adhesive is similarly uniformly applied thereon and heated to be semi-cured. As a result, a conductive film 33 having a two-layer structure including a layer 33a made of an epoxy adhesive containing copper powder (conductive particles) 31 and a layer 33b made only of an epoxy adhesive.
To form.

【0022】そして、前実施例と同様に、導電性凸部1
6が形成された焼結体21の側面24、25に、それぞ
れ導電性凸部16にかかるように導電膜33を仮止めし
た状態で、一対の平面状の加圧用治具で挟み、均一に荷
重をかけながら全体を150℃で30分間加熱すると、
導電性凸部16の存在により、その凸部付近の導電膜3
3のみが圧縮されて、層33aに含有される銅粉末(導
電性粒子)31が、粒子を含有しない層33bを突き破
って、導電性凸部16の平坦部16aと接触し、かつ、
外部電極である銅箔15とも接触して、導電部14とな
り、さらに、導電膜33の各層33a,33bが熱によ
り硬化して、銅箔15とともに素子本体に接着され、一
層おきに内部電極12と銅箔15とが電気的に接続され
た形となる。
Then, as in the previous embodiment, the conductive convex portion 1
The conductive film 33 is temporarily fixed to the side surfaces 24 and 25 of the sintered body 21 on which the conductive film 6 is formed so as to cover the conductive convex portions 16, respectively, and is sandwiched by a pair of planar pressing jigs to uniformly When the whole is heated at 150 ° C for 30 minutes while applying a load,
Due to the presence of the conductive convex portion 16, the conductive film 3 near the convex portion
Only 3 is compressed, the copper powder (conductive particles) 31 contained in the layer 33a breaks through the layer 33b containing no particles, contacts the flat portion 16a of the conductive convex portion 16, and
The copper foil 15 which is an external electrode also comes into contact with the copper foil 15 to form the conductive portion 14, and the layers 33a and 33b of the conductive film 33 are hardened by heat and adhered to the element body together with the copper foil 15. The copper foil 15 and the copper foil 15 are electrically connected.

【0023】この他、本発明は上述した実施例に限定さ
れるものではなく、その主旨を逸脱しない限り種々の変
更を加えることができる。たとえば、導電性粒子31と
して、銅粉末を用いる代わりに、ニッケル粉末やアル
ミ、インバー合金、銀粉末などの金属粉末を用いてもよ
いし、それらの導電性粒子を適当に混合して用いてもよ
い。また、圧電材料の膜厚などに応じて、導電性粒子の
形状、粒径等も種々変更できる。さらに、銅箔15の一
方をそのまま延長すればリード線の代わりになる。
Besides, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention. For example, as the conductive particles 31, metal powders such as nickel powder, aluminum, Invar alloy, and silver powder may be used instead of using the copper powder, or the conductive particles may be appropriately mixed and used. Good. Further, the shape and particle size of the conductive particles can be variously changed according to the film thickness of the piezoelectric material. Further, if one of the copper foils 15 is extended as it is, it can be used as a lead wire.

【0024】[0024]

【発明の効果】以上説明したことから明かなように本発
明の積層型圧電素子は、絶縁層を形成する工程が省略さ
れ、高温での焼成工程もないため大幅に工程を削減で
き、素子の製造コストを抑えることができる。また、素
子側面の導電性凸部によって導電膜を圧縮し、その導電
膜に含有した導電性粒子を導電性凸部に接触させ、選択
的に導電性を持たせることができるため、位置決めが不
要であり、製作がきわめて容易である。さらに、導電性
凸部の先端が平坦に形成され、導電膜に含有した導電性
粒子との接触面積が増加するため、安定した導電性を持
たせることができ、電気的な接続をより確実なものとし
得る。
As is apparent from the above description, in the laminated piezoelectric element of the present invention, the step of forming the insulating layer is omitted and there is no firing step at high temperature, so that the number of steps can be greatly reduced. Manufacturing cost can be suppressed. In addition, since the conductive projections on the side surface of the element compress the conductive film and the conductive particles contained in the conductive film are brought into contact with the conductive projections to selectively impart conductivity, positioning is unnecessary. It is extremely easy to manufacture. Furthermore, since the tips of the conductive protrusions are formed flat and the contact area with the conductive particles contained in the conductive film is increased, stable conductivity can be provided, and more reliable electrical connection can be achieved. Can be.

【0025】また、導電性凸部は、露出している内部電
極の端部に対して金属メッキにより精度よく形成できる
とともに、その先端が機械加工にて平坦とされ、かつ、
メッキによる高さの不揃いも解消されるので、一層おき
の内部電極をその全てにわたって確実に接続することが
できる。
Further, the conductive convex portion can be accurately formed by metal plating on the exposed end portion of the internal electrode, and the tip end thereof is made flat by machining, and
Since unevenness in height due to plating is also eliminated, it is possible to reliably connect all the internal electrodes of every other layer.

【0026】さらに、導電膜を、導電性粒子を含有した
樹脂接着剤によって構成しているため、高温で焼き付け
たりするなどの工程が必要でなく、素子の製造コストを
抑えることができる。
Furthermore, since the conductive film is made of a resin adhesive containing conductive particles, a process such as baking at high temperature is not required, and the manufacturing cost of the element can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例を示す積層型圧電素子
の断面図である。
FIG. 1 is a sectional view of a laminated piezoelectric element showing an embodiment of the present invention.

【図2】図2は切断された積層焼結体の斜視図である。FIG. 2 is a perspective view of a cut laminated sintered body.

【図3】図3は積層焼結体をテープでマスキングした状
態の斜視図である。
FIG. 3 is a perspective view of a laminated sintered body masked with a tape.

【図4】図4は導電性凸部が形成された状態の積層焼結
体の斜視図である。
FIG. 4 is a perspective view of a laminated sintered body in which conductive protrusions are formed.

【図5】図5は銅箔と1層構造の導電膜とを示す断面図
である。
FIG. 5 is a cross-sectional view showing a copper foil and a conductive film having a one-layer structure.

【図6】図6は導電膜および銅箔を加圧する状態の説明
図である。
FIG. 6 is an explanatory diagram of a state in which a conductive film and a copper foil are pressed.

【図7】図7は導電膜及び銅箔が形成された状態の積層
焼結体の斜視図である。
FIG. 7 is a perspective view of a laminated sintered body on which a conductive film and a copper foil are formed.

【図8】図8は他の実施例を示す銅箔と2層構造の導電
膜の断面図である。
FIG. 8 is a sectional view of a copper foil and a conductive film having a two-layer structure showing another embodiment.

【図9】図9は従来の積層型圧電素子の断面図である。FIG. 9 is a cross-sectional view of a conventional laminated piezoelectric element.

【図10】図10は従来の他の積層型圧電素子を示すも
ので、(a)は側面図、(b)は(a)のBーB線断面
図である。
10A and 10B show another conventional laminated piezoelectric element, in which FIG. 10A is a side view and FIG. 10B is a sectional view taken along line BB of FIG. 10A.

【符号の説明】[Explanation of symbols]

11 圧電材料膜 12 内部電極 13 導電膜 14 導電部 15 銅箔(外部電極) 16 導電性凸部 16a 平坦部 31 銅粉末(導電性粒子) 33 導電膜 Reference Signs List 11 piezoelectric material film 12 internal electrode 13 conductive film 14 conductive part 15 copper foil (external electrode) 16 conductive convex part 16a flat part 31 copper powder (conductive particle) 33 conductive film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧電材料と内部電極とが交互に積層され
ている積層型圧電素子であって、 その積層型圧電素子の側面に露出する内部電極の端部に
形成された導電性凸部と、 積層型圧電素子の側面上に連続して形成されるととも
に、圧縮することにより選択的に導電性を持たせること
ができる導電膜と、 その導電膜上に連続して形成されるとともに、前記導電
性凸部と導電膜を介して電気的に接続された外部電極と
を備え、 さらに、前記導電性凸部は、その先端が平坦に形成され
ていることを特徴とする積層型圧電素子。
1. A laminated piezoelectric element in which a piezoelectric material and internal electrodes are alternately laminated, and a conductive convex portion formed at an end of the internal electrode exposed on a side surface of the laminated piezoelectric element. , A conductive film which is continuously formed on the side surface of the laminated piezoelectric element and which can be selectively made conductive by compression, and a conductive film which is continuously formed on the conductive film and A laminated piezoelectric element, comprising: a conductive convex portion and an external electrode electrically connected through a conductive film, wherein the conductive convex portion has a flat tip.
【請求項2】 導電性凸部が金属メッキにより形成され
ていることを特徴とする請求項1記載の積層型圧電素
子。
2. The laminated piezoelectric element according to claim 1, wherein the conductive convex portion is formed by metal plating.
【請求項3】 導電性凸部の先端が機械加工にて平坦に
形成されていることを特徴とする請求項2記載の積層型
圧電素子。
3. The laminated piezoelectric element according to claim 2, wherein the tip of the conductive convex portion is formed flat by machining.
【請求項4】 導電膜は、導電性粒子を含有する樹脂接
着剤からなる層と、樹脂接着剤のみからなる層との、2
層構造であることを特徴とする請求項1ないし3のいず
れかに記載の積層型圧電素子。
4. The conductive film comprises a layer made of a resin adhesive containing conductive particles and a layer made of a resin adhesive only.
4. The laminated piezoelectric element according to claim 1, which has a layered structure.
【請求項5】 導電膜は、導電性粒子を含有する濃度を
膜厚方向に変化せしめた1層構造であることを特徴とす
る請求項1ないし3のいずれかに記載の積層型圧電素
子。
5. The laminated piezoelectric element according to claim 1, wherein the conductive film has a single-layer structure in which the concentration of conductive particles is changed in the film thickness direction.
JP5203877A 1993-08-18 1993-08-18 Stacked piezoelectric element Pending JPH0758373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5203877A JPH0758373A (en) 1993-08-18 1993-08-18 Stacked piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5203877A JPH0758373A (en) 1993-08-18 1993-08-18 Stacked piezoelectric element

Publications (1)

Publication Number Publication Date
JPH0758373A true JPH0758373A (en) 1995-03-03

Family

ID=16481200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5203877A Pending JPH0758373A (en) 1993-08-18 1993-08-18 Stacked piezoelectric element

Country Status (1)

Country Link
JP (1) JPH0758373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026971A1 (en) * 1998-10-29 2000-05-11 Hitachi, Ltd. Multilayer electronic part, its manufacturing method, two-dimensionally arrayed element packaging structure, and its manufacturing method
KR100321172B1 (en) * 1999-07-01 2002-03-18 박종섭 Polishing Slurry For CMP Having The Peizo Ceramic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026971A1 (en) * 1998-10-29 2000-05-11 Hitachi, Ltd. Multilayer electronic part, its manufacturing method, two-dimensionally arrayed element packaging structure, and its manufacturing method
KR100321172B1 (en) * 1999-07-01 2002-03-18 박종섭 Polishing Slurry For CMP Having The Peizo Ceramic

Similar Documents

Publication Publication Date Title
JP2001076953A (en) Laminated coil component and manufacture thereof
US20110317328A1 (en) Ceramic electronic component and method for manufacturing the same
CN115763071A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2007173456A (en) Stacked piezoelectric bimorph element, and method of manufacturing same
JP2002170736A (en) Laminated electronic component and its manufacturing method
CN110875136A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2007073883A (en) Chip capacitor
JP2020027927A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2000340448A (en) Laminated ceramic capacitor
JPS63153870A (en) Electrostrictive effect element
JPH0758373A (en) Stacked piezoelectric element
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPH07106655A (en) Multilayer piezoelectric element
JP3237966B2 (en) Multilayer piezoelectric element
JPH07283453A (en) Laminated piezoelectric element
JPH06283776A (en) Multilayer piezoelectric element
JPH0758372A (en) Stacked piezoelectric element
JPH07154006A (en) Multilayer piezoelectric element and fabrication thereof
JPH06350156A (en) Lamination type piezoelectric element
JPH0758371A (en) Stacked piezoelectric element
JP2002110451A (en) Laminated electronic part and its manufacturing method
JPS639168A (en) Electrostrictive displacement element
JPH0832131A (en) Laminated piezolectric element and its manufacture
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
JP3213663B2 (en) Manufacturing method of square chip resistor