JPH0279482A - Electrostriction effect element and manufacture thereof - Google Patents

Electrostriction effect element and manufacture thereof

Info

Publication number
JPH0279482A
JPH0279482A JP63231724A JP23172488A JPH0279482A JP H0279482 A JPH0279482 A JP H0279482A JP 63231724 A JP63231724 A JP 63231724A JP 23172488 A JP23172488 A JP 23172488A JP H0279482 A JPH0279482 A JP H0279482A
Authority
JP
Japan
Prior art keywords
electrostrictive
holes
electrostrictive effect
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63231724A
Other languages
Japanese (ja)
Inventor
Nobuo Oide
大出 延男
Teruyuki Ikeda
輝幸 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63231724A priority Critical patent/JPH0279482A/en
Publication of JPH0279482A publication Critical patent/JPH0279482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To relieve stress in a capacitor structure by making connections of every other electrode layers with the aid of through holes formed in a piezo film layer, accomplishing a material indicating electrostriction effect with through holes evenly distributed, and thereby dispersing uniformly the portions with no generation of electrostriction. CONSTITUTION:A ceramic crude sheet with uniform thickness is fabricated from slurry obtained by dispersing powder of electrostriction material, containing chiefly magnesium lead niobate, in a solvent together with an organic binder. After punching off this crude sheet into rectangular shape, boring for a through hole is made, whereon a Pt paste is printed. Such sheets are laminated, compressed, and cut into element articles. In this laminate structure, connections from takeout electrodes 13, 14 provided on the uppermost sheet 11 and undermost sheet 12 are made with every other layers with the aid of through holes 15 in each layer 15 and a through hole runoff 16. Therein the through hole connection with electrodes of the layers as next couple is formed dislocated, and laminating them and baking will accomplish a laminate type piezo element in which electrodes as mating electrode couple are connected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電歪効果素子及びその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrostrictive effect element and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

電歪効果素子とは固体の電歪効果を利用して、電気エネ
ルギーを機械エネルギーに変換するトランスデュサであ
る。具体的には電歪効果の大きな固体の対向する表面に
金属膜等の電極を形成し、電極間に電位差を与えたとき
に発生する固体の歪を利用するものである。電界と平行
方向に発生する歪(縦効果歪)は垂直方向に生じる歪(
横効果歪)より一般的には大きいので、前者を利用する
方がエネルギー変換効率は高い。また、歪の大きさは電
界強度に関係し、電界強度が大きい程発生する歪も大き
い。
An electrostrictive element is a transducer that converts electrical energy into mechanical energy by utilizing the electrostrictive effect of a solid state. Specifically, electrodes such as metal films are formed on opposing surfaces of a solid that has a large electrostrictive effect, and the strain in the solid that occurs when a potential difference is applied between the electrodes is utilized. The strain that occurs in the direction parallel to the electric field (longitudinal effect strain) is the strain that occurs in the perpendicular direction (
(lateral effect distortion), so using the former has higher energy conversion efficiency. Further, the magnitude of strain is related to the electric field strength, and the greater the electric field strength, the greater the generated strain.

横効果歪を利用した電歪効果素子では一定の印加電圧で
も電界と垂直方向の寸法に比例した変位量を得ることが
可能である。しかしエネルギー変換効率の高い縦効果歪
を利用した電歪効果素子では外部から印加する電圧を一
定にして歪の発生する方向の寸法を増すと、電界強度が
低下するので変位量は大きくならない。
In an electrostrictive element that utilizes transverse strain, it is possible to obtain a displacement proportional to the dimension in the direction perpendicular to the electric field even with a constant applied voltage. However, in an electrostrictive element that utilizes longitudinal effect strain with high energy conversion efficiency, when the externally applied voltage is kept constant and the dimension in the direction in which strain occurs is increased, the electric field strength decreases and the amount of displacement does not increase.

従って、この場合に大きな変位量を得るには電界強度が
低下しないように印加電圧を大きくすることが必要であ
る。しかし、電圧を大きくするためには大型で、かつ高
価な電源が必要になり、取扱いに対する危険度も増す。
Therefore, in order to obtain a large amount of displacement in this case, it is necessary to increase the applied voltage so that the electric field strength does not decrease. However, increasing the voltage requires a large and expensive power supply, which also increases the risk of handling.

またこの電歪効果素子を駆動するための制御回路も、使
用されるICの耐圧からの制限のため、あまり高い電圧
を使用することはできない。
Furthermore, the control circuit for driving this electrostrictive element cannot use a very high voltage due to limitations from the withstand voltage of the IC used.

以上の欠点を改善するために積層チップコンデンサ型の
構造が提案されている。この構造を第4図(a) 、 
(b)に示す。
In order to improve the above drawbacks, a multilayer chip capacitor type structure has been proposed. This structure is shown in Figure 4(a),
Shown in (b).

第4図(a)において、電歪材料61の内部に内部電極
62が一定の間隔で形成されており、一つおきに外部電
極63と接続している。内部電極の間隔は通常のチップ
コンデンサの技術で数10ミクロン程度にすることがで
きる。この構造を採用すると電極間距離が狭くなるため
低電圧で駆動可能な縦効果利用の電歪効果素子が実現で
きる。
In FIG. 4(a), internal electrodes 62 are formed at regular intervals inside an electrostrictive material 61, and every other electrode is connected to an external electrode 63. The spacing between the internal electrodes can be reduced to about several tens of microns using ordinary chip capacitor technology. If this structure is adopted, the distance between the electrodes becomes narrower, so an electrostrictive effect element using the longitudinal effect that can be driven at a low voltage can be realized.

ところで積層方向から見た透視図を示す第4図(b)か
ら明らかなように、この構造では内部電極62の重なる
面積(中央の矩形部分)は素子の断面積と比較して小さ
い。従って基本的には内部電極62の重なった部分は電
界に応じて変形するが、他の部分は変形せず、このため
高い電圧を印加して大きな歪を発生させると変形する部
分と変形しにくい部分との境界に大きな応力の集中が起
こり、素子が機械的に破壊するという欠点がある。
By the way, as is clear from FIG. 4(b), which is a perspective view seen from the stacking direction, in this structure, the overlapping area of the internal electrodes 62 (the central rectangular portion) is smaller than the cross-sectional area of the element. Therefore, basically, the overlapping parts of the internal electrodes 62 deform according to the electric field, but the other parts do not deform. Therefore, when a high voltage is applied and a large strain is generated, some parts deform and are difficult to deform. A drawback is that a large concentration of stress occurs at the interface between the parts, resulting in mechanical destruction of the element.

このようなことから素子内部の電極を素子全体に形成さ
れる全面電極とし、これらを積層後に外部でこれらの電
極の対を接続する構造が信頼性を高めるために必要であ
った。
For this reason, in order to improve reliability, it was necessary to use a structure in which the electrodes inside the element are formed on the entire surface of the element, and the pairs of these electrodes are connected externally after being laminated.

第5図(a)、(b)は、この電極接続のために用いら
れた1つの方法であり、−層おきに電極71に絶縁物7
2を形成し、この上より外部電極73を塗布することで
、対向する電極の対を外部に取り出せるようにしたもの
である。この−層おきに絶縁物を形成する方法として電
気泳動法による絶縁形成が実用化されている。特願昭5
7−225168号、特願昭57−225169号はこ
の絶縁層形成の方法を示している。
FIGS. 5(a) and 5(b) show one method used for this electrode connection.
2, and by applying an external electrode 73 thereon, a pair of opposing electrodes can be taken out to the outside. Insulation formation by electrophoresis has been put into practical use as a method for forming an insulator every other layer. Special request 1977
No. 7-225168 and Japanese Patent Application No. 57-225169 show this method of forming an insulating layer.

この方法は電気泳動法により、絶縁物72を電極71上
に析出させ、これを高温で処理し第5図(a)の素子を
作成する方法である。
In this method, an insulator 72 is deposited on an electrode 71 by electrophoresis, and this is treated at high temperature to produce the element shown in FIG. 5(a).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記泳動法では一層おきに交互に絶縁層
を形成するため、電歪効果を示す材料の厚さが薄い場合
には絶縁層を形成すべきでない電極部分にまで絶縁層が
付着してしまい、電極71と外部電極73間の電気的導
通が取れなくなってしまうという欠点がある。このため
、電歪効果を示す材料を薄くするのにも限界があり、従
って大きな歪みを低い印加電圧で得ることはできなかっ
た。
However, in the electrophoresis method, insulating layers are formed alternately every other layer, so if the thickness of the material that exhibits the electrostrictive effect is thin, the insulating layer may adhere to electrode parts where no insulating layer should be formed. However, there is a drawback that electrical continuity between the electrode 71 and the external electrode 73 cannot be established. For this reason, there is a limit to how thin a material that exhibits an electrostrictive effect can be made to be, and it has therefore been impossible to obtain a large strain with a low applied voltage.

本発明の目的は上記課題を解決した電歪効果素子及びそ
の製造方法を提供することにある。
An object of the present invention is to provide an electrostrictive effect element and a method for manufacturing the same that solve the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の電歪効果素子は電歪
効果を示す材料と内部電極とが交互に積層された電歪効
果素子において、前記電歪効果を示す材料にそれぞれ形
成したスルーホールを積層方向から見て全体として均一
に分布させ、該スルーホールを介して各内部電極を一層
おきに接続するとともに該電歪効果素子の最上部又は最
下部に形成された電圧印加用の外部電極に接続したもの
である。
In order to achieve the above object, the electrostrictive element of the present invention is an electrostrictive element in which a material exhibiting an electrostrictive effect and an internal electrode are alternately laminated, and a through hole is formed in each of the materials exhibiting an electrostrictive effect. is distributed uniformly as a whole when viewed from the stacking direction, and each internal electrode is connected to every other layer via the through hole, and an external electrode for voltage application is formed at the top or bottom of the electrostrictive element. It is connected to.

また、本発明の電歪効果素子は、電歪効果を示す材料と
内部電極とが交互に積層された電歪効果素子において、
前記電歪効果を示す材料にそれぞれ形成したスルーホー
ルを積層方向から見て全体として均一に分布させ、該ス
ルーホールを介して各内部電極を一層おきに接続すると
ともに該電歪効果素子の最上部又は最下部に形成された
電歪効果を示す材料の側面に設けられた電圧印加用の外
部電極に接続したものである。
Further, the electrostrictive effect element of the present invention is an electrostrictive effect element in which a material exhibiting an electrostrictive effect and an internal electrode are alternately laminated.
Through holes formed in each of the materials exhibiting the electrostrictive effect are uniformly distributed as a whole when viewed from the stacking direction, and each internal electrode is connected every other layer through the through holes, and the uppermost part of the electrostrictive element is connected to each other through the through holes. Alternatively, it is connected to an external electrode for voltage application provided on the side surface of the material exhibiting an electrostrictive effect formed at the bottom.

本発明の電歪効果素子は電歪効果を示す材料を含むグリ
ーンシートを作成する工程と、該グリーンシートにスル
ーホールを形成し、さらに導体ペーストを印刷して該ス
ルーホールに導体ペーストを埋め込み、かつ電極パター
ンを形成する工程と、前記グリーンシートと電極パター
ンが形成されたグリーンシートを複数枚積層し熱圧着し
て一体化する工程と、一体化された積層体を焼成する工
程とを含む製造工程を行うことによって実現される。
The electrostrictive effect element of the present invention includes a step of creating a green sheet containing a material exhibiting an electrostrictive effect, forming a through hole in the green sheet, and further printing a conductive paste and embedding the conductive paste in the through hole. and a step of forming an electrode pattern, a step of laminating a plurality of the green sheets and a green sheet on which an electrode pattern is formed and integrating them by thermocompression bonding, and a step of firing the integrated laminate. This is achieved by performing the process.

(作用) 本発明は圧電性薄膜層と電極層とが交互に積層され、各
電極層が一層おきに共通の電極に接続されている構造を
備えた積層型圧電素子において、各電極層の一層おきの
接続が圧電性薄膜層に形成されたスルーホールを介して
行われ、かつ積層方向から見て、スルーホールが全体と
して均一に分布されて電歪効果を示す材料に形成される
ことにより、電歪が発生しない部分(即ちスルーホール
部分)を均一に分散させ、コンデンサ構造で問題となる
応力を緩和しようとするものである。
(Function) The present invention provides a laminated piezoelectric element having a structure in which piezoelectric thin film layers and electrode layers are alternately laminated and each electrode layer is connected to a common electrode every other layer. The alternate connections are made through through holes formed in the piezoelectric thin film layer, and the through holes are uniformly distributed as a whole when viewed from the stacking direction, and are formed in a material that exhibits an electrostrictive effect. The purpose is to uniformly distribute areas where electrostriction does not occur (ie, through-hole areas) to alleviate stress that is a problem in capacitor structures.

本発明の電歪効果素子は単純なスルーホール接続ではな
く、積層方向から見て、全体的として。
The electrostrictive effect element of the present invention is not a simple through-hole connection, but as a whole when viewed from the stacking direction.

あるいは積層方向にスルーホール位置を投影させたとき
、スルーホールが均一に分散させたものであり、対向電
極が形成され、電界によって歪が生ずる部分と、スルー
ホール部分で対向電極が形成できずに電界によって歪み
が発生しない部分との間に発生する応力もたかだか数層
間で解消される。
Or, when the through-hole positions are projected in the stacking direction, the through-holes are uniformly distributed, and a counter electrode is formed, and there are parts where distortion occurs due to the electric field, and where the counter electrode cannot be formed in the through-hole part. The stress that occurs between the electric field and the portions where no strain occurs is also eliminated within a few layers at most.

このため本発明の電歪素子では電歪部と非電歪部間の応
力が積層数を増加させても累積されることはなく、素子
駆動によっても破壊されることはない。
Therefore, in the electrostrictive element of the present invention, stress between the electrostrictive part and the non-electrostrictive part does not accumulate even if the number of laminated layers is increased, and the element is not destroyed even when the element is driven.

本発明の電歪効果素子は前述した方法で各内部電極が一
層おきに接続されるため、第5図(b)に示した絶縁層
72は不必要であり、極めて薄い電歪効果を示す材料層
を用いることができる。従って低電圧印加で大きな歪が
得られる素子を作成することができる。
In the electrostrictive effect element of the present invention, since each internal electrode is connected every other layer by the method described above, the insulating layer 72 shown in FIG. 5(b) is unnecessary, and the insulating layer 72 shown in FIG. Layers can be used. Therefore, it is possible to create an element that can obtain a large strain by applying a low voltage.

〔実施例〕〔Example〕

以下、図示の実施例により本発明の積層型圧電素子を説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The laminated piezoelectric element of the present invention will be described below with reference to illustrated embodiments.

まず、本発明での実施例での1つに圧電材料のグリーン
シートへの印刷積層による素子について説明する。
First, as one of the embodiments of the present invention, an element formed by printing and laminating a piezoelectric material onto a green sheet will be described.

グリーンシートはマグネシウム・ニオブ酸鉛pb(Mg
l/3Nb2/3)Oaを主成分とする電歪材料の粉末
を有機バインダーとともに溶媒中に分散してスラリー状
とする。これをドクターブレードを用いたキャスティン
グ法によって、厚さ30ρ〜200−の均一な厚みのセ
ラミック生シートとする。このセラミック生シートを6
0ma+X40mの短形に打ち抜く。次に、パンチ及び
ダイによって前記グリーンシートにスルーホールのため
の穴あけ加工を行う。さらに、この穴明けの完了したグ
リーンシートにスクリーン印刷機を用いて白金ペースト
を印刷する。
The green sheet is magnesium lead niobate pb (Mg
Powder of an electrostrictive material containing l/3Nb2/3)Oa as a main component is dispersed in a solvent together with an organic binder to form a slurry. This is made into a ceramic green sheet having a uniform thickness of 30 ρ to 200 ρ by a casting method using a doctor blade. This ceramic raw sheet is 6
Punch out a rectangle of 0ma+X40m. Next, holes for through holes are formed in the green sheet using a punch and a die. Furthermore, platinum paste is printed on this perforated green sheet using a screen printer.

このとき同時にスルーホール内部にも白金ペーストが埋
め込まれる。この白金ペーストが印刷されたグリーンシ
ートを含む複数枚のグリーンシートを積層圧着し、一体
の積層体となし、これを素子単品となるように切断加工
し、次に脱バインダー工程を経て、900℃〜1200
℃の温度で焼結し、積層型圧電素子を得る。
At the same time, platinum paste is also embedded inside the through hole. A plurality of green sheets, including the green sheet printed with this platinum paste, are laminated and pressure-bonded to form an integrated laminate, which is cut into individual elements, and then subjected to a binder removal process at 900°C. ~1200
It is sintered at a temperature of °C to obtain a laminated piezoelectric element.

第1図(a)、 (b)は本発明の一実施例を示す積層
型圧電素子の積層構造を示す図である。図において、積
層の最上層シート11及び最下層シート12に設けた取
出し電極13及び14からの接続が各層に設けたスルー
ホール15及びスルーホールにげ16によって1層おき
に接続されるが、このとき、さらに次の対となる層の電
極へのスルーホール接続が位置をずらせて形成しており
、これらを積層し焼結することで対向電極の対となる電
極が接続された第2図に示す積層型圧電素子が得られる
FIGS. 1(a) and 1(b) are diagrams showing a laminated structure of a laminated piezoelectric element according to an embodiment of the present invention. In the figure, connections from extraction electrodes 13 and 14 provided on the top layer sheet 11 and bottom layer sheet 12 of the stack are connected every other layer by through holes 15 and through hole ridges 16 provided in each layer. In addition, through-hole connections to the electrodes of the next pair of layers are formed at different positions, and by stacking and sintering these, the electrodes of the opposite electrode are connected, as shown in Figure 2. The laminated piezoelectric element shown is obtained.

第3図は第2図のx−y間を切断して見たときの積層断
面である。この図より明らかなように本発明の構造では
対向する電極間に電界が加わって延びが生じる部分とス
ルーホールが形成されるために延びが生じない部分との
応力は同一パターンに戻る位置で完全に解消される。従
って、さらに積層数を増加しても応力が累積されること
はなく。
FIG. 3 is a laminated cross section taken along the line x-y in FIG. 2. As is clear from this figure, in the structure of the present invention, the stress between the part where an electric field is applied between opposing electrodes and causes elongation, and the part where no elongation occurs because a through hole is formed, is completely reduced at the position where the same pattern is returned. It will be resolved in Therefore, even if the number of laminated layers is further increased, stress will not be accumulated.

コンデンサ構造で問題となる素子破壊も発生しなり1゜ さらに大きな効果は、本発明の積層型圧電素子の製造工
程においてグリーンシートへの穴あけ工程、その後の電
極印刷工程、積層工程、切断加工工程、脱バインダー・
焼成工程でのみ得られることから、内部応力の発生を除
去した圧電素子の方法としての電気泳動法による絶縁形
成の場合により大幅に工程を短縮でき、低コスト化を十
分に行える。さらにスルーホールの点数を1個所当たり
2〜3個の複数個とすれば、さらに接続の信頼性を高め
ることができ、また、外装仕上げ等も信頼性向上に良好
な結果を与えるであろう。
Element breakdown, which is a problem in capacitor structures, does not occur.1゜An even greater effect is that in the manufacturing process of the multilayer piezoelectric element of the present invention, there is a hole-drilling process in the green sheet, a subsequent electrode printing process, a lamination process, a cutting process, Binder removal/
Since it can be obtained only through the firing process, the process can be significantly shortened and the cost can be sufficiently reduced when insulation is formed by electrophoresis, which is a method for producing piezoelectric elements that eliminates the generation of internal stress. Furthermore, if the number of through holes is increased to 2 to 3 per location, the reliability of the connection can be further improved, and the exterior finishing etc. will also give good results in improving reliability.

なお、外部取出し電極としては最上層と最下層とに分け
たが、これを最上層あるいは最下層だけに出すことも、
この1層のパターンを変えるだけで可能となり、この場
合も前記効果が得られることは明らかである。
Although the external electrode is divided into the top layer and the bottom layer, it is also possible to take it out only to the top layer or the bottom layer.
This can be achieved by simply changing the pattern of this one layer, and it is clear that the above effect can be obtained in this case as well.

また、さらにダミー層として最上層あるいは最下層に電
歪効果を示すグリーンシートを積層し、素子の横方向に
外部電極を形成することで、素子の側面から横方向に電
圧を印加することもできる。
Furthermore, by laminating a green sheet that exhibits an electrostrictive effect on the top or bottom layer as a dummy layer and forming external electrodes in the lateral direction of the device, it is also possible to apply a voltage in the lateral direction from the side of the device. .

この構造でも素子の駆動方向、即ち、素子に負荷がかか
る方向に電圧印加用の外部電極がないため、負荷が金属
等の導電体よりできていても、素子と負荷間を絶縁しな
くても良いという利点がある。
Even with this structure, there is no external electrode for voltage application in the driving direction of the element, that is, the direction in which the load is applied to the element, so even if the load is made of a conductor such as metal, there is no need to insulate between the element and the load. It has the advantage of being good.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、内部電極と外部電極間に
絶縁層を設ける必要がなく、従って、従来と較べ充分に
低い電圧で駆動しても大きな歪を発生する素子を得るこ
とができる効果を有する。
As described above, according to the present invention, there is no need to provide an insulating layer between the internal electrode and the external electrode, and therefore it is possible to obtain an element that generates large distortion even when driven at a sufficiently lower voltage than conventional ones. have an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図−ヨ嚇は本発明の積層型圧電素子の積層構成を示
す分解斜視図、第2図は積層体外観斜視図、第3図は積
層体内部の電極の接続状態を示す断面図、第4図(a)
は従来のコンデンサ型積層型圧電素子構造を示す側面図
、(b)は積層方向から見た平面図、第5図(a)は全
面電気泳動法による積層型圧電素子の構造例を示す図、
(b)は(a)のA部拡大図である。
Fig. 1 is an exploded perspective view showing the laminated structure of the multilayer piezoelectric element of the present invention, Fig. 2 is an external perspective view of the laminate, and Fig. 3 is a sectional view showing the connection state of electrodes inside the laminate. Figure 4(a)
5(a) is a side view showing a conventional capacitor-type multilayer piezoelectric element structure, (b) is a plan view seen from the stacking direction, and FIG.
(b) is an enlarged view of part A in (a).

Claims (3)

【特許請求の範囲】[Claims] (1)電歪効果を示す材料と内部電極とが交互に積層さ
れた電歪効果素子において、前記電歪効果を示す材料に
それぞれ形成したスルーホールを積層方向から見て全体
として均一に分布させ、該スルーホールを介して各内部
電極を一層おきに接続するとともに該電歪効果素子の最
上部又は最下部に形成された電圧印加用の外部電極に接
続したことを特徴とする電歪効果素子。
(1) In an electrostrictive element in which materials exhibiting an electrostrictive effect and internal electrodes are alternately laminated, through holes formed in each of the materials exhibiting an electrostrictive effect are uniformly distributed as a whole when viewed from the stacking direction. , an electrostrictive effect element characterized in that each internal electrode is connected every other layer through the through hole, and is also connected to an external electrode for voltage application formed at the top or bottom of the electrostrictive effect element. .
(2)電歪効果を示す材料と内部電極とが交互に積層さ
れた電歪効果素子において、前記電歪効果を示す材料に
それぞれ形成したスルーホールを積層方向から見て全体
として均一に分布させ、該スルーホールを介して各内部
電極を一層おきに接続するとともに該電歪効果素子の最
上部又は最下部に形成された電歪効果を示す材料の側面
に設けられた電圧印加用の外部電極に接続したことを特
徴とする電歪効果素子。
(2) In an electrostrictive element in which materials exhibiting an electrostrictive effect and internal electrodes are alternately laminated, through holes formed in each of the materials exhibiting an electrostrictive effect are uniformly distributed as a whole when viewed from the stacking direction. , an external electrode for applying a voltage provided on the side surface of the material exhibiting an electrostrictive effect formed at the top or bottom of the electrostrictive effect element and connecting the internal electrodes every other layer through the through hole; An electrostrictive effect element characterized by being connected to.
(3)電歪効果を示す材料を含むグリーンシートを作成
する工程と、該グリーンシートにスルーホールを形成し
、さらに導体ペーストを印刷して該スルーホールに導体
ペーストを埋め込み、かつ電極パターンを形成する工程
と、前記グリーンシートと電極パターンが形成されたグ
リーンシートを複数枚積層し熱圧着して一体化する工程
と、一体化された積層体を焼成する工程とを含むことを
特徴とする電歪効果素子の製造方法。
(3) The process of creating a green sheet containing a material that exhibits an electrostrictive effect, forming through holes in the green sheet, printing conductive paste, embedding the conductive paste in the through holes, and forming an electrode pattern. A step of stacking the green sheet and a plurality of green sheets on which electrode patterns are formed and bonding them together by thermocompression, and a step of firing the integrated laminate. A method of manufacturing a strain effect element.
JP63231724A 1988-09-14 1988-09-14 Electrostriction effect element and manufacture thereof Pending JPH0279482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63231724A JPH0279482A (en) 1988-09-14 1988-09-14 Electrostriction effect element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63231724A JPH0279482A (en) 1988-09-14 1988-09-14 Electrostriction effect element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0279482A true JPH0279482A (en) 1990-03-20

Family

ID=16928032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63231724A Pending JPH0279482A (en) 1988-09-14 1988-09-14 Electrostriction effect element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0279482A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607535A (en) * 1993-05-20 1997-03-04 Fujitsu, Ltd. Method of manufacturing a laminated piezoelectric actuator
KR100342302B1 (en) * 2000-01-29 2002-07-02 유니썸테크놀로지 주식회사 Multi-layered actuator and fabricating method therefor
WO2005067070A1 (en) * 2004-01-12 2005-07-21 Siemens Aktiengesellschaft Actuator comprising an internal connection electrode, and method for producing one such actuator
JP2005340388A (en) * 2004-05-25 2005-12-08 Tdk Corp Multilayer electronic component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607535A (en) * 1993-05-20 1997-03-04 Fujitsu, Ltd. Method of manufacturing a laminated piezoelectric actuator
KR100342302B1 (en) * 2000-01-29 2002-07-02 유니썸테크놀로지 주식회사 Multi-layered actuator and fabricating method therefor
WO2005067070A1 (en) * 2004-01-12 2005-07-21 Siemens Aktiengesellschaft Actuator comprising an internal connection electrode, and method for producing one such actuator
JP2005340388A (en) * 2004-05-25 2005-12-08 Tdk Corp Multilayer electronic component
JP4670260B2 (en) * 2004-05-25 2011-04-13 Tdk株式会社 Multilayer electronic components

Similar Documents

Publication Publication Date Title
US4780639A (en) Electrostriction effect element
JPH04214686A (en) Electrostrictive effect element
WO2006073018A1 (en) Method for manufacturing piezoelectric actuator, and piezoelectric actuator
JP2842382B2 (en) Laminated piezoelectric transformer and method of manufacturing the same
JPS6317354B2 (en)
JPH05160459A (en) Laminated displacement element
JPH09190947A (en) Laminated ceramic electronic component
JPH0279482A (en) Electrostriction effect element and manufacture thereof
JP2003209302A (en) Piezoelectric actuator and manufacturing method therefor
JPH06151999A (en) Manufacture of laminated piezoelectric/electrostrictive actuator element
JPH04264784A (en) Electrostrictive effect element and manufacture thereof
JPH03138987A (en) Electrostrictive effect element
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
JPH02237083A (en) Laminated piezoelectric element
JP3406900B2 (en) Piezo actuator
KR100846079B1 (en) Method of manufacturing multilayer capacitor and multilayer capacitor
JPH07221360A (en) Manufacture of layered electrostriction/piezoelectric element
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JPH04343281A (en) Electrostrictive effect element and manufacture thereof
JP2884378B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JPH01184968A (en) Manufacture of laminar piezoelectric element
JP2882164B2 (en) Electrostrictive effect element and method of manufacturing the same
JP2007266468A (en) Laminated piezoelectric element
JPS58196075A (en) Electrostrictive effect element
JP2791838B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same