JPH03138987A - Electrostrictive effect element - Google Patents

Electrostrictive effect element

Info

Publication number
JPH03138987A
JPH03138987A JP1276854A JP27685489A JPH03138987A JP H03138987 A JPH03138987 A JP H03138987A JP 1276854 A JP1276854 A JP 1276854A JP 27685489 A JP27685489 A JP 27685489A JP H03138987 A JPH03138987 A JP H03138987A
Authority
JP
Japan
Prior art keywords
electrostrictive
grooves
laminating direction
width
electrostrictive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1276854A
Other languages
Japanese (ja)
Inventor
Tomoji Arai
智次 荒井
Yoshiki Inoue
芳樹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1276854A priority Critical patent/JPH03138987A/en
Publication of JPH03138987A publication Critical patent/JPH03138987A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To extend the mechanical life of an element by widening the width of one or more grooves formed in a laminating direction at predetermined intervals in parallel on an inner electrode wider than the side face of the element toward the interior of the element. CONSTITUTION:The width of grooves 5 formed in parallel with inner electrodes 2a, 2b parallel to the laminating direction of an element 1 in the laminating direction is widened at the interior of the element as compared with the side face of the element. Part of a periphery which does not cause the deformation of an element in a section perpendicular to the laminating direction of the element is removed to alleviate a stress concentration to prolong the life until a mechanical damage occurs due to application of repetition pulses of a voltage. However, a crack tends to occur from the end of the groove toward the interior of the element. Thus, the width of the groove in the laminating direction is widened in the inside of the element as compared with the side face of the element to prevent cracks from the end of the groove, thereby further extending the mechanical life of the element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電歪効果素子の構造に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to the structure of an electrostrictive element.

〔従来の技術〕[Conventional technology]

電歪効果素子とは固体の電歪効果を利用して、電気エネ
ルギーを機械エネルギーに変換するトランスデユーサで
ある。具体的には電歪効果の大きな固体の対向する表面
に金属膜などの電極を形成し、電極間に電位差を与えた
ときに発生する固体の歪を利用する。電界と平行方向に
発生する歪(縦効果歪)は垂直方向に生じる歪(横効果
歪)より一般には大きいので、前者を利用する方がエネ
ルギー変換効率は高い。このエネルギー変換効率の高い
縦効果を利用した電歪効果素子では電界強度が大きくな
るほど発生する歪が大きくなるため、大きな変位量を得
るには電歪強度が低下しないように印加電圧を大きくす
ることが必要である。しかし、電圧を大きくするために
は大型でかつ高価な電源が必要になり、取り扱いに対す
る危険度も増す。
An electrostrictive effect element is a transducer that converts electrical energy into mechanical energy by utilizing the electrostrictive effect of a solid state. Specifically, electrodes such as metal films are formed on opposing surfaces of a solid that has a large electrostrictive effect, and the strain in the solid that occurs when a potential difference is applied between the electrodes is utilized. Since the strain that occurs in the direction parallel to the electric field (longitudinal effect strain) is generally larger than the strain that occurs in the perpendicular direction (transverse effect strain), the energy conversion efficiency is higher when the former is used. In an electrostrictive element that utilizes this longitudinal effect with high energy conversion efficiency, the strain generated increases as the electric field strength increases, so in order to obtain a large amount of displacement, the applied voltage must be increased so that the electrostrictive strength does not decrease. is necessary. However, increasing the voltage requires a large and expensive power supply, which also increases the risk of handling.

以上の欠点を改善するために積層チップコンデンサ型の
構造が提案されている。この構造の縦断面図を第4図(
a)、内部電極の投影図を第4図(b)に示す。
In order to improve the above drawbacks, a multilayer chip capacitor type structure has been proposed. A vertical cross-sectional view of this structure is shown in Figure 4 (
a), and a projected view of the internal electrodes is shown in FIG. 4(b).

第4図(a)において電歪材料1の内部に内部電極2a
、2bが一定の間隔で形成されており、一つおきに外部
電極3a、3bと接続している。
In FIG. 4(a), an internal electrode 2a is provided inside the electrostrictive material 1.
, 2b are formed at regular intervals, and every other one is connected to external electrodes 3a, 3b.

内部電極2a、2bの間隔は通常の積層チ・ンブコンデ
ンサの技術で数10μm程度にすることができる。この
構造を採用すると電極間距離が狭くなるなめ低電圧で駆
動可能な縦効果利用の電歪効果素子が実現できる。
The spacing between the internal electrodes 2a and 2b can be set to about several tens of micrometers using ordinary multilayer film capacitor technology. If this structure is adopted, the distance between the electrodes becomes narrower, and an electrostrictive element utilizing the longitudinal effect that can be driven at a low voltage can be realized.

ところで積層方向からみた投影図第4図(b)から明ら
かなように、この構造では内部電極の重なる面積(中央
の矩形部分)は素子の断面積と比較して小さい、従って
基本的には内部電極の重なった部分は電界に応じて変形
するが、他の部分は変形せず、このため高い電圧を印加
して大きな歪を発生させると変形する部分と変形しない
部分との境界に大きな応力の集中が起こり、素子が機械
的に破壊する欠点がある9 このような従来素子の欠点を改善するために積層チップ
コンデンサ型構造の電歪効果素子について、その積層方
向に平行な側面上の各内部電極に平行に溝を形成する構
造がある(特開昭58−196077)。第5図にこの
構造の素子の縦断面図を示す。すなわち、該素子の積層
方向に垂直な断面において素子の変形に関与しない周辺
部の一部を収り除くことにより応力集中をM和させて、
電圧の繰り返しパルス印加に対して機械的破壊に至るま
での寿命を延ばし、さらに素子の変位も増大させること
ができる。
By the way, as is clear from the projection view of FIG. 4(b) viewed from the stacking direction, in this structure, the overlapping area of the internal electrodes (the central rectangular part) is small compared to the cross-sectional area of the element. The overlapping part of the electrodes deforms in response to the electric field, but the other parts do not. Therefore, when a high voltage is applied to generate a large strain, a large stress is generated at the boundary between the deformed part and the undeformed part. There is a drawback that concentration occurs and the device is mechanically destroyed.9 In order to improve this drawback of the conventional device, an electrostrictive effect device having a multilayer chip capacitor type structure has the disadvantage that each internal portion on the side surface parallel to the stacking direction is There is a structure in which grooves are formed parallel to the electrodes (Japanese Patent Application Laid-open No. 58-196077). FIG. 5 shows a longitudinal sectional view of an element having this structure. That is, in a cross section perpendicular to the stacking direction of the element, by removing a part of the peripheral part that does not participate in the deformation of the element, the stress concentration is reduced by M,
It is possible to extend the lifespan until mechanical breakdown occurs when voltage is repeatedly applied with pulses, and also to increase the displacement of the element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来構造の電歪効果素子では、第6図(a)の
従来構造の電歪効果素子の縦断面図の一部に示したよう
に、溝の積層方向の幅は素子の側面から内部にかけて一
定の広さとなっている。しかし、このような形状の溝で
は第6図(b)に示したように電圧印加時に溝の周囲に
作用する引張応力によって、溝の先端から素子内部に向
かってクラックが生じやすく、このクラックが進展する
ことによって素子が機械的に破壊する不良が発生してし
まい、溝を形成した電歪効果素子の特徴の一つであり、
電圧の繰り返しパルス印加に対する機械的寿命が長い、
という特徴を活かしきれない欠点がある。
In the electrostrictive effect element of the conventional structure described above, as shown in a part of the vertical cross-sectional view of the electrostrictive effect element of the conventional structure in FIG. It has a certain size throughout. However, in grooves with such a shape, cracks tend to form from the tips of the grooves toward the inside of the element due to the tensile stress that acts around the grooves when voltage is applied, as shown in Figure 6(b). This is one of the characteristics of electrostrictive effect elements that have grooves, as this leads to defects in which the element is mechanically destroyed.
Long mechanical life against repeated voltage pulse application
There is a drawback that this feature cannot be fully utilized.

本発明の目的は、素子の積層方向と平行な側面上に、内
部電極に平行に所定の間隔で溝を一箇所以上形成したと
き、溝の先端からのクラックの発生をなくし、電圧の繰
り返しパルス印加時の素子の機械的破壊を防止して素子
の機械的寿命を延ばした構造の電歪効果素子を提供する
ことにある。
An object of the present invention is to eliminate the occurrence of cracks from the tips of the grooves when grooves are formed at one or more locations parallel to the internal electrodes at predetermined intervals on the side surface parallel to the stacking direction of the element, and to eliminate repeated voltage pulses. It is an object of the present invention to provide an electrostrictive effect element having a structure that prevents mechanical destruction of the element during application and extends the mechanical life of the element.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の電歪効果素子は、電歪効果を示す材料と内部電
極とが交互に積層され各内部電極が一層おきに同一の外
部電極に接続している電歪効果素子であって、その素子
の積層方向と平行な側面上の前記内部電極に平行に所定
の間隔で溝が一箇所以上形成されている電歪効果素子に
おいて、前記溝の積層方向の幅が、素子側面よりも素子
内部の方が広いことを特徴として構成される。
The electrostrictive effect element of the present invention is an electrostrictive effect element in which materials exhibiting an electrostrictive effect and internal electrodes are alternately laminated, and each internal electrode is connected to the same external electrode every other layer. In an electrostrictive effect element in which one or more grooves are formed parallel to the internal electrode at a predetermined interval on a side surface parallel to the lamination direction of the element, the width of the groove in the lamination direction is wider than the width of the inside of the element than the side surface of the element. It is characterized by being wider.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。第1図
は本発明の一実施例の電歪効果素子の縦断面図、第2図
は第1図の構成を示す積層ノ(ターンを示す斜視図であ
る。
Next, the present invention will be explained with reference to the drawings. FIG. 1 is a longitudinal sectional view of an electrostrictive effect element according to an embodiment of the present invention, and FIG. 2 is a perspective view showing laminated turns showing the structure of FIG.

本発明の効果を、チタン酸ジルコン酸鉛系の電歪効果を
示す材料を用いて調べた。本材料の予焼粉末に有機系の
溶剤、バインダ、可塑材を添加して、ドクター・ブレー
ド法で約130μmの厚さのグリーンシートを作成した
。このグリーンシートを乾燥したのち、その上に銀−パ
ラジウム合金粉末を主成分とする内部電極用ペーストと
、カーボンを主成分とする空孔形成材ペーストとを所定
枚数スクリーン印刷し、所定の形状に切断して積層、熱
圧着して、これを1100℃で焼成した。
The effects of the present invention were investigated using a lead zirconate titanate-based material exhibiting an electrostrictive effect. An organic solvent, a binder, and a plasticizer were added to the pre-fired powder of this material, and a green sheet with a thickness of about 130 μm was created using a doctor blade method. After drying this green sheet, a predetermined number of internal electrode paste containing silver-palladium alloy powder as a main component and a pore-forming material paste containing carbon as a main component are screen printed onto it to give it a predetermined shape. They were cut, laminated, thermocompressed, and fired at 1100°C.

その昇温の際に空孔形成材が飛散することにより、溝が
形成される。
Grooves are formed by scattering the pore-forming material during the temperature rise.

第2図に示すように、空孔形成パターンは、空孔形成材
ペーストを5μmの厚みで素子の周囲から内部にかけて
1mmの長さに印刷した8bと、素子の周囲からQ、8
mm内部に入ったところから1mmの長さのところまで
印刷した8aの二種類用意し、印刷面どうしが重なるよ
うに積層した。
As shown in Fig. 2, the hole forming pattern consists of a pattern 8b printed with a hole forming material paste with a thickness of 5 μm and a length of 1 mm from the periphery of the element to the inside, Q, 8 from the periphery of the element.
Two types of sheets 8a were prepared, each having a length of 1 mm printed from the inside of the sheet, and were laminated so that the printed surfaces overlapped each other.

第1図に示す本実施例において、1は電歪材料、2a、
2bは内部電極、3a、3bは外部電極、4はリード線
である。素子の寸法は6 m m X6 m rn X
 I Q m mで、溝5は素子の積層方向に0.4m
mおきに形成し、素子の周囲で幅が5μm、素子内部で
幅が10μmの構造とした。
In this embodiment shown in FIG. 1, 1 is an electrostrictive material, 2a,
2b is an internal electrode, 3a and 3b are external electrodes, and 4 is a lead wire. The dimensions of the element are 6 mm x 6 m rn
I Q m m, groove 5 is 0.4 m in the stacking direction of the element
They were formed every m, and had a structure with a width of 5 μm around the element and a width of 10 μm inside the element.

次に、本構造の素子50個に最高電圧150V、パルス
幅1msの正弦波電圧パルスを繰り返し連続的に印加し
た。その結果、従来構造の電歪効果素子が4X108回
の駆動で機械的に破壊するものが10%程度発生したの
に対し、本発明による電歪効果素子は、8X108回で
も不良は発生しなかった。
Next, a sinusoidal voltage pulse with a maximum voltage of 150 V and a pulse width of 1 ms was repeatedly and continuously applied to 50 elements of this structure. As a result, while about 10% of the electrostrictive elements with the conventional structure were mechanically destroyed after being driven 4x108 times, the electrostrictive element according to the present invention did not cause any defects even after being driven 8x108 times. .

第3図は本発明の他の実施例の電歪効果素子の縦断面図
である。第2の実施例では、空孔形成パターンは、空孔
形成材ペーストを5μmの厚みで素子の周囲から0゜8
 m m内部に入ったところから1mmの長さのところ
まで印刷したちの二つを印刷面が向かい合うようにし、
それらの間に厚さ10μmのポリエステルフィルムを素
子の周囲から内部にかけて1m、mの長さで空孔となる
よう加工したものをはさんで積層した。
FIG. 3 is a longitudinal sectional view of an electrostrictive element according to another embodiment of the present invention. In the second example, the hole forming pattern was formed by applying a hole forming material paste to a thickness of 5 μm and extending 0°8 from the periphery of the element.
Print to a length of 1 mm from the point inside the m m, and place the two sides so that the printed sides face each other.
A polyester film having a thickness of 10 μm and processed to form holes with a length of 1 m and 1 m from the periphery to the inside of the element was sandwiched between them and laminated.

第3図に示す第2の実施例は素子の寸法が6mmX6m
m、X10mmで、溝は素子の積層方向に0.4mmお
きに形成し、素子の周囲で幅が10μm、素子内部で2
0μmの構造としな。
In the second embodiment shown in Fig. 3, the dimensions of the element are 6 mm x 6 m.
m, x 10 mm, grooves are formed every 0.4 mm in the stacking direction of the element, 10 μm wide around the element, and 2 grooves inside the element.
The structure should be 0 μm.

この電歪効果素子50個についても第1の実施例と同様
の電圧の繰り返しパルスを連続的に印加した。その結果
、第1の実施例と同様の効果が得られた。
Repeated pulses of the same voltage as in the first example were continuously applied to these 50 electrostrictive elements. As a result, the same effects as in the first example were obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、清の積層方向の幅を素
子の側面より素子の内部で広くして、溝の先端からのク
ラックの発生をなくすことにより、電圧の繰り返しパル
ス印加時の素子の機械的破壊を防止して、素子の機械的
寿命を延ばした構造の電歪効果素子が得られるという効
果がある。
As explained above, in the present invention, the width of the groove in the stacking direction is made wider inside the element than on the side of the element, thereby eliminating the occurrence of cracks from the tips of the grooves, thereby improving the stability of the element when voltage pulses are repeatedly applied. This has the effect of providing an electrostrictive element with a structure that prevents mechanical destruction and extends the mechanical life of the element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電歪効果素子の縦断面図、
第2図は第1図に示す実施例を構成するための積層パタ
ーンを示す斜視図、第3図は本発明の他の実施例の電歪
効果素子の縦断面図、第4図(a)は従来の積層チップ
コンデンサ構造の電歪効果素子の一例の縦断面図、第4
図(b)は第4図(a)に示す積層チップコンデンサ構
造の電歪効果素子の内部電極2a、2bの投影図、第5
図は従来構造の電歪効果素子の一例の縦断面図、第6図
(a)、(b)は従来構造の電歪効果素子において電圧
印加によって溝の先端がらクラックが発生する状況を説
明するための縦断面図である。 1・・・電歪材料、2a、2b・・・内部電極、3a。 3b・・・外部電極、4・・・リード線、5・・・溝、
6・・・グリーンシート、7a、7b・・・内部電極パ
ターン、8a、8b・・・空孔形成パターン。 第 1 図
FIG. 1 is a longitudinal cross-sectional view of an electrostrictive effect element according to an embodiment of the present invention;
2 is a perspective view showing a laminated pattern for constructing the embodiment shown in FIG. 1, FIG. 3 is a longitudinal sectional view of an electrostrictive effect element according to another embodiment of the present invention, and FIG. 4(a) 4 is a vertical cross-sectional view of an example of an electrostrictive effect element having a conventional multilayer chip capacitor structure.
Figure (b) is a projected view of the internal electrodes 2a and 2b of the electrostrictive effect element having the multilayer chip capacitor structure shown in Figure 4 (a).
The figure is a vertical cross-sectional view of an example of an electrostrictive effect element with a conventional structure, and FIGS. 6(a) and 6(b) illustrate a situation in which cracks occur at the tips of grooves due to voltage application in an electrostrictive effect element with a conventional structure. FIG. 1... Electrostrictive material, 2a, 2b... Internal electrode, 3a. 3b...External electrode, 4...Lead wire, 5...Groove,
6... Green sheet, 7a, 7b... Internal electrode pattern, 8a, 8b... Hole formation pattern. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  電歪効果を示す材料と内部電極とが交互に積層され各
内部電極が一層おきに同一の外部電極に接続している電
歪効果素子であって、該素子の積層方向と平行な側面上
に、前記内部電極に平行に所定の間隔で溝が一箇所以上
形成されている電歪効果素子において、前記溝の積層方
向の幅が、素子側面よりも素子内部の方が広いことを特
徴とする電歪効果素子。
An electrostrictive element in which materials exhibiting an electrostrictive effect and internal electrodes are alternately laminated and each internal electrode is connected to the same external electrode every other layer, and a side surface parallel to the lamination direction of the element is , an electrostrictive effect element in which grooves are formed at one or more locations parallel to the internal electrodes at predetermined intervals, characterized in that the width of the grooves in the stacking direction is wider inside the element than on the sides of the element. Electrostrictive effect element.
JP1276854A 1989-10-23 1989-10-23 Electrostrictive effect element Pending JPH03138987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1276854A JPH03138987A (en) 1989-10-23 1989-10-23 Electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1276854A JPH03138987A (en) 1989-10-23 1989-10-23 Electrostrictive effect element

Publications (1)

Publication Number Publication Date
JPH03138987A true JPH03138987A (en) 1991-06-13

Family

ID=17575338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1276854A Pending JPH03138987A (en) 1989-10-23 1989-10-23 Electrostrictive effect element

Country Status (1)

Country Link
JP (1) JPH03138987A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479328A2 (en) * 1990-10-05 1992-04-08 Nec Corporation Piezoelectric actuator
WO2006000479A1 (en) * 2004-06-29 2006-01-05 Siemens Aktiengesellschaft Piezoelectric component with a predetermined breaking point, method for producing the component and use of the component
JP2006203245A (en) * 2006-03-27 2006-08-03 Kyocera Corp Laminated piezoelectric device and manufacturing method
JP2006245594A (en) * 2006-03-27 2006-09-14 Kyocera Corp Manufacturing method of laminated piezoelectric element and laminated piezoelectric element
JP2010074033A (en) * 2008-09-22 2010-04-02 Kyocera Corp Stacked piezoelectric element, injection apparatus having the same and fuel injection system
WO2011095481A1 (en) * 2010-02-02 2011-08-11 Epcos Ag Piezoelectric component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479328A2 (en) * 1990-10-05 1992-04-08 Nec Corporation Piezoelectric actuator
WO2006000479A1 (en) * 2004-06-29 2006-01-05 Siemens Aktiengesellschaft Piezoelectric component with a predetermined breaking point, method for producing the component and use of the component
US7420319B2 (en) 2004-06-29 2008-09-02 Siemens Aktiengesellschaft Piezoelectric component with predetermined breaking point and method for manufacturing and using the component
JP2006203245A (en) * 2006-03-27 2006-08-03 Kyocera Corp Laminated piezoelectric device and manufacturing method
JP2006245594A (en) * 2006-03-27 2006-09-14 Kyocera Corp Manufacturing method of laminated piezoelectric element and laminated piezoelectric element
JP4498299B2 (en) * 2006-03-27 2010-07-07 京セラ株式会社 Manufacturing method of multilayer piezoelectric element
JP4498300B2 (en) * 2006-03-27 2010-07-07 京セラ株式会社 Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP2010074033A (en) * 2008-09-22 2010-04-02 Kyocera Corp Stacked piezoelectric element, injection apparatus having the same and fuel injection system
WO2011095481A1 (en) * 2010-02-02 2011-08-11 Epcos Ag Piezoelectric component
US9130152B2 (en) 2010-02-02 2015-09-08 Epcos Ag Piezoelectric component

Similar Documents

Publication Publication Date Title
EP0479328B1 (en) Piezoelectric actuator
KR0172602B1 (en) Laminated ceramic device and method of manufacturing the same
JPH08274381A (en) Stacked piezoelectric actuator and its manufacture
JP2006351602A (en) Multilayer piezoelectric actuator device
JPH03138987A (en) Electrostrictive effect element
JP2824116B2 (en) Multilayer piezoelectric actuator
JPH0353572A (en) Electrostrictive effect element
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JP2779182B2 (en) Laminated piezoelectric electrostrictive element
JP2001025268A (en) Laminated piezoelectric actuator
JPH0451992B2 (en)
JP2705333B2 (en) Piezoelectric effect element, electrostrictive effect element and method of manufacturing the same
JPH0353573A (en) Electrostrictive effect element
JP3043387B2 (en) Stacked displacement element
JPH03241782A (en) Electrostrictive effect element
JPH0519995B2 (en)
JPH0671102B2 (en) Electrostrictive effect element
JPH02237083A (en) Laminated piezoelectric element
JPS58196077A (en) Electrostrictive eeffct element
JPH0457374A (en) Electrostrictive effect element
JPH0279482A (en) Electrostriction effect element and manufacture thereof
JP2748830B2 (en) Multilayer electrostrictive effect element
JP2791838B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JPH04343281A (en) Electrostrictive effect element and manufacture thereof
JPH03191583A (en) Electrostrictive effect element