JP2006351602A - Multilayer piezoelectric actuator device - Google Patents

Multilayer piezoelectric actuator device Download PDF

Info

Publication number
JP2006351602A
JP2006351602A JP2005172435A JP2005172435A JP2006351602A JP 2006351602 A JP2006351602 A JP 2006351602A JP 2005172435 A JP2005172435 A JP 2005172435A JP 2005172435 A JP2005172435 A JP 2005172435A JP 2006351602 A JP2006351602 A JP 2006351602A
Authority
JP
Japan
Prior art keywords
piezoelectric actuator
slit
actuator element
internal electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005172435A
Other languages
Japanese (ja)
Inventor
Fumio Takao
文雄 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
NEC Tokin Hyogo Ltd
Original Assignee
NEC Tokin Hyogo Ltd
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Hyogo Ltd, NEC Tokin Corp filed Critical NEC Tokin Hyogo Ltd
Priority to JP2005172435A priority Critical patent/JP2006351602A/en
Publication of JP2006351602A publication Critical patent/JP2006351602A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer piezoelectric actuator device having a highly reliable element structure where insulation performance is not deteriorated even under a severe driving environmental condition where large displacement is repeated for long time. <P>SOLUTION: Slit-like air gaps 2 are previously formed inside a piezoelectric ceramic layer 1a at prescribed intervals. Connections of inner electrode layers 1b and outer electrodes 3 are performed at the prescribed interval so that they become the same poles. Electric connections of the adjacent inner electrodes 1b and the outer electrodes 3 are arranged and laminated across the piezoelectric ceramic layer 1a having the slit-like air gaps 2 so that they become the same poles. The outer electrode 3 and the slit-like air gaps 2 are covered with flexible and insulating resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧電アクチュエータに関し、特に、大きな変位量と繰り返し耐久性能が要求される用途に好適な積層型圧電アクチュエータ素子の絶縁構造に関する。   The present invention relates to a piezoelectric actuator, and more particularly to an insulating structure of a laminated piezoelectric actuator element suitable for applications requiring a large amount of displacement and repeated durability performance.

薄板状または膜状の圧電セラミックス層とその圧電セラミックス層とほぼ同じ面積を持つ内部電極層を積層した積層体と、その積層体の側面部分にそれぞれ形成された絶縁物質層および導電物質層とを有する積層型圧電素子は、変位が大きく信頼性の高い素子として知られている(特許文献1参照)。   A laminate in which a thin plate-like or film-like piezoelectric ceramic layer and an internal electrode layer having approximately the same area as the piezoelectric ceramic layer are laminated, and an insulating material layer and a conductive material layer respectively formed on the side surface portion of the laminate. The laminated piezoelectric element is known as a highly reliable element with large displacement (see Patent Document 1).

しかし、特許文献1の積層型圧電素子においては、異極の内部電極相互間を電気的に絶縁することが非常に困難であった。そこで、電気泳動法によって一層おきの内部電極層上とその近傍に絶縁材料を形成したもの(特許文献2参照)や積層体の側端面に感光性樹脂膜を形成し、エッチングにより一層おきに除去したもの(特許文献3)が提案された。   However, in the multilayer piezoelectric element disclosed in Patent Document 1, it is very difficult to electrically insulate different internal electrodes from each other. Therefore, a method in which an insulating material is formed on and near every other internal electrode layer by electrophoresis (see Patent Document 2) or a photosensitive resin film is formed on the side end surface of the laminated body and removed every other layer by etching. (Patent Document 3) was proposed.

しかしながら、特許文献2の電気泳動法による積層型圧電素子は、絶縁物質が低密度で、焼結工程により更に収縮して必要な絶縁距離を確保できなくなり、絶縁低下をきたすという問題点があった。   However, the multi-layer piezoelectric element based on the electrophoresis method of Patent Document 2 has a problem that the insulating material has a low density, and further shrinks due to the sintering process, so that a necessary insulation distance cannot be secured, resulting in a decrease in insulation. .

また、特許文献3のエッチングによる積層型圧電素子は、感光性樹脂を使うために処理温度を高くできず、ペーストによって塗布した外部電極の層に焼付け温度が800℃以上の材料を使うことができないので、信頼性を向上できないという問題点があった。   In addition, the multilayer piezoelectric element by etching disclosed in Patent Document 3 cannot use a photosensitive resin, so that the processing temperature cannot be increased, and a material having a baking temperature of 800 ° C. or higher cannot be used for the external electrode layer coated with paste. Therefore, there was a problem that reliability could not be improved.

このような絶縁性の問題点を解決した技術が、特許文献4に開示されている。特許文献4の積層型圧電素子は、薄板状または膜状の圧電セラミックス層とその圧電セラミックス層とほぼ同じ面積を持つ内部電極層を積層した積層体と、その積層体の側面部分にそれぞれ形成された絶縁物質層および導電物質層を有する積層型圧電素子において、絶縁物質層は、積層体の側面部分に露出していない内部電極の端部が一層おきに露出する切込み加工除去部を持ち、導電物質層は一層おきに露出する切込み加工除去部を銀ペーストなどの導電性物質で埋めて、積層体の側面部分に露出していない内部電極と電気的に接続する連結部分を一体化して形成された積層型圧電素子である。この技術では、大きな変位量を確保できるが、接着層付近の伸縮が大きいので、接着層の直下および直上にある圧電セラミックス層に大きな歪を発生させ、長期間に渡って繰り返される厳しい駆動環境条件での耐久性を十分に確保できないという問題点があった。   A technique that solves such problems of insulation is disclosed in Patent Document 4. The multilayer piezoelectric element of Patent Document 4 is formed on a laminated body in which a thin plate-like or film-like piezoelectric ceramic layer and an internal electrode layer having substantially the same area as the piezoelectric ceramic layer are laminated, and on a side surface portion of the laminated body. In the laminated piezoelectric element having the insulating material layer and the conductive material layer, the insulating material layer has a notch removal portion where the end portions of the internal electrodes that are not exposed at the side surface portion of the laminated body are exposed every other layer, and is electrically conductive. The material layer is formed by embedding the incision removal portion exposed every other layer with a conductive material such as silver paste, and integrating the connecting portion that is electrically connected to the internal electrode that is not exposed on the side surface portion of the laminate. A laminated piezoelectric element. This technology can secure a large amount of displacement, but because the expansion and contraction in the vicinity of the adhesive layer is large, a severe distortion is generated in the piezoelectric ceramic layer immediately below and immediately above the adhesive layer, and it is repeated over a long period of severe driving environment conditions There was a problem that sufficient durability could not be secured.

大きな変位量と繰り返し耐久性能を向上させる技術が、特許文献5に開示されている。特許文献5の積層型圧電アクチュエータ素子では、電歪効果を示す材料と内部電極層とが交互に積層され、内部電極層が1層おきに一対の外部電極と接続された積層体が接着層を介して複数個直列に結合された連結積層型圧電アクチュエータ素子において、各々の積層体間の外部電極が接着層を除く部分に固定された導線で電気的に結合された積層型圧電アクチュエータ素子である。   A technique for improving a large displacement amount and repeated durability performance is disclosed in Patent Document 5. In the multilayer piezoelectric actuator element of Patent Document 5, a material having an electrostrictive effect and internal electrode layers are alternately laminated, and a laminate in which every other internal electrode layer is connected to a pair of external electrodes has an adhesive layer. In the connected laminated piezoelectric actuator elements connected in series via a plurality of layers, the external electrodes between the laminated bodies are electrically connected by a conductive wire fixed to a portion excluding the adhesive layer. .

また、従来よりも変位量が大きいにもかかわらず、故障が起きにくい積層型アクチュエータの技術が、特許文献6に開示されている。特許文献6の積層型アクチュエータは、比誘電率が3000未満の圧電材料を用いて構成された圧電体層と、内部電極層とが交互に積層された積層体からなる積層型圧電アクチュエータ素子において、積層体の側面部分に、隣り合う圧電体層で挟まれ、圧電体層よりも弾性率が小さい応力緩和層を設け、隣り合う内部電極層の縁辺が重ならないように構成した積層型圧電アクチュエータ素子である。   Furthermore, Patent Document 6 discloses a technique of a multilayer actuator that is less likely to fail despite a larger displacement than in the past. The multilayer actuator of Patent Document 6 is a multilayer piezoelectric actuator element composed of a multilayer body in which piezoelectric layers composed of piezoelectric materials having a relative dielectric constant of less than 3000 and internal electrode layers are alternately stacked. A laminated piezoelectric actuator element configured such that a stress relaxation layer sandwiched between adjacent piezoelectric layers and having a smaller elastic modulus than the piezoelectric layer is provided on a side surface portion of the stacked body so that the edges of adjacent internal electrode layers do not overlap. It is.

特開昭58−196074号公報JP-A-58-196074 特開昭59−175176号公報JP 59-175176 特開昭58−196071号公報JP 58-196071 A 特開平5−259524号公報JP-A-5-259524 特開平8−250777号公報JP-A-8-250777 特開2001−156348号公報JP 2001-156348 A

上述した特許文献4の積層型圧電アクチュエータ素子の内部電極構造では、内部電極を取り出す面の外部電極に相当する面積範囲を除いた3方向の外縁部に電圧を印加しても伸縮しない不活性な部分が存在するので、その境界部に歪が生じ、歪に起因した内部応力により、絶縁部にクラックが発生した。このクラックは、積層型圧電アクチュエータ素子の駆動時に内部電極面にも影響を及ぼした。その結果、電圧印加による放電故障を起こし、大気中の湿度の影響により絶縁低下をもたらすという問題点があった。   In the internal electrode structure of the multilayered piezoelectric actuator element of Patent Document 4 described above, it is inactive that does not expand or contract even when a voltage is applied to the outer edge portion in three directions excluding the area range corresponding to the external electrode on the surface from which the internal electrode is extracted. Since the portion exists, the boundary portion is distorted, and the insulating portion is cracked due to the internal stress caused by the strain. This crack also affected the internal electrode surface when driving the multilayer piezoelectric actuator element. As a result, there is a problem in that a discharge failure occurs due to voltage application and insulation is lowered due to the influence of humidity in the atmosphere.

上述した特許文献5の積層型圧電アクチュエータ素子では、内部電極を取り出す面の外部電極に相当する面積範囲を除いた3方向の外縁部に電圧を印加しても伸縮しない不活性な部分が存在しないように、積層型圧電アクチュエータ素子の「単位セル」積層数の上限を限定している。また、その「単位セル」を接着剤で接着することで「単位セル」を積層することで、大きな変位量を得ている。接着層付近の伸縮により、外部電極が万が一に破断しても支障がないように、別の外部電極つなぐ導線を備えている。この場合は、接着層の導入により、接着層付近の伸縮が局部的に大きくなり、繰り返しの耐久性能が劣化するという問題点があった。   In the multilayer piezoelectric actuator element of Patent Document 5 described above, there is no inactive portion that does not expand or contract even when a voltage is applied to the outer edge portion in three directions excluding the area range corresponding to the external electrode on the surface from which the internal electrode is extracted. As described above, the upper limit of the number of “unit cells” in the multilayer piezoelectric actuator element is limited. Further, the “unit cell” is laminated by bonding the “unit cell” with an adhesive, thereby obtaining a large displacement. A lead wire for connecting another external electrode is provided so that there is no problem even if the external electrode breaks due to expansion and contraction in the vicinity of the adhesive layer. In this case, due to the introduction of the adhesive layer, the expansion and contraction in the vicinity of the adhesive layer is locally increased, and there is a problem that the repeated durability performance deteriorates.

上述した特許文献6の積層型圧電アクチュエータ素子は、積層体の側面部分に応力緩和層あるいは溝を設けることで、隣り合う内部電極層同士の縁部(正極および負極それぞれの縁部が重ならないようにすることで、内部歪による応力が発生しない構造にして、故障の起きにくい信頼性の高い積層型圧電アクチュエータ素子を実現している。しかしながら、この場合は、圧電材料を限定しないと大きな変位が得られないという問題点があった。   In the multilayer piezoelectric actuator element of Patent Document 6 described above, by providing a stress relaxation layer or groove on the side surface portion of the multilayer body, the edges of the adjacent internal electrode layers (the edges of the positive and negative electrodes do not overlap each other). In this case, a highly reliable stacked piezoelectric actuator element that does not easily cause failure due to a structure in which stress due to internal strain does not occur is realized. There was a problem that it could not be obtained.

本発明は、上述した問題点を解決すべくなされたもので、その技術課題は、大きな変位が長期間に渡って繰り返される厳しい駆動環境条件においても故障や絶縁性能の低下がない信頼性の高い素子構造を有する積層型圧電アクチュエータ素子を提供することである。   The present invention has been made to solve the above-described problems, and its technical problem is that it is highly reliable with no failure or deterioration in insulation performance even under severe driving environment conditions in which a large displacement is repeated over a long period of time. It is to provide a laminated piezoelectric actuator element having an element structure.

上記目的を達成するための第1の発明は、圧電セラミックスを用いて構成された圧電セラミックス層と内部電極層とが交互に積層された積層体を備え、前記内部電極層が露出する主面ともう一方の主面に設けた1対の外部電極と前記内部電極層とが各々1層おきに接続された積層型圧電アクチュエータ素子において、前記主面と前記もう一方の主面に垂直な方向にある前記積層体の側面の外周部に、前記圧電セラミックス層の内部に入り込むように所定の間隔でスリット状の空隙を形成した積層型圧電アクチュエータ素子である。   A first invention for achieving the above object comprises a laminate in which piezoelectric ceramic layers and internal electrode layers configured using piezoelectric ceramics are alternately laminated, and a main surface from which the internal electrode layers are exposed; In a stacked piezoelectric actuator element in which a pair of external electrodes provided on the other main surface and the internal electrode layers are connected every other layer, in a direction perpendicular to the main surface and the other main surface In this multilayer piezoelectric actuator element, slit-like voids are formed at predetermined intervals so as to enter the inside of the piezoelectric ceramic layer on the outer peripheral portion of the side surface of the laminate.

上記目的を達成するための第2の発明は、前記内部電極層と前記外部電極との電気的な接続を所定の間隔だけ連続的に同一極にした積層型圧電アクチュエータ素子である。   A second invention for achieving the above object is a multilayer piezoelectric actuator element in which the electrical connection between the internal electrode layer and the external electrode is continuously made to have the same polarity by a predetermined interval.

上記目的を達成するための第3の発明は、前記スリット状の空隙が形成された前記圧電セラミックス層をはさんで隣接する前記内部電極層の少なくとも2層以上を、前記外部電極との電気的な接続を連続的に同一極にした積層型圧電アクチュエータ素子である。   According to a third aspect of the present invention for achieving the above object, at least two or more of the internal electrode layers adjacent to each other with the piezoelectric ceramic layer formed with the slit-shaped voids are electrically connected to the external electrode. This is a stacked piezoelectric actuator element in which various connections are made continuously at the same pole.

上記目的を達成するための第4の発明は、前記スリット状の空隙が前記圧電セラミックスの焼結温度以下で燃焼・飛散する材料を前記圧電セラミックスのグリーンシートの表面に印刷し、積層後に焼結して形成した前記スリット状の空隙と前記外部電極が絶縁性の樹脂で覆われた積層型圧電アクチュエータ素子である。   According to a fourth aspect of the invention for achieving the above object, the material in which the slit-shaped gap is burned and scattered at a temperature lower than the sintering temperature of the piezoelectric ceramic is printed on the surface of the piezoelectric ceramic green sheet, and sintered after lamination. The laminated piezoelectric actuator element in which the slit-shaped gap formed in this way and the external electrode are covered with an insulating resin.

本発明によれば、電圧印加による積層型圧電アクチュエータ素子の伸縮や内部電極層の厚さの差により発生する応力を吸収および緩和するために所定の間隔であらかじめスリット状の空隙をセラミックス層の内部に形成する。また、所定の間隔で内部電極層と外部電極の接続を同一の極となるように接続することで、連続的な歪の蓄積を分断でき、積層型圧電アクチュエータ素子の中央部で最大となる応力を低減でき、圧電セラミックス層にかかる応力を緩和できる。   According to the present invention, in order to absorb and relieve the stress generated by the expansion and contraction of the multilayer piezoelectric actuator element due to voltage application and the difference in the thickness of the internal electrode layer, slit-like voids are previously formed in the ceramic layer at predetermined intervals. To form. In addition, by connecting the internal electrode layer and the external electrode so as to be the same pole at a predetermined interval, continuous strain accumulation can be divided, and the maximum stress at the center of the multilayer piezoelectric actuator element And stress applied to the piezoelectric ceramic layer can be relaxed.

また、スリット状の空隙を有する圧電セラミックス層を挟んで、隣接する内部電極と外部電極の電気的な接続が同一の極になるように配置して、積層することで、スリット状の空隙の先端部近傍から発生するクラックが積層方向に対し斜め方向に進展し、内部電極層に到達しても、電気的に同一な極に積層した内部電極層間には電界がかからないので、絶縁抵抗(IR)の低下を抑制できる。   In addition, by placing and laminating the piezoelectric ceramic layers having slit-like voids so that the electrical connection between adjacent internal electrodes and external electrodes is the same pole, the tip of the slit-like voids Insulation resistance (IR), since cracks generated from the vicinity of the part propagate in an oblique direction with respect to the stacking direction and reach the internal electrode layer, no electric field is applied between the internal electrode layers stacked on the same electrode. Can be suppressed.

更に、外部電極およびスリット状空隙を柔軟性のある絶縁性の樹脂で覆うことで、湿度環境に対する耐久性を向上できる。   Furthermore, the durability against humidity environment can be improved by covering the external electrode and the slit-shaped gap with a flexible insulating resin.

以上に示したように、大きな変位が長期間に渡って繰り返される厳しい駆動環境条件においても故障や絶縁性能が低下しない信頼性の高い素子構造を有する積層型圧電アクチュエータ素子の提供が可能になる。   As described above, it is possible to provide a stacked piezoelectric actuator element having a highly reliable element structure that does not deteriorate in failure or insulation performance even under severe driving environment conditions in which a large displacement is repeated over a long period of time.

図1に示した本発明の積層型圧電アクチュエータ素子は、板状の複数の圧電セラミックス層1aと板状の複数の内部電極層1bを積層してなる積層体1から構成され、内部電極層1bを積層体1の対向側面で接続した対になる外部電極3を備えている。積層方向に所定の間隔でスリット状の空隙2が形成されており、図1に示した上下の端面を除き、外部電極面および内部電極の露出している面は、全て外装し、絶縁性の樹脂4で覆われている。また、所定の間隔で、内部電極層と外部電極とが同一の極になるように接続している。   The multilayer piezoelectric actuator element of the present invention shown in FIG. 1 includes a laminated body 1 formed by laminating a plurality of plate-like piezoelectric ceramic layers 1a and a plurality of plate-like internal electrode layers 1b, and the internal electrode layer 1b. Are provided as a pair of external electrodes 3 connected on opposite sides of the laminate 1. Slit-shaped gaps 2 are formed at predetermined intervals in the stacking direction, and the external electrode surfaces and the exposed surfaces of the internal electrodes are all externally covered except for the upper and lower end surfaces shown in FIG. Covered with resin 4. Further, the internal electrode layer and the external electrode are connected so as to have the same pole at a predetermined interval.

本発明を実施するための最良の形態では、電圧印加による積層型圧電アクチュエータ素子の伸縮や内部電極厚さの差により発生する応力を空隙部で吸収および緩和するために所定の間隔であらかじめスリット状の空隙2を圧電セラミックス層1aの内部に形成している。ここで形成されたスリット状の空隙2は、分極工程もしくは駆動時に生じる積層型圧電アクチュエータ素子の伸縮により発生する応力を緩和できるが、形成されたスリット状の空隙2の先端部が内部電極層1bに到達する可能性があるので、積層型圧電アクチュエータ素子に要求される変位量の範囲内で、できるだけスリット状の空隙2を導入する部分の圧電セラミック層1aの厚さを厚くする。   In the best mode for carrying out the present invention, slits are formed in advance at predetermined intervals in order to absorb and relieve stress generated by the expansion and contraction of the multilayer piezoelectric actuator element due to voltage application and the difference in internal electrode thickness in the gap. Are formed in the piezoelectric ceramic layer 1a. The slit-shaped gap 2 formed here can relieve the stress generated by the expansion and contraction of the laminated piezoelectric actuator element that occurs during the polarization process or driving, but the tip of the formed slit-shaped gap 2 is the internal electrode layer 1b. Therefore, the thickness of the piezoelectric ceramic layer 1a where the slit-like gap 2 is introduced is made as thick as possible within the range of displacement required for the multilayer piezoelectric actuator element.

所定の間隔で内部電極層1bと外部電極3の接続が同一の極になるように接続することで、連続的な歪の蓄積を分断でき、積層型圧電アクチュエータ素子の中央部付近で最大となるストレスを低減でき、圧電セラミックス層1aにかかる応力を緩和できる。本発明を実施するための最良の形態では、電気的に同一な極にする位置は、1/2L,1/4L,3/4L(但し、積層型圧電アクチュエータ素子の活性な部分の長さをLとする)になる位置に配置するとその効果がより大きくなる。   By connecting the internal electrode layer 1b and the external electrode 3 so as to have the same pole at a predetermined interval, accumulation of continuous strain can be divided, and the maximum is near the center of the multilayer piezoelectric actuator element. Stress can be reduced and stress applied to the piezoelectric ceramic layer 1a can be relaxed. In the best mode for carrying out the present invention, the positions of the electrically identical poles are 1 / 2L, 1 / 4L, 3 / 4L (however, the length of the active portion of the laminated piezoelectric actuator element is If it is arranged at a position where L is set, the effect becomes greater.

また、スリット状の空隙2を有する圧電セラミックス層1aを挟んで隣接する内部電極層1bと外部電極3の電気的な接続が同一の極になるように配置し、積層することで、スリット状の空隙2の先端部近傍から発生するクラックが積層方向に対して斜めの方向に進展し、内部電極層1bに到達する場合においても、電気的に同一の極となるように積層した内部電極層間には電界がかからないので、電極材料のマイグレーション等を起こす可能性がなくなり、絶縁抵抗(IR)の低下を抑制できる。ここで、電気的に同一の極となるように積層した内部電極層1bを2層以上にするのは、万が一のクラックが発生しても、電極材料のマイグレーションがより起こりにくい構造にするためである。   In addition, the internal electrode layer 1b adjacent to the piezoelectric ceramic layer 1a having the slit-shaped gap 2 and the external electrode 3 are arranged so that the electrical connection is the same pole, and laminated, Even when a crack generated from the vicinity of the tip of the gap 2 propagates in an oblique direction with respect to the stacking direction and reaches the internal electrode layer 1b, it is formed between the internal electrode layers stacked so as to be electrically the same pole. Since no electric field is applied, there is no possibility of causing migration or the like of the electrode material, and a decrease in insulation resistance (IR) can be suppressed. Here, the reason why the internal electrode layer 1b laminated so as to be electrically the same pole is made to be two or more layers is to make the structure in which the migration of the electrode material is less likely to occur even if a crack occurs. is there.

なお、圧電積層セラミックスの焼結温度以下で焼き飛ぶ樹脂又はカーボン粉末等をペースト状にしたものを所定のパターンに印刷したグリーンシートを積層体内に挿入することで、容易にスリット状の空隙を形成できる(図1、図3参照)。   A slit-shaped gap can be easily formed by inserting a green sheet printed in a predetermined pattern into a paste of resin or carbon powder that burns below the sintering temperature of piezoelectric multilayer ceramics. (See FIGS. 1 and 3).

更に、外部電極およびスリット状の空隙を柔軟性のある絶縁性の樹脂で覆うことで、湿度環境に対する耐久性を向上できる。   Furthermore, the durability against the humidity environment can be improved by covering the external electrode and the slit-shaped gap with a flexible insulating resin.

本発明の製造方法について図面を用いて詳細に説明する。   The production method of the present invention will be described in detail with reference to the drawings.

図1は、本発明の積層型圧電アクチュエータ素子(実施形態1)を示す図で、図1(a)は斜視図、図1(b)は断面図、図1(c)は電極パターンを示す図である。実施形態1は、スリット導入と同極配置をした例である。図2は、本発明の積層型圧電アクチュエータ素子(実施形態2)を示す図で、図2(a)は斜視図、図2(b)は断面図、図2(c)は電極パターンを示す図である。実施形態2は、同極配置をした例である。また、図3は、本発明のスリット導入のために挿入される3種類のカーボン印刷パターンの例を示す図である。図3(a)は、2辺にスリットを導入した例を示し、図3(b)は、4辺にスリットを導入した例を示し、図3(c)は、四隅にスリットを導入した例を示す図である。図3は、図1のスリット導入の典型例である。   FIG. 1 is a view showing a multilayer piezoelectric actuator element (Embodiment 1) according to the present invention. FIG. 1 (a) is a perspective view, FIG. 1 (b) is a sectional view, and FIG. 1 (c) shows an electrode pattern. FIG. The first embodiment is an example in which the same polarity arrangement as the slit introduction is performed. 2A and 2B are diagrams showing a multilayer piezoelectric actuator element (Embodiment 2) according to the present invention. FIG. 2A is a perspective view, FIG. 2B is a sectional view, and FIG. 2C is an electrode pattern. FIG. The second embodiment is an example in which the same polarity is arranged. Moreover, FIG. 3 is a figure which shows the example of three types of carbon printing patterns inserted for the slit introduction of this invention. 3A shows an example in which slits are introduced on two sides, FIG. 3B shows an example in which slits are introduced on four sides, and FIG. 3C shows an example in which slits are introduced on four corners. FIG. FIG. 3 is a typical example of the slit introduction of FIG.

本発明では、ニッケル・ニオブ酸鉛を主成分とする圧電セラミクス粉末を溶媒中に分散した後、バインダーを加えて泥しょうを作製した。この泥しょうをキャリアテープ上に成膜して厚さ90〜130μmのグリーンシートとした。このシートにAg/Pd内部電極ペーストを印刷した後に、乾燥し、所定の形状に打ち抜いて金型内に積層し、充填した後に、熱圧着で一体化した積層体を作製した。この場合、積層方向に所定の間隔で、内部電極パターンの外周部にスリット状の空隙2を配置できるようにペースト状のカーボン粉末を印刷した膜を挿入した。   In the present invention, a piezoelectric ceramic powder mainly composed of nickel / lead niobate was dispersed in a solvent, and a binder was added to prepare a slurry. This mud was formed on a carrier tape to obtain a green sheet having a thickness of 90 to 130 μm. After printing the Ag / Pd internal electrode paste on this sheet, it was dried, punched into a predetermined shape, laminated in a mold, filled, and then a laminated body integrated by thermocompression bonding was produced. In this case, a film on which paste-like carbon powder was printed was inserted at predetermined intervals in the stacking direction so that slit-like voids 2 could be arranged on the outer peripheral portion of the internal electrode pattern.

なお、活性な内部電極層1bを20〜60層積層する毎に1枚のスリット状の空隙2を挿入する間隔とした。また、カーボン印刷膜の上下に隣接する内部電極の印刷膜が電気的に同一の極となるように内部電極層を配列し、積層した。   In addition, it was set as the space | interval which inserts the slit-shaped space | gap 2 every time 20-60 layers of active internal electrode layers 1b are laminated | stacked. Further, the internal electrode layers were arranged and laminated so that the printed films of the internal electrodes adjacent to the upper and lower sides of the carbon printed film were electrically the same pole.

このように作製したカーボン印刷層を含む圧電セラミックス層1aと内部電極層1bの積層体1を焼結体時の寸法で5×5mmの断面形状となるように切断した。切断した積層型圧電アクチュエータ素子を大気中で450℃まで加熱して、樹脂成分を飛ばした後、1050〜1150℃の温度で2〜6時間、焼結した。   The laminated body 1 of the piezoelectric ceramic layer 1a including the carbon printing layer and the internal electrode layer 1b thus produced was cut so as to have a cross-sectional shape of 5 × 5 mm in the dimension at the time of the sintered body. The cut multilayer piezoelectric actuator element was heated to 450 ° C. in the air to remove the resin component, and then sintered at a temperature of 1050 to 1150 ° C. for 2 to 6 hours.

得られた積層体1の焼結体の内部電極層1bが露出している面をラッピング加工した後、加工面に内部電極層1bとの導通のための銀電極を印刷し、塗布して、焼き付けた。   After lapping the surface where the internal electrode layer 1b of the sintered body of the obtained laminate 1 is exposed, a silver electrode for conduction with the internal electrode layer 1b is printed on the processed surface and applied, I baked it.

次に、外部電極を形成した積層型圧電アクチュエータ素子をエポキシ粉末で静電塗装し、150℃、30〜60分間の焼き付け処理を行い、積層方向の上下端面を除く外周面に、絶縁性の樹脂層4をコーティングした。樹脂の外装まで施した積層型圧電アクチュエータ素子を大気中で、2kV/mm以上の電界をかけて、分極処理を行い、積層型圧電アクチュエータ素子を作製した。   Next, the laminated piezoelectric actuator element on which the external electrode is formed is electrostatically coated with an epoxy powder, subjected to a baking treatment at 150 ° C. for 30 to 60 minutes, and an insulating resin is formed on the outer peripheral surface excluding the upper and lower end surfaces in the laminating direction. Layer 4 was coated. A multilayer piezoelectric actuator element was fabricated by applying an electric field of 2 kV / mm or more in the atmosphere to the multilayer piezoelectric actuator element subjected to the resin exterior, and applying a polarization treatment.

なお、積層型圧電アクチュエータ素子のペースト状のカーボン印刷膜を挿入した面内には、分極処理後に、積層型圧電アクチュエータ素子の外周部に幅5〜25μmの隙間が形成された。   In addition, a gap of 5 to 25 μm in width was formed in the outer peripheral portion of the multilayer piezoelectric actuator element after the polarization treatment in the surface of the multilayer piezoelectric actuator element into which the pasty carbon printed film was inserted.

最後に、作製した積層型圧電アクチュエータ素子(実施形態1および実施形態2)を40℃、90%RHの雰囲気中でDC150Vの耐湿負荷試験を行い、絶縁抵抗の経時変化を従来構造の積層型圧電アクチュエータ素子(図4参照)と比較した。   Finally, the manufactured laminated piezoelectric actuator element (Embodiment 1 and Embodiment 2) was subjected to a moisture resistance load test of DC 150 V in an atmosphere of 40 ° C. and 90% RH, and the change in insulation resistance with time was measured with a conventional laminated piezoelectric element. Comparison was made with an actuator element (see FIG. 4).

絶縁抵抗の経時変化の判定は、絶縁抵抗が1MΩ未満に低下した積層型圧電アクチュエータ素子を不良とし、250hr経過後の不良数で判定した。従来構造の積層型圧電アクチュエータ素子(図4参照)では、50個中12個の不良が発生したのに対して、本発明の構造の積層型圧電アクチュエータ素子〔実施形態1および実施形態2〕では50個中、不良の発生はいずれもゼロであった(図1、図2参照)。   The change of the insulation resistance with time was determined by determining the number of defects after 250 hours from the failure of the stacked piezoelectric actuator element having an insulation resistance lower than 1 MΩ. In the multilayer piezoelectric actuator element having the conventional structure (see FIG. 4), 12 defects out of 50 occurred, whereas in the multilayer piezoelectric actuator element having the structure of the present invention [Embodiment 1 and Embodiment 2]. The occurrence of defects was zero among the 50 pieces (see FIGS. 1 and 2).

以上に示したように、本発明に係る積層型圧電アクチュエータ素子は、大きな変位が長期間に渡って繰り返される厳しい駆動環境条件においても故障や絶縁性能が低下しない信頼性の高い積層型圧電アクチュエータ素子構造を有する。   As described above, the multilayer piezoelectric actuator element according to the present invention is a highly reliable multilayer piezoelectric actuator element that does not deteriorate in failure or insulation performance even under severe driving environment conditions in which a large displacement is repeated over a long period of time. It has a structure.

本発明の積層型圧電アクチュエータ素子(実施形態1)を示す図。図1(a)は斜視図。図1(b)は断面図。図1(c)は電極パターンを示す図。The figure which shows the lamination type piezoelectric actuator element (Embodiment 1) of this invention. FIG. 1A is a perspective view. FIG.1 (b) is sectional drawing. FIG. 1C shows an electrode pattern. 本発明の積層型圧電アクチュエータ素子(実施形態2)を示す図。図2(a)は斜視図。図2(b)は電極パターンを示す図。The figure which shows the lamination type piezoelectric actuator element (Embodiment 2) of this invention. FIG. 2A is a perspective view. FIG. 2B shows an electrode pattern. 本発明のスリット導入のために挿入される3種類のカーボン印刷パターンの例を示す図。図3(a)は、2辺にスリットを導入した例を示す図、図3(b)は、4辺にスリットを導入した例を示す図、図3(c)は、四隅にスリットを導入した例を示す図。The figure which shows the example of three types of carbon printing patterns inserted for slit introduction of this invention. 3A is a diagram showing an example in which slits are introduced on two sides, FIG. 3B is a diagram showing an example in which slits are introduced on four sides, and FIG. 3C is a diagram showing slits on four corners. FIG. 従来構造の積層型圧電アクチュエータ素子を示す斜視図。The perspective view which shows the lamination type piezoelectric actuator element of a conventional structure.

符号の説明Explanation of symbols

1 積層体
1a 圧電セラミックス層
1b 内部電極層
2 スリット状の空隙
3 外部電極(焼き付け銀)
4 絶縁性の樹脂
DESCRIPTION OF SYMBOLS 1 Laminated body 1a Piezoelectric ceramic layer 1b Internal electrode layer 2 Slit-shaped space | gap
3 External electrode (baked silver)
4 Insulating resin

Claims (4)

圧電セラミックスを用いて構成された圧電セラミックス層と内部電極層とが交互に積層された積層体を備え、前記内部電極層が露出する主面ともう一方の主面に設けた1対の外部電極と前記内部電極層とが各々1層おきに接続された積層型圧電アクチュエータ素子において、前記主面と前記もう一方の主面に垂直な方向にある前記積層体の側面の外周部に、前記圧電セラミックス層の内部に入り込むように所定の間隔でスリット状の空隙を形成したことを特徴とする積層型圧電アクチュエータ素子。   A pair of external electrodes provided on a main surface from which the internal electrode layer is exposed and the other main surface, comprising a laminate in which piezoelectric ceramic layers and internal electrode layers configured using piezoelectric ceramics are alternately stacked. And the internal electrode layer are connected to every other layer, the piezoelectric element on the outer peripheral portion of the side surface of the multilayer body in a direction perpendicular to the main surface and the other main surface. A laminated piezoelectric actuator element characterized in that slit-like voids are formed at predetermined intervals so as to enter the inside of the ceramic layer. 前記内部電極層と前記外部電極との電気的な接続を所定の間隔だけ連続的に同一極にしたことを特徴とする請求項1記載の積層型圧電アクチュエータ素子。   2. The multilayer piezoelectric actuator element according to claim 1, wherein electrical connection between the internal electrode layer and the external electrode is made the same pole continuously by a predetermined interval. 前記スリット状の空隙が形成された前記圧電セラミックス層をはさんで隣接する前記内部電極層の少なくとも2層以上を、前記外部電極との電気的な接続を連続的に同一極にしたことを特徴とする請求項2記載の積層型圧電アクチュエータ素子。   At least two or more of the internal electrode layers adjacent to each other with the piezoelectric ceramic layer formed with the slit-like voids are continuously connected to the external electrode with the same polarity. The multilayer piezoelectric actuator element according to claim 2. 前記スリット状の空隙が前記圧電セラミックスの焼結温度以下で燃焼・飛散する材料を前記圧電セラミックスのグリーンシートの表面に印刷し、積層後に焼結して形成した前記スリット状の空隙と前記外部電極が絶縁性の樹脂で覆われたことを特徴とする請求項1又は請求項2又は請求項3記載の積層型圧電アクチュエータ素子。   The slit-shaped gap formed by printing the material on which the slit-shaped gap burns and scatters below the sintering temperature of the piezoelectric ceramic on the surface of the green sheet of the piezoelectric ceramic, and sintering after lamination. 4. The multilayer piezoelectric actuator element according to claim 1, wherein the laminated piezoelectric actuator element is covered with an insulating resin.
JP2005172435A 2005-06-13 2005-06-13 Multilayer piezoelectric actuator device Withdrawn JP2006351602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172435A JP2006351602A (en) 2005-06-13 2005-06-13 Multilayer piezoelectric actuator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005172435A JP2006351602A (en) 2005-06-13 2005-06-13 Multilayer piezoelectric actuator device

Publications (1)

Publication Number Publication Date
JP2006351602A true JP2006351602A (en) 2006-12-28

Family

ID=37647177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172435A Withdrawn JP2006351602A (en) 2005-06-13 2005-06-13 Multilayer piezoelectric actuator device

Country Status (1)

Country Link
JP (1) JP2006351602A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105381A1 (en) * 2007-02-26 2008-09-04 Denso Corporation Laminated piezoelectric element
JP2009076760A (en) * 2007-09-21 2009-04-09 Denso Corp Laminated piezoelectric element and manufacturing method therefor
JP2009200359A (en) * 2008-02-22 2009-09-03 Denso Corp Laminated piezoelectric element
JP2010515249A (en) * 2006-12-29 2010-05-06 シーメンス アクチエンゲゼルシヤフト Piezoceramic multilayer actuator and manufacturing method thereof
US20100327704A1 (en) * 2006-10-20 2010-12-30 Kyocera Corporation Piezoelectric Actuator Unit and Method for Manufacturing the Same
JP2012019178A (en) * 2010-07-11 2012-01-26 Nikko Co Piezoelectric element and piezoelectric element manufacturing method
JP2012064726A (en) * 2010-09-15 2012-03-29 Murata Mfg Co Ltd Piezoelectric vibration element and manufacturing method thereof
JP2015050289A (en) * 2013-08-30 2015-03-16 太平洋セメント株式会社 Piezoelectric element
AT523510A1 (en) * 2020-01-29 2021-08-15 Piezocryst Advanced Sensorics Structured, piezoelectric sensor element
CN117412660A (en) * 2023-12-14 2024-01-16 乌镇实验室 Co-fired multilayer piezoelectric actuator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100327704A1 (en) * 2006-10-20 2010-12-30 Kyocera Corporation Piezoelectric Actuator Unit and Method for Manufacturing the Same
US8410663B2 (en) * 2006-10-20 2013-04-02 Kyocera Corporation Piezoelectric actuator unit having a stress relieving layer and method for manufacturing the same
US8106565B2 (en) * 2006-12-29 2012-01-31 Siemens Aktiengesellschaft Piezoceramic multilayer actuator with stress relief sections and insulation layers in sections without relief zones
JP2010515249A (en) * 2006-12-29 2010-05-06 シーメンス アクチエンゲゼルシヤフト Piezoceramic multilayer actuator and manufacturing method thereof
JP2008244458A (en) * 2007-02-26 2008-10-09 Denso Corp Laminated piezoelectric element
WO2008105381A1 (en) * 2007-02-26 2008-09-04 Denso Corporation Laminated piezoelectric element
JP2009076760A (en) * 2007-09-21 2009-04-09 Denso Corp Laminated piezoelectric element and manufacturing method therefor
JP2009200359A (en) * 2008-02-22 2009-09-03 Denso Corp Laminated piezoelectric element
JP2012019178A (en) * 2010-07-11 2012-01-26 Nikko Co Piezoelectric element and piezoelectric element manufacturing method
JP2012064726A (en) * 2010-09-15 2012-03-29 Murata Mfg Co Ltd Piezoelectric vibration element and manufacturing method thereof
JP2015050289A (en) * 2013-08-30 2015-03-16 太平洋セメント株式会社 Piezoelectric element
AT523510A1 (en) * 2020-01-29 2021-08-15 Piezocryst Advanced Sensorics Structured, piezoelectric sensor element
AT523510B1 (en) * 2020-01-29 2021-10-15 Piezocryst Advanced Sensorics Structured, piezoelectric sensor element
CN117412660A (en) * 2023-12-14 2024-01-16 乌镇实验室 Co-fired multilayer piezoelectric actuator
CN117412660B (en) * 2023-12-14 2024-04-16 乌镇实验室 Co-fired multilayer piezoelectric actuator

Similar Documents

Publication Publication Date Title
JP2006351602A (en) Multilayer piezoelectric actuator device
US6545395B2 (en) Piezoelectric conversion element having an electroded surface with a non-electrode surface portion at an end thereof
WO2007031700A1 (en) Piezoelectric actuator
JP2007173456A (en) Stacked piezoelectric bimorph element, and method of manufacturing same
JPH08274381A (en) Stacked piezoelectric actuator and its manufacture
JPH04159785A (en) Electrostrictive effect element
JPH11341838A (en) Laminated-type piezoelectric actuator
JP3668072B2 (en) Multilayer piezoelectric actuator
JP2009530799A (en) Monolithic multilayer actuator manufacturing method and monolithic multilayer actuator
JPH05218519A (en) Electrostrictive effect element
JP6076051B2 (en) Piezoelectric element
JP3881474B2 (en) Multilayer piezoelectric actuator
JPH0387076A (en) Piezoelectric actuator and manufacture thereof
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
JP2748830B2 (en) Multilayer electrostrictive effect element
JP2000261055A (en) Piezoelectric actuator
JP2884378B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP3567330B2 (en) Multilayer type piezoelectric ceramic actuator
JP2791838B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP2010199272A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrating body
JPH0456179A (en) Lamination type piezoelectric element
JP3358669B2 (en) Multilayer type piezoelectric ceramic actuator
JP2004335877A (en) Resin mold layered ceramic capacitor
JP6898167B2 (en) Laminated piezoelectric element
JP2009016617A (en) Stacked piezoelectric element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110524