JP3881474B2 - Multilayer piezoelectric actuator - Google Patents

Multilayer piezoelectric actuator Download PDF

Info

Publication number
JP3881474B2
JP3881474B2 JP15157799A JP15157799A JP3881474B2 JP 3881474 B2 JP3881474 B2 JP 3881474B2 JP 15157799 A JP15157799 A JP 15157799A JP 15157799 A JP15157799 A JP 15157799A JP 3881474 B2 JP3881474 B2 JP 3881474B2
Authority
JP
Japan
Prior art keywords
internal electrode
electrode
actuator
insulator
piezoelectric actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15157799A
Other languages
Japanese (ja)
Other versions
JP2000340849A (en
Inventor
克彦 鬼塚
誠 東別府
剛 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP15157799A priority Critical patent/JP3881474B2/en
Publication of JP2000340849A publication Critical patent/JP2000340849A/en
Application granted granted Critical
Publication of JP3881474B2 publication Critical patent/JP3881474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、積層型圧電アクチュエータに係わり、例えば、自動車用燃料噴射弁、光学装置等の精密位置決め装置や振動防止用の駆動素子等に使用される積層型圧電アクチュエータに関するものである。
【0002】
【従来技術】
従来、電歪効果を利用して大きな変位量を得るために、圧電体と内部電極層を交互に積層した積層型圧電アクチュエータが提案されている。積層型圧電アクチュエータには、同時焼成タイプと圧電磁器と内部電極板を交互に積層したスタックタイプの2種類に分類されており、低電圧化、製造コスト低減の面から考慮すると、同時焼成タイプの積層型圧電アクチュエータが薄層化に対して有利であるために、その優位性を示しつつある。
【0003】
同時焼成タイプの積層型圧電アクチュエータとして、例えば、特公平4−51992号公報に記載されているように、電歪効果を示す圧電体と内部電極とが交互に積層され、一体に焼成された積層焼結体からなるアクチュエータ本体であって、各内部電極の形状が圧電体の積層方向に垂直な断面形状のうち、その外周部を含む一部分が除去された形状であり、また、各内部電極はその除去された部分が積層方向に対して、互いに隣り合う内部電極の間では重ならず、一層おきの内部電極の間では重なるように積層されており、アクチュエータ本体の側面上の前記除去された部分に対応する位置には、各内部電極を一層おきに接続する外部電極がそれぞれ形成されたものが開示されている。
【0004】
また、特開平4−237172号公報には、アクチュエータ本体の側面に露出した内部電極の端部に一層おきにガラスからなる絶縁層を被覆し、外部電極には、絶縁層と同じピッチで、かつ絶縁層の断面よりやや大きい凹部を形成し、この凹部内に絶縁層を収容するようにして、かつ、凹部間の凸部に、絶縁層が形成されていない内部電極の端部を導電性接着剤で接着することにより、外部電極と一方の内部電極との電気的接続を確保し、他方の内部電極との絶縁性を確保した積層型圧電アクチュエータが開示されている。
【0005】
【発明が解決しようとする課題】
ところで、近年においては、小型の圧電アクチュエータで大きな圧力下において大きな変位量を確保するため、より高い電界を印加し、長期間連続駆動させることが行われているが、高電界、高圧力下で長期間連続駆動させた場合、圧電体間に形成された内部電極と正極、負極用の外部電極との間で剥離が発生し、一部の圧電素子に電圧供給されなくなり、駆動中に変位特性が変化するという問題があった。
【0006】
また、特開平4−237172号公報に開示された積層型圧電アクチュエータでは、アクチュエータ本体の側面に露出した内部電極の端部には一層おきにガラスからなる絶縁層が被覆され、内部電極とその両側の圧電体が強固に接合されており、この絶縁層が外部電極の凹部内に収容されて、外部電極と内部電極との絶縁性が確保されていたので、高電界、高圧力下で長期間連続駆動させた場合、ガラスからなる絶縁層に割れが生じ、この割れを介して内部電極と外部電極との間でショートし、一部の圧電体に電圧が供給されなくなり、駆動中に変位特性が変化するという問題があった。
【0007】
即ち、アクチュエータ本体は、圧電体と内部電極との積層方向に伸縮するため、内部電極の端部およびその近傍の圧電体に設けられた高ヤング率のガラスからなる絶縁層が、長期間連続駆動による伸縮動作に耐えきれずに破壊され、この破壊部分を介して内部電極と外部電極間でショートが発生し易いという問題があった。尚、圧電体および内部電極の端部に導電性接着剤が接着しているが、導電性接着剤は金属が主成分であり、低ヤング率であるため、ガラスからなる絶縁層よりは問題とならない。
【0008】
本発明は、高い印加電界で高速で長期間連続作動する場合でも、一方の内部電極と外部電極との接続を十分に確保できるとともに、他方の内部電極と外部電極との絶縁を確実に確保できる積層型圧電アクチュエータを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の積層型圧電アクチュエータは、複数の圧電体と複数の内部電極とを交互に積層してなり、少なくとも2つの側面に前記内部電極の端部が露出したアクチュエータ本体と、該アクチュエータ本体の2つの側面にそれぞれ形成され、前記内部電極の端部が交互に接続する外部電極とを具備した積層型圧電アクチュエータであって、前記外部電極、導電板に複数の凹部所定間隔を置いて形成されているとともに、前記凹部に絶縁体収容されており、前記絶縁体が前記内部電極の端部に接合されることなく交互に当接され、かつ前記導電板の凹部間における導電凸部、前記絶縁体と非当接の前記内部電極の端部に導電性接着剤で接着されたものである。ここで、凹部内面に酸化物膜が形成されていることが望ましい。
【0010】
【作用】
本発明の積層型圧電アクチュエータでは、外部電極を、導電板に所定間隔を置いて凹部を複数形成するとともに、該凹部に絶縁体を収容して構成されており、一層置きの内部電極の端部に絶縁体を接合させることなく当接させるとともに、絶縁体と非当接の内部電極の端部に、導電板の凹部間に形成された導電凸部を導電性接着剤で接着しているため、絶縁体は内部電極の端部および圧電体に当接しており、アクチュエータ本体が、圧電体と内部電極との積層方向に伸縮しても絶縁体には応力は殆ど作用せず、高電界、高圧力下で長期間連続駆動させた場合でも絶縁体が破損することがない。このため、本来、絶縁されるべき外部電極と内部電極との間のショートの発生を防止でき、一方の内部電極と外部電極の電気的接続と、他方の内部電極と外部電極の絶縁性を確保でき、高速の連続駆動に対しても長時間の運転が可能となる。
【0011】
また、凹部内面に酸化物膜を形成することにより、凹部内に収容された絶縁体が破損した場合でも、内部電極と外部電極との放電が、酸化物膜により阻止され、内部電極と外部電極間の高い絶縁性を確保できる。
【0012】
【発明の実施の形態】
図1は本発明の積層型圧電アクチュエータの斜視図であり、図2は一部を拡大して示す断面図であり、図3は外部電極の一部を拡大して示す断面図である。
【0013】
図1において、符号1は、複数の圧電体2と複数の内部電極3とを交互に積層してなる四角柱状のアクチュエータ本体を示すもので、このアクチュエータ本体1の対向する2つの側面には、それぞれ外部電極4が形成されている。
【0014】
圧電体2は、例えば、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3 (以下PZTと略す)或いは、チタン酸バリウムBaTiO3 を主成分とする圧電セラミック材料などが使用されるが、これらに限定されるものではなく、圧電性を有するセラミックスであれば何れでも良い。この圧電体材料としては、圧電歪み定数d33が高いものが望ましい。また、圧電体2の厚み、つまり内部電極3間の距離は、小型化および高い電界を印加するという点から0.03〜0.2mmであることが望ましい。
【0015】
内部電極3は、アクチュエータ本体1の4つの側面全てに端部が露出しており、一対の外部電極4に内部電極3の端部が交互に接続され、同一極性の内部電極3は同一外部電極4に接続されている。
【0016】
また、アクチュエータ本体1の積層方向の両端面には、アクチュエータ本体1を機械的に保持し、発生するパワーを外部へ伝達するための不活性部5が積層され、接合されている。
【0017】
そして、本発明の圧電アクチュエータでは、外部電極4が、導電板6に所定間隔を置いて凹部7を複数形成するとともに、該凹部7に絶縁体8を収容して構成されており、外部電極4の絶縁体8が内部電極3の端部に交互に当接され、一方、導電板6の凹部7間における導電凸部9が、絶縁体8と非当接の内部電極3の端部に導電性接着剤10により接着されている。つまり、外部電極4は、一方の内部電極3との電気的接続を確保し、他方の内部電極3との絶縁性を確保するものである。
【0018】
導電板6は、導電性があり、加工可能であればいずれの金属でもかまわないが、好ましくは、銀合金、銅合金、ステンレス、Ni−Fe合金、Ni−Fe−Co合金等により形成されることが望ましい。
【0019】
凹部7は、アクチュエータ本体1の同一側面に露出した内部電極3の端部と、一層おいた内部電極3の端部との間隔、つまり、同一極性の内部電極3間の距離を置いて形成されており、その積層方向の幅は、圧電体2とほぼ同一とされている。凹部7の形状は断面が四角柱状とされているが、断面が円形状であっても良い。
【0020】
絶縁体8は、例えば、ガラス、ガラセラ、エポキシ樹脂、シリコーンゴムなどの絶縁性材料からなり、導電板6の凹部7に絶縁性材料を充填し、硬化することにより得られる。この絶縁体8は、図3に示すように、導電板6の導電凸部9の表面から突出しており、この絶縁体8が内部電極3の端部に、接合することなく当接している。絶縁体8の形状は、断面が四角形状とされているが、断面が円形状であっても良い。尚、絶縁体8としてガラスを用いる場合には、ガラスペーストを予め導電体6の凹部7に充填して絶縁体8を形成し、この後、導電凸部9がアクチュエータ本体1の側面に接合される。
【0021】
導電性接着剤10は、例えば、Ag粉末を40〜60重量%と、PbO−SiO2 −ZrO2 −B2 3 を主成分とするガラス成分40〜60重量%とからペーストを用いて形成される。導電凸部9に形成される導電性接着剤10は、内部電極3の端部と強固に接合させるために、内部電極材料と拡散接合しやすい材料であることが望ましい。内部電極3がAgを含む材料の場合、導電性接着剤10の主成分はAgであることが望ましい。更に接合を強固にするために、内部電極材料に含まれるガラス成分と同一系統のガラス成分を含んでいることが望ましい。尚、導電性接着剤10として、導電性シリコンゴム等の低ヤング率材料を用いることにより、高速駆動時の導電性接着剤10の破損を防止できる。
【0022】
尚、外部電極4の凹部7内面に酸化物膜11を形成しても良い。即ち、凹部7の内面と絶縁体8との間に酸化物膜11を形成することにより、より絶縁性を確保できる。
【0023】
以上のように構成された積層型圧電アクチュエータは、以下のプロセスにより製造される。先ず、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3 などの圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダーと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み30〜200μmのセラミックグリーンシートを作製する。
【0024】
このグリーンシートの片面に内部電極となる導電性ペーストをスクリーン印刷法により1〜10μmの厚みに印刷する。この導電性ペーストを乾燥させた後、導電性ペーストが塗布された複数のグリーンシートを所定の枚数だけ積層し、この積層体の両側に、導電性ペーストが塗布されていないグリーンシートを積層する。
【0025】
次に加圧を行いながら、100〜200℃で加熱を行い、積層体を一体化する。一体化された積層体は所定の大きさに切断され、400〜800℃で5〜40時間、脱バインダが行われ、900〜1100℃、2〜5時間で本焼成が行われ、アクチュエータ本体1が作製される。このアクチュエータ本体1の4側面には、内部電極3の端部が露出している。
【0026】
一方、外部電極4を、導電板6に所定間隔を置いて複数の凹部7を形成し、これらの凹部7に、例えば、ガラスからなる絶縁性材料のペーストを充填し、乾燥することにより絶縁体8を収容するとともに、導電板6の凹部7間における導電凸部9に導電性接着剤10が塗布され、形成されている。この状態では、導電性接着剤10は、絶縁体8よりも外側に突出している。
【0027】
そして、外部電極4の導電性接着剤10を内部電極3の端部に当接し、加熱接合もしくはレーザー溶接により、外部電極4の導電凸部9が、内部電極3の端部と導電性接着剤10を介して接着されるとともに、外部電極4の絶縁体8が、導電凸部9が接続されていない内部電極3の端部と当接することになる。
【0028】
この後、図示しないが、アクチャエータの周囲に、デイッピング等の方法により、シリコンゴム等の被覆材で被覆し、図1に示したように、正極用外部電極、負極用外部電極にリード線15を接続し、正極、負極に0.1〜3kVの分極電圧を印加し、アクチュエータ全体を分極処理することで、最終的な積層型圧電アクチュエータを得る。
【0029】
尚、アクチャエータの周囲の隅々までシリコンゴム等の被覆材で被覆するために、周囲を真空状態にすることが行われているが、この際に、外部電極4の絶縁体8と、内部電極3の端部や圧電体2との間にシリコンゴム等の被覆材が浸入することがある。
【0030】
以上のように構成された積層型圧電アクチュエータでは、絶縁体8は内部電極3の端部および圧電体2に当接しており、アクチュエータ本体1が、圧電体2と内部電極3との積層方向に伸縮しても絶縁体8には応力は殆ど作用せず、高電界、高圧力下で長期間連続駆動した場合でも絶縁体8が破損することがなく、高速の連続駆動に対しても長時間運転できる。
【0031】
さらに、全体をシリコンゴム等の絶縁被覆材によって被覆することにより、環境からの水分の進入を防止できる。従って、使用する電極部材間のエレクトロマイグレーションの発生を抑制し、電極接続の信頼性を確保することができる。
【0032】
尚、本発明の積層型圧電アクチュエータは四角柱、六角柱等どのような多角柱形状であっても良いが、切断の容易性から四角柱状が望ましい。
【0033】
【実施例】
PZTを主成分とする厚み0.12mmのグリーンシートにAg/Pdを主成分とする内部電極ペーストを厚み2μmで印刷形成した。内部電極ペーストが塗布されたグリーンシートを300枚積層し、この後、両面に内部電極ペーストが塗布されていないグリーンシートを積層し、加熱接合して一体化した。
【0034】
積層体を縦10mm×横10mm×高さ30mmになるように切断し、最高温度700〜800℃、20〜30時間で脱バインダを行った。その後、最高温度900℃〜1100℃で3〜6時間焼成を行い、アクチュエータ本体を得た。
【0035】
次に、図2に示した形状で、30mm×2mmで厚さ0.4mmのステンレス製の導電板の表面に、0.2mmおきに、幅2mmの凹部を形成し、これらの凹部に、硼珪酸系ガラスからなる絶縁性材料を充填し、絶縁体を形成するとともに、凹部間の導電凸部にAgとガラスからなる導電性接着剤が塗布され、外部電極を形成した。
【0036】
この外部電極を、アクチュエータ本体の側面に位置あわせした後、外部電極の上部に重りを乗せて、600℃、30分で加熱接着した。この後、圧電体2の外周部、外部電極4と内部電極1との間に隙間がないようにシリコンゴムを充填した。これを80℃のシリコンオイル中に置き、正極および負極に3kV/mmの直流電界を30分間印加して分極処理を行ない、本発明の積層型圧電アクチュエータを得た。
【0037】
得られた積層型圧電アクチュエータに200Vの直流電圧を印加した結果、40μmの変位量が得られた。更にこのアクチュエータに0〜+200Vの交流電界を50Hzの周波数にて印加した結果、印加回数5×108 回まで40μmの変位量を維持した。さらに、本発明の積層型圧電アクチュエータ10個を湿度95%の大気中で、0〜+200Vの交流電界を50Hzの周波数にて1×108 回印加した場合でも、全く放電が生じず、破損もしなかった。
【0038】
また、内部電極の端部に一層おきにガラス層が被覆されており、外部電極は、ガラス層と同じピッチで凹部を有しており、この凹部内にガラス層を収容するように位置合わせし、凹部間の凸部をガラス層が形成されていない内部電極の端部に導電性接着剤で接着した、比較例の積層型圧電アクチュエータを作製した。
【0039】
上記と同様に、200Vの直流電圧を印加した結果、40μmの変位量が得られた。更にこのアクチュエータに0〜+200Vの交流電界を50Hzの周波数にて印加した結果、印加回数5×108 回まで40μmの変位量を維持した。さらに、この積層型圧電アクチュエータ10個を湿度95%の大気中で、0〜+200Vの交流電界を50Hzの周波数にて1×106 回印加したところ、沿面放電のため8個が破損した。破損個所を観察したところ、内部電極の端部を被覆しているガラス層に割れが生じており、この割れを介して内部電極の端部と外部電極の凹部内面が放電し、沿面放電したことを確認した。
【0040】
尚、変位量の測定は、試料を防振台上に固定し、試料上面にアルミニウム箔を張り付けて、レーザー変位計により、素子の中心部及び周囲部3箇所で測定した値の平均値で評価した。
【0041】
【発明の効果】
本発明の積層型圧電アクチュエータでは、外部電極の絶縁体は内部電極の端部および圧電体に当接しており、アクチュエータ本体が、圧電体と内部電極との積層方向に伸縮しても絶縁体には応力は殆ど作用せず、高電界、高圧力下で長期間連続駆動させた場合でも絶縁体が破損することがなく、本来、絶縁されるべき外部電極と内部電極との間のショートの発生を防止でき、高速の連続駆動に対しても長時間運転することができる。
【図面の簡単な説明】
【図1】本発明の四角柱状の積層型圧電アクチュエータを示す斜視図である。
【図2】図1の一部を拡大して示す断面図である。
【図3】外部電極を示す断面図である。
【符号の説明】
1・・・アクチュエータ本体
2・・・圧電体
3・・・内部電極
4・・・外部電極
6・・・導電板
7・・・凹部
8・・・絶縁体
9・・・導電凸部
10・・・導電性接着剤
11・・・酸化物膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer piezoelectric actuator, and relates to a multilayer piezoelectric actuator used for, for example, a precision positioning device such as a fuel injection valve for an automobile and an optical device, a drive element for preventing vibration, and the like.
[0002]
[Prior art]
Conventionally, in order to obtain a large amount of displacement using the electrostrictive effect, a multilayer piezoelectric actuator in which piezoelectric bodies and internal electrode layers are alternately stacked has been proposed. Multi-layer piezoelectric actuators are classified into two types: simultaneous firing type and stack type in which piezoelectric ceramics and internal electrode plates are alternately stacked. Since the laminated piezoelectric actuator is advantageous for thinning, its superiority is being shown.
[0003]
As a simultaneous firing type laminated piezoelectric actuator, for example, as described in Japanese Examined Patent Publication No. 4-51992, a piezoelectric body and internal electrodes exhibiting an electrostrictive effect are alternately laminated and integrally fired. It is an actuator body made of a sintered body, and the shape of each internal electrode is a shape in which a part including the outer peripheral portion is removed from the cross-sectional shape perpendicular to the stacking direction of the piezoelectric body. The removed portion is laminated so that it does not overlap between adjacent internal electrodes in the stacking direction but overlaps between every other internal electrode, and the removed portion on the side surface of the actuator body is removed. In the position corresponding to the portion, there is disclosed one in which external electrodes for connecting the internal electrodes every other layer are formed.
[0004]
Japanese Patent Laid-Open No. 4-237172 discloses an insulating layer made of glass every other end of the internal electrode exposed on the side surface of the actuator body, and the external electrode has the same pitch as the insulating layer, and A recess that is slightly larger than the cross section of the insulating layer is formed, the insulating layer is accommodated in the recess, and the end of the internal electrode on which the insulating layer is not formed is conductively bonded to the protrusion between the recesses. A multilayer piezoelectric actuator is disclosed in which an electrical connection between an external electrode and one internal electrode is ensured by bonding with an agent, and insulation with the other internal electrode is ensured.
[0005]
[Problems to be solved by the invention]
By the way, in recent years, in order to secure a large amount of displacement under a large pressure with a small piezoelectric actuator, a higher electric field is applied and continuously driven for a long time. When driven continuously for a long period of time, peeling occurs between the internal electrode formed between the piezoelectric bodies and the external electrode for the positive and negative electrodes, so that voltage is not supplied to some piezoelectric elements and displacement characteristics during driving There was a problem that changed.
[0006]
Further, in the multilayer piezoelectric actuator disclosed in Japanese Patent Laid-Open No. 4-237172, the end portions of the internal electrodes exposed on the side surfaces of the actuator body are covered with an insulating layer made of glass every other layer, and the internal electrodes and both sides thereof are covered. The piezoelectric body is firmly bonded, and this insulating layer is accommodated in the recess of the external electrode, so that the insulation between the external electrode and the internal electrode is ensured. When driven continuously, a crack occurs in the insulating layer made of glass, a short circuit occurs between the internal electrode and the external electrode through this crack, and voltage is not supplied to some piezoelectric bodies, so that displacement characteristics during driving There was a problem that changed.
[0007]
In other words, since the actuator body expands and contracts in the stacking direction of the piezoelectric body and the internal electrode, the insulating layer made of high Young's modulus glass provided on the end of the internal electrode and the piezoelectric body in the vicinity thereof is continuously driven for a long time. There is a problem that the expansion and contraction operation cannot be withstood, and the internal electrode and the external electrode are easily short-circuited through the broken portion. Note that the conductive adhesive is bonded to the ends of the piezoelectric body and the internal electrode. However, the conductive adhesive is mainly composed of metal and has a low Young's modulus, so it is more problematic than an insulating layer made of glass. Don't be.
[0008]
The present invention can sufficiently secure the connection between one internal electrode and the external electrode and ensure the insulation between the other internal electrode and the external electrode even in the case of continuous operation at a high applied electric field at a high speed for a long period of time. An object of the present invention is to provide a laminated piezoelectric actuator.
[0009]
[Means for Solving the Problems]
The multilayer piezoelectric actuator of the present invention includes an actuator body in which a plurality of piezoelectric bodies and a plurality of internal electrodes are alternately stacked, and ends of the internal electrodes are exposed on at least two side surfaces; One of respectively formed on the side surface, the end of the inner electrode is a laminated piezoelectric actuator provided with the external electrodes to be connected alternately, the external electrode is formed a plurality of recesses in the conductive plate at predetermined intervals together are, the Ri Contact insulator is received in the recess, prior Kize' edge member is brought into contact alternately without being joined to an end portion of the inner electrode, and conductive between the recess of the conductive plate The convex portion is bonded to the end portion of the internal electrode that is not in contact with the insulator with a conductive adhesive. Here, it is desirable that an oxide film be formed on the inner surface of the recess.
[0010]
[Action]
In the multilayer piezoelectric actuator of the present invention, the external electrode is formed by forming a plurality of recesses at a predetermined interval on the conductive plate, and accommodating the insulator in the recesses, and the end portion of the internal electrode in every other layer. the Rutotomoni brought into contact without bonding the insulator, an end portion of the insulator and non-abutment of the inner electrode, and bonding the conductive protrusions formed between the concave portion of the conductive plate by a conductive adhesive Therefore, the insulator is in contact with the end portion of the internal electrode and the piezoelectric body, and even if the actuator body expands and contracts in the stacking direction of the piezoelectric body and the internal electrode, almost no stress acts on the insulator, and the high electric field Even when driven continuously for a long time under high pressure, the insulator is not damaged. Therefore, it is possible to prevent the occurrence of a short circuit between the external electrode and the internal electrode that should be insulated, and to ensure electrical connection between one internal electrode and the external electrode and insulation between the other internal electrode and the external electrode. This enables long-time operation even for high-speed continuous driving.
[0011]
In addition, by forming an oxide film on the inner surface of the recess, even if the insulator accommodated in the recess is damaged, discharge between the internal electrode and the external electrode is blocked by the oxide film, and the internal electrode and the external electrode High insulation can be secured.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view of a multilayer piezoelectric actuator according to the present invention, FIG. 2 is a cross-sectional view showing a part thereof enlarged, and FIG. 3 is a cross-sectional view showing a part of an external electrode.
[0013]
In FIG. 1, reference numeral 1 indicates a quadrangular prism-shaped actuator body in which a plurality of piezoelectric bodies 2 and a plurality of internal electrodes 3 are alternately stacked. On the two opposing side surfaces of the actuator body 1, External electrodes 4 are respectively formed.
[0014]
As the piezoelectric body 2, for example, lead zirconate titanate Pb (Zr, Ti) O 3 (hereinafter abbreviated as PZT) or a piezoelectric ceramic material mainly composed of barium titanate BaTiO 3 is used. It is not limited, and any ceramics having piezoelectricity may be used. As the piezoelectric material, as the piezoelectric strain constant d 33 it is high is preferable. The thickness of the piezoelectric body 2, that is, the distance between the internal electrodes 3, is preferably 0.03 to 0.2 mm from the viewpoint of downsizing and applying a high electric field.
[0015]
The end portions of the internal electrodes 3 are exposed on all four side surfaces of the actuator body 1, and the end portions of the internal electrodes 3 are alternately connected to the pair of external electrodes 4. 4 is connected.
[0016]
In addition, inactive portions 5 for mechanically holding the actuator body 1 and transmitting generated power to the outside are laminated and bonded to both end surfaces of the actuator body 1 in the stacking direction.
[0017]
In the piezoelectric actuator of the present invention, the external electrode 4 is formed by forming a plurality of recesses 7 at predetermined intervals on the conductive plate 6 and accommodating the insulator 8 in the recesses 7. Insulators 8 are alternately brought into contact with the ends of the internal electrodes 3, while the conductive projections 9 between the recesses 7 of the conductive plate 6 are electrically connected to the ends of the internal electrodes 3 that are not in contact with the insulators 8. The adhesive 10 is bonded. That is, the external electrode 4 ensures electrical connection with one internal electrode 3 and ensures insulation with the other internal electrode 3.
[0018]
The conductive plate 6 may be any metal as long as it is conductive and can be processed, but is preferably formed of silver alloy, copper alloy, stainless steel, Ni—Fe alloy, Ni—Fe—Co alloy or the like. It is desirable.
[0019]
The recess 7 is formed at a distance between the end of the internal electrode 3 exposed on the same side surface of the actuator body 1 and the end of the internal electrode 3 on one layer, that is, a distance between the internal electrodes 3 having the same polarity. The width in the stacking direction is substantially the same as that of the piezoelectric body 2. The shape of the recess 7 is a quadrangular prism in cross section, but the cross section may be circular.
[0020]
The insulator 8 is made of, for example, an insulating material such as glass, glass, epoxy resin, or silicone rubber. The insulator 8 is obtained by filling the concave portion 7 of the conductive plate 6 with an insulating material and curing it. As shown in FIG. 3, the insulator 8 protrudes from the surface of the conductive convex portion 9 of the conductive plate 6, and the insulator 8 is in contact with the end portion of the internal electrode 3 without being joined. The insulator 8 has a quadrangular cross section, but may have a circular cross section. When glass is used as the insulator 8, a glass paste is previously filled in the concave portion 7 of the conductor 6 to form the insulator 8, and then the conductive convex portion 9 is bonded to the side surface of the actuator body 1. The
[0021]
The conductive adhesive 10 is formed using, for example, a paste from 40 to 60% by weight of Ag powder and 40 to 60% by weight of a glass component mainly composed of PbO—SiO 2 —ZrO 2 —B 2 O 3. Is done. The conductive adhesive 10 formed on the conductive protrusions 9 is desirably a material that can be easily diffused and bonded to the internal electrode material in order to be firmly bonded to the end of the internal electrode 3. When the internal electrode 3 is made of a material containing Ag, the main component of the conductive adhesive 10 is desirably Ag. Further, in order to strengthen the bonding, it is desirable to include a glass component of the same system as the glass component included in the internal electrode material. In addition, by using a low Young's modulus material such as conductive silicone rubber as the conductive adhesive 10, it is possible to prevent the conductive adhesive 10 from being damaged during high-speed driving.
[0022]
The oxide film 11 may be formed on the inner surface of the recess 7 of the external electrode 4. That is, by forming the oxide film 11 between the inner surface of the recess 7 and the insulator 8, it is possible to secure more insulation.
[0023]
The multilayer piezoelectric actuator configured as described above is manufactured by the following process. First, a slurry is prepared by mixing a calcined powder of a piezoelectric ceramic such as lead zirconate titanate Pb (Zr, Ti) O 3 , a binder made of an organic polymer, and a plasticizer, and by a slip casting method, A ceramic green sheet having a thickness of 30 to 200 μm is prepared.
[0024]
A conductive paste serving as an internal electrode is printed on one side of the green sheet to a thickness of 1 to 10 μm by screen printing. After the conductive paste is dried, a predetermined number of green sheets coated with the conductive paste are stacked, and green sheets not coated with the conductive paste are stacked on both sides of the stacked body.
[0025]
Next, heating is performed at 100 to 200 ° C. while applying pressure to integrate the laminate. The integrated laminated body is cut into a predetermined size, the binder is removed at 400 to 800 ° C. for 5 to 40 hours, and the main firing is performed at 900 to 1100 ° C. for 2 to 5 hours. Is produced. The end portions of the internal electrode 3 are exposed on the four side surfaces of the actuator body 1.
[0026]
On the other hand, the external electrode 4 is formed with a plurality of recesses 7 at a predetermined interval from the conductive plate 6, and the recesses 7 are filled with, for example, a paste of an insulating material made of glass and dried. 8, and a conductive adhesive 10 is applied to the conductive convex portions 9 between the concave portions 7 of the conductive plate 6. In this state, the conductive adhesive 10 protrudes outside the insulator 8.
[0027]
Then, the conductive adhesive 10 of the external electrode 4 is brought into contact with the end of the internal electrode 3, and the conductive projection 9 of the external electrode 4 is connected to the end of the internal electrode 3 and the conductive adhesive by heat bonding or laser welding. 10, the insulator 8 of the external electrode 4 comes into contact with the end of the internal electrode 3 to which the conductive protrusion 9 is not connected.
[0028]
Thereafter, although not shown, the actuator is covered with a coating material such as silicon rubber around the actuator by a method such as dipping, and as shown in FIG. 1, lead wires 15 are attached to the positive external electrode and the negative external electrode. By connecting, applying a polarization voltage of 0.1 to 3 kV to the positive electrode and the negative electrode, and polarizing the entire actuator, a final stacked piezoelectric actuator is obtained.
[0029]
In order to cover every corner of the actuator with a coating material such as silicon rubber, the surroundings are evacuated. At this time, the insulator 8 of the external electrode 4 and the internal electrode In some cases, a covering material such as silicon rubber may enter between the end of 3 and the piezoelectric body 2.
[0030]
In the multilayer piezoelectric actuator configured as described above, the insulator 8 is in contact with the end of the internal electrode 3 and the piezoelectric body 2, and the actuator body 1 is positioned in the stacking direction of the piezoelectric body 2 and the internal electrode 3. Even if it expands and contracts, almost no stress is exerted on the insulator 8, and even when the insulator 8 is continuously driven under a high electric field and high pressure, the insulator 8 is not damaged. I can drive.
[0031]
Furthermore, by covering the whole with an insulating coating material such as silicon rubber, it is possible to prevent moisture from entering the environment. Therefore, it is possible to suppress the occurrence of electromigration between the electrode members to be used, and to ensure the reliability of electrode connection.
[0032]
The multilayer piezoelectric actuator of the present invention may have any polygonal column shape such as a quadrangular column or a hexagonal column, but a quadrangular column shape is desirable for ease of cutting.
[0033]
【Example】
An internal electrode paste mainly composed of Ag / Pd was printed on a green sheet having a thickness of 0.12 mm mainly composed of PZT with a thickness of 2 μm. 300 green sheets coated with the internal electrode paste were stacked, and then green sheets not coated with the internal electrode paste were stacked on both sides and integrated by heat bonding.
[0034]
The laminate was cut so as to be 10 mm long × 10 mm wide × 30 mm high, and the binder was removed at a maximum temperature of 700 to 800 ° C. for 20 to 30 hours. Thereafter, firing was performed at a maximum temperature of 900 ° C. to 1100 ° C. for 3 to 6 hours to obtain an actuator body.
[0035]
Next, recesses having a width of 2 mm are formed at intervals of 0.2 mm on the surface of a stainless steel conductive plate having a shape shown in FIG. 2 and a thickness of 30 mm × 2 mm and a thickness of 0.4 mm. Boron is formed in these recesses. An insulating material made of silicate glass was filled to form an insulator, and a conductive adhesive made of Ag and glass was applied to the conductive convex portions between the concave portions to form external electrodes.
[0036]
After positioning the external electrode on the side surface of the actuator body, a weight was placed on the upper part of the external electrode and heat-bonded at 600 ° C. for 30 minutes. Thereafter, silicon rubber was filled so that there was no gap between the outer peripheral portion of the piezoelectric body 2 and the external electrode 4 and the internal electrode 1. This was placed in silicon oil at 80 ° C., and a 3 kV / mm direct current electric field was applied to the positive electrode and the negative electrode for 30 minutes to perform polarization treatment, thereby obtaining a multilayer piezoelectric actuator of the present invention.
[0037]
As a result of applying a DC voltage of 200 V to the obtained multilayer piezoelectric actuator, a displacement of 40 μm was obtained. Furthermore, as a result of applying an AC electric field of 0 to +200 V to this actuator at a frequency of 50 Hz, a displacement of 40 μm was maintained until the number of application times was 5 × 10 8 times. Furthermore, even when 10 laminated piezoelectric actuators of the present invention were applied 1 × 10 8 times at an AC electric field of 0 to +200 V at a frequency of 50 Hz in an atmosphere with a humidity of 95%, no discharge occurred and no damage occurred. There wasn't.
[0038]
In addition, a glass layer is coated on the end portion of the internal electrode every other layer, and the external electrode has recesses at the same pitch as the glass layer, and is aligned so that the glass layer is accommodated in the recesses. Then, a laminated piezoelectric actuator of a comparative example was produced in which the convex portions between the concave portions were bonded to the end portions of the internal electrodes where the glass layer was not formed with a conductive adhesive.
[0039]
Similarly to the above, as a result of applying a DC voltage of 200 V, a displacement of 40 μm was obtained. Furthermore, as a result of applying an AC electric field of 0 to +200 V to this actuator at a frequency of 50 Hz, a displacement of 40 μm was maintained until the number of application times was 5 × 10 8 times. Furthermore, when 10 laminated piezoelectric actuators were applied 1 × 10 6 times with an AC electric field of 0 to +200 V at a frequency of 50 Hz in an atmosphere of 95% humidity, 8 were damaged due to creeping discharge. When the damaged part was observed, a crack was generated in the glass layer covering the end of the internal electrode, and the end of the internal electrode and the inner surface of the recess of the external electrode were discharged through the crack, resulting in creeping discharge. It was confirmed.
[0040]
The displacement is measured by fixing the sample on a vibration isolation table, attaching an aluminum foil to the top of the sample, and evaluating the average value of the values measured at the central part and the peripheral part of the element with a laser displacement meter. did.
[0041]
【The invention's effect】
In the multilayer piezoelectric actuator of the present invention, the insulator of the external electrode is in contact with the end portion of the internal electrode and the piezoelectric body, and even if the actuator body expands and contracts in the stacking direction of the piezoelectric body and the internal electrode, Is hardly affected by stress, and even when driven continuously for a long time under a high electric field and pressure, the insulator is not damaged, and a short circuit occurs between the external electrode and the internal electrode that should be insulated. And can be operated for a long time even for high-speed continuous driving.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a quadrangular columnar stacked piezoelectric actuator of the present invention.
2 is an enlarged cross-sectional view of a part of FIG.
FIG. 3 is a cross-sectional view showing an external electrode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Actuator main body 2 ... Piezoelectric body 3 ... Internal electrode 4 ... External electrode 6 ... Conductive plate 7 ... Concavity 8 ... Insulator 9 ... Conductive convex part 10- ..Conductive adhesive 11 ... Oxide film

Claims (2)

複数の圧電体と複数の内部電極とを交互に積層してなり、少なくとも2つの側面に前記内部電極の端部が露出したアクチュエータ本体と、該アクチュエータ本体の2つの側面にそれぞれ形成され、前記内部電極の端部が交互に接続する外部電極とを具備した積層型圧電アクチュエータであって、前記外部電極、導電板に複数の凹部所定間隔を置いて形成されているとともに、前記凹部に絶縁体収容されており、前記絶縁体が前記内部電極の端部に接合されることなく交互に当接され、かつ前記導電板の凹部間における導電凸部、前記絶縁体と非当接の前記内部電極の端部に導電性接着剤で接着されていることを特徴とする積層型圧電アクチュエータ。A plurality of piezoelectric bodies and a plurality of internal electrodes are alternately laminated, and are formed on at least two side surfaces of the actuator main body, and on the two side surfaces of the actuator main body. a laminated piezoelectric actuator comprising an external electrode ends of the electrodes are alternately connected to, the external electrodes, a plurality of recesses are formed at predetermined intervals in the conductive plate, insulation in the recess Ri Contact body is accommodated, is in contact before alternately without Kize' edge member is bonded to an end of the inner electrode, and electrically Dentotsu portion between the concave portion of the conductive plate, the insulator and the non A laminated piezoelectric actuator characterized in that it is bonded to an end portion of the abutting internal electrode with a conductive adhesive. 凹部内面に酸化物膜が形成されていることを特徴とする請求項1記載の積層型圧電アクチュエータ。2. The laminated piezoelectric actuator according to claim 1, wherein an oxide film is formed on the inner surface of the recess.
JP15157799A 1999-05-31 1999-05-31 Multilayer piezoelectric actuator Expired - Fee Related JP3881474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15157799A JP3881474B2 (en) 1999-05-31 1999-05-31 Multilayer piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15157799A JP3881474B2 (en) 1999-05-31 1999-05-31 Multilayer piezoelectric actuator

Publications (2)

Publication Number Publication Date
JP2000340849A JP2000340849A (en) 2000-12-08
JP3881474B2 true JP3881474B2 (en) 2007-02-14

Family

ID=15521569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15157799A Expired - Fee Related JP3881474B2 (en) 1999-05-31 1999-05-31 Multilayer piezoelectric actuator

Country Status (1)

Country Link
JP (1) JP3881474B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101903563B1 (en) 2018-03-06 2018-11-13 서영주 Level jack of single cylinder type

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841046B2 (en) * 2001-03-26 2011-12-21 京セラ株式会社 Multilayer piezoelectric element and injection device
JP4808915B2 (en) * 2003-09-24 2011-11-02 京セラ株式会社 Multilayer piezoelectric element and injection device
EP2012374B1 (en) 2003-09-24 2012-04-25 Kyocera Corporation Multi-layer piezoelectric element
US7385337B2 (en) 2004-06-18 2008-06-10 Tdk Corporation Multilayer piezoelectric element
JP5256574B2 (en) * 2005-09-29 2013-08-07 Tdk株式会社 Manufacturing method of electronic parts
KR101949586B1 (en) * 2017-03-28 2019-04-29 신철우 Laser welding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101903563B1 (en) 2018-03-06 2018-11-13 서영주 Level jack of single cylinder type

Also Published As

Publication number Publication date
JP2000340849A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
US4978881A (en) Piezoelectric actuator of lamination type
JP3668072B2 (en) Multilayer piezoelectric actuator
JP2001210884A (en) Stacked type piezoelectric actuator
JP3881474B2 (en) Multilayer piezoelectric actuator
JP2003197991A (en) Laminated type piezoelectric element and jetting device
JPH11112046A (en) Piezoelectric actuator and its manufacture
JPH11186626A (en) Laminated piezoelectric actuator
JP2001210886A (en) Stacked type piezoelectric actuator
JP4737799B2 (en) Multilayer piezoelectric actuator and injection device
JP3506609B2 (en) Multilayer piezoelectric actuator
JP2001244514A (en) Laminated piezoelectric actuator and injector using the same
JPH05218519A (en) Electrostrictive effect element
JP3894680B2 (en) Multilayer piezoelectric actuator
JPH1174576A (en) Laminated piezoelectric actuator
JP2001102649A (en) Laminated piezoelectric actuator
JPH11340535A (en) Laminated piezoelectric actuator
JPH11238918A (en) Laminated type piezoelectric actuator
JP3506596B2 (en) Multilayer piezoelectric actuator
JP3968408B2 (en) Multilayer piezoelectric actuator
JP2012529180A (en) Piezoelectric multilayer actuator assembly
JP2505024Y2 (en) Multilayer ceramic electrostrictive element
JP2000049396A (en) Laminated piezoelectric actuator
JPH1126828A (en) Laminated piezo electric actuator
JP2001068750A (en) Laminated piezoelectric actuator
JPH11274589A (en) Lamination type piezoelectric actuator and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees