JP4841046B2 - Multilayer piezoelectric element and injection device - Google Patents

Multilayer piezoelectric element and injection device Download PDF

Info

Publication number
JP4841046B2
JP4841046B2 JP2001088131A JP2001088131A JP4841046B2 JP 4841046 B2 JP4841046 B2 JP 4841046B2 JP 2001088131 A JP2001088131 A JP 2001088131A JP 2001088131 A JP2001088131 A JP 2001088131A JP 4841046 B2 JP4841046 B2 JP 4841046B2
Authority
JP
Japan
Prior art keywords
external electrode
piezoelectric element
electrode
multilayer piezoelectric
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001088131A
Other languages
Japanese (ja)
Other versions
JP2002285937A (en
Inventor
英樹 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001088131A priority Critical patent/JP4841046B2/en
Publication of JP2002285937A publication Critical patent/JP2002285937A/en
Application granted granted Critical
Publication of JP4841046B2 publication Critical patent/JP4841046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、積層型圧電素子及び噴射装置に関し、例えば、自動車用燃料噴射装置、光学装置等の精密位置決め装置や振動防止用の駆動素子等に用いられる積層型圧電素子及び噴射装置に関するものである。
【0002】
【従来技術】
従来から、電歪効果を利用して大きな変位量を得るために、圧電体と内部電極層を交互に積層した積層型圧電アクチュエータが提案されている。積層型圧電アクチュエータには、同時焼成タイプと圧電磁器と内部電極板を交互に積層したスタックタイプの2種類に分類されており、低電圧化、製造コスト低減の面から考慮すると、同時焼成タイプの積層型圧電アクチュエータが薄層化に対して有利であるために、その優位性を示しつつある。
【0003】
図3は、従来の積層型圧電アクチュエータを示すもので、このアクチュエータでは、圧電体51と内部電極52が交互に積層されて活性体53aが形成され、該活性体53aの積層方向上下面に不活性体53bを形成して柱状積層体53が構成されている。内部電極52は、その一方の端部が左右交互に絶縁体54で被覆され、その上から、導電性接着剤を活性体53a及び不活性体53bの側面に塗布乾燥して、一対の帯状外部電極56を形成し、これらの帯状外部電極56が内部電極52と左右各々一層おきに導通している。
【0004】
この積層型圧電アクチュエータでは、不活性体53bの側面に接合された帯状外部電極56の下側端部表面に、リード端子57が半田58により接合されている。
【0005】
【発明が解決しようとする課題】
ところで、近年においては、小型の圧電アクチュエータで大きな圧力下において大きな変位量を確保するため、積層数を増加させ、またより高い電界を印加して、長期間連続駆動させることが行われているが、上記した従来の圧電アクチュエータでは、帯状外部電極56の端部が不活性体53bの側面から剥離し易いという問題があった。
【0006】
即ち、活性体53aでは積層方向に大きな変位が発生するが、不活性体53bでは変位が発生しないため、活性体53a及び不活性体53bに跨って形成された帯状外部電極56には、その端部に積層方向への引張応力や圧縮応力が発生し、不活性体53bに位置する帯状外部電極56の端部が剥離し易いという問題があった。この状態で駆動を続けると、不活性体53bに接合された帯状外部電極56の端部だけでなく、活性体53aに位置する部分においても、帯状外部電極56が活性体53aの表面から剥離して、内部電極52との接続が解除され、高電界、高圧力下で長期間連続駆動させた場合、一部の圧電体51に電圧が供給されなくなり駆動中に変位特性が変化するという問題があった。
【0007】
また、リード端子57が接合される帯状外部電極56の下側端部では、リード端子57が何らかの原因で引っ張られることにより、特に剥離し易いという問題があった。
【0008】
本発明は、外部電極の柱状積層体への接合強度を向上できる積層型圧電素子及び噴射装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の積層型圧電素子は、複数の圧電体と複数の内部電極とを交互に積層してなる活性体と、該活性体の上下面にそれぞれ設けられた不活性体とからなる柱状積層体の側面に、前記内部電極が一層おきに交互に接続する一対の外部電極を接着してなるとともに、前記不活性体の側面に接着された前記外部電極の端部にリード端子を接続してなる積層型圧電素子であって、前記外部電極の端部が接着される前記不活性体の側面に凹溝が形成されていることを特徴とする。
【0010】
このような積層型圧電素子では、外部電極の端部が、不活性体の側面の凹溝が形成されている部分に接着されるため、不活性体の側面と外部電極との接合強度を向上でき、これにより、より高い電界を印加して大きな変位量を発生せしめ、この状態で長期間連続駆動させたとしても、外部電極の端部からの剥離を抑制することができ、外部電極の柱状積層体への接合強度を向上できる。
【0011】
即ち、外部電極は、内部電極との接合を確実に行うという理由から、変位を発生する活性体から変位を発生しない不活性体にまで延設し、活性体及び不活性体に跨って外部電極を形成し、リード端子接続部にアクチュエータの伸びによる応力を発生させないという理由から、リード端子を、不活性体まで延設された外部電極の端部に接合せざるを得ないが、本発明では、外部電極の端部が、不活性体の側面の凹溝が形成されている部分に接合されるため、アンカー効果により、外部電極の端部が不活性体の側面から剥離することを抑制することができ、外部端子の端部からの剥離開始を抑制することができる。
【0012】
また、本発明では、不活性体の側面に形成された凹溝の深さが5〜100μmであることが望ましい。このような構成を採用することにより、不活性体の折損を抑制することができるとともに、外部電極の端部の剥離を有効に防止できる。
【0013】
さらに、本発明では、外部電極が接続する内部電極の端部には、一層おきに柱状積層体の側面から突出する突起状導電性端子が設けられていることが望ましい。このような構成を採用することにより、外部電極の柱状積層体からの剥離をさらに抑制することができる。
【0014】
また、本発明の噴射装置は、噴射孔を有する収納容器と、該収納容器内に収容された上記積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなるものである。
【0015】
【発明の実施の形態】
図1は本発明の積層型圧電アクチュエータからなる積層型圧電素子の一実施例を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図、(c)は(a)の一部を拡大して示す斜視図、(d)は(b)の一部を拡大して示す断面図である。
【0016】
本発明の積層型圧電アクチュエータは、図1に示すように、複数の圧電体1と複数の内部電極2とを交互に積層してなる活性体1a1と、該活性体1a1の上下面に形成された不活性体1a2とからなる四角柱状の柱状積層体1aの側面において、内部電極2の端部を一層おきに絶縁体3で被覆し、絶縁体3で被覆していない内部電極2の端部に突起状導電性端子5を設け、該突起状導電性端子5を埋設するように導電性接着剤を柱状積層体1aの側面に塗布乾燥して外部電極4を形成し、各外部電極4の下側端部にリード端子6を接続固定して構成されている。
【0017】
外部電極4は、活性体1a1から不活性体1a2にわたって形成され、外部電極4の下側端部が形成される不活性体1a2の側面には、凹溝9が複数条形成されている。これらの凹溝9は、内部電極2の露出した端部と平行に、かつ外部電極形成面積よりも少し大きい面積範囲で形成されている。このような不活性体1a2に位置する外部電極4の端部にリード端子6が半田等で接合されている。
【0018】
これらの凹溝9の深さdは5〜100μmとされている。この範囲の深さであれば、不活性体1a2が折損せず、また、外部電極4の接合強度を向上できるからである。一方、凹溝9の深さが5μmよりも浅い場合には、外部電極4の不活性体1a2への接合強度が低く、100μmよりも深い場合には、高電圧で駆動させる場合に不活性体1a2の凹溝9の部分で折損しやすいからである。
【0019】
凹溝9の積層方向における幅bは、アンカー効果を高めるという点から5〜50μmであることが望ましい。このような凹溝9は、ダイシング加工もしくはスクラッチ加工することにより形成できる。
【0020】
尚、リード端子6が形成される下側の不活性体1a2の側面にのみ凹溝9を形成したが、上側の不活性体1a2の側面にも凹溝を形成しても良いことは勿論である。また、凹溝9を外部電極形成面積よりも少し大きい面積範囲で形成したが、不活性体1a2側面全面に形成しても良いことは勿論である。
【0021】
さらに、凹溝9を内部電極2の露出した端部と平行に形成したが、内部電極2の露出した端部と直交するように形成してもよく、さらには、凹溝9を格子状に形成しても良い。
【0022】
圧電体1は、例えば、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3(以下PZTと略す)、或いはチタン酸バリウムBaTiO3を主成分とする圧電セラミック材料等で形成されている。この圧電セラミックスは、その圧電特性を示す圧電歪み定数d33が高いものが望ましい。
【0023】
また、圧電体1の厚み、つまり内部電極2間の距離は50〜250μmが望ましい。これは、積層型圧電アクチュエータは電圧を印加してより大きな変位量を得るために、積層数を増加させる方法がとられるが、積層数を増加させた場合に圧電体1の厚みが厚すぎるとアクチュエータの小型化、低背化ができなくなり、一方、圧電体1の厚みが薄すぎると絶縁破壊しやすいからである。
【0024】
圧電体1の間には内部電極2が配されているが、この内部電極2は銀−パラジウム等の金属材料で形成されており、各圧電体1に所定の電圧を印加し、圧電体1に逆圧電効果による変位を起こさせる作用をなす。
【0025】
複数の圧電体1と複数の内部電極2とを交互に積層して成る柱状積層体1aは、先ず、PZT等の圧電セラミックスの仮焼粉末と、アクリル系、ブチラール系等の有機高分子から成るバインダーと、DBP(フタル酸ジオチル)、DOP(フタル酸ジブチル)等の可塑剤とを混合してスラリーを作製し、該スラリーを周知のドクターブレード法やカレンダーロール法等のテープ成型法により圧電体1となるセラミックグリーンシートを作製する。
【0026】
次に、銀−パラジウム粉末にバインダー、可塑剤等を添加混合して導電性ペーストを作製し、これを前記各グリーンシートの上面にスクリーン印刷等によって1〜40μmの厚みに印刷する。
【0027】
そして、上面に導電性ペーストが印刷されたグリーンシートを複数積層し、この積層体の上下面に導電性ペーストが印刷されていないグリーンシートを積層し、これを所定の温度で脱バインダーを行った後、900〜1200℃で焼成することによって作製される。
【0028】
その後、柱状積層体1aの外部電極4を形成する対向する側面に銀を主成分するペーストを塗布し、700〜950℃で焼き付けすることにより、突起状導電性端子5が形成される。即ち、このような突起状導電性端子5を形成するためには、特に、銀を主成分とするペーストに軟化点が600℃〜950℃のガラス粉末を分散させておき、該ペーストを外部電極4の形成面に塗布、焼き付けを行うことにより、有効的に突起状導電性端子5を形成することができる。
【0029】
即ち、ペーストにガラス成分を分散させておくことにより、焼き付け時にガラスが軟化し、この状態において圧電体1には拡散しにくい銀が内部電極2の端部に拡散して寄り集まるため、図1(c)に示すような突起状導電性端子5を形成できる。
【0030】
この突起状導電性端子5は柱状積層体1aの側面の一部に形成されており、レール状に形成され、その長さは外部電極4の幅とほぼ同一とされている。尚、突起状導電性端子5の長さは、外部電極4の幅よりも短くても良い。
【0031】
また、突起状導電性端子5が形成された柱状積層体1aの側面に一層おきに深さ50〜500μm、積層方向の幅30〜200μmの溝が形成されており、この溝内にガラス、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーンゴム等が充填されて絶縁体3が形成されている。
【0032】
溝が形成されていない内部電極2の端部は、上記した突起状導電性端子5を介して外部電極4と接続されている。なお、突起状導電性端子5に板状導電部材を接合し、この板状導電部材を埋設するように導電性接着剤で柱状積層体1aの側面に接合して外部電極4を形成しても良い。この場合の導電性接着剤は、弾性係数が小さく、変形し易いものが望ましい。突起状導電性端子5と板状導電部材との接合は、例えば荷重を加えた状態で700〜950℃で熱処理することにより、主成分である銀が突起状導電性端子5と板状導電部材間を相互に拡散し、いわゆる銀の拡散接合に行うことができる。
【0033】
このように板状導電部材を突起状導電性端子5を介して内部電極2に接続すると、アクチュエータを高電界、高圧力下で長期間連続駆動させた場合でも、突起状導電性端子5が変形して突起状導電性端子5が駆動時に生じる応力を十分に吸収できるため、該外部電極4と内部電極2の断線を抑制することができ、耐久性に優れたアクチュエータを提供することができる。
【0034】
さらに、板状導電部材の外面に、金属等のメッシュ、メッシュ状の金属板、導電性コイル、若しくは導電性波板、若しくは導電性繊維集合体(ウール状)のいずれか一種からなる導電性補助部材を形成しても良い。この場合には、アクチュエータに大電流を投入し、高速で駆動させる場合においても、大電流を導電性補助部材に流すことができ、外部電極4に流れる電流を低減できるという理由から、外部電極4が局所発熱を起こし断線することを防ぐことができ、耐久性を大幅に向上させることができる。
【0035】
また、絶縁体3により内部電極2の端部が互い違いに一層おきに絶縁され、内部電極2の絶縁されていない他方の端部は、突起状導電性端子5を介して外部電極4と接合されることになる。
【0036】
なお、絶縁体3は、柱状積層体1aとの接合を強固とするために、柱状積層体1aの変位に対して追従する弾性率が低い材料、具体的にはシリコーンゴム等からなることが好適である。
【0037】
突起状導電性端子5の積層方向と同一方向の幅Bは、図1(c)に示すように、外部電極4と内部電極2との接続部の抵抗を低くし、且つアクチュエータの駆動時に生じる応力を十分に吸収するという点から、1μm以上且つ圧電体1厚みの1/2以下であることが望ましい。特には、幅Bは5〜25μmが望ましい。
【0038】
また、突起状導電性端子5の突出高さhは、アクチュエータの伸縮によって生じる応力を十分に吸収するという点から、圧電体1厚みの1/20以上であることが望ましい。突出高さhは、15〜50μmが望ましい。
【0039】
さらに、板状導電部材の厚みは、アクチュエータの伸縮に追従し、外部電極4と突起状導電性端子5の間、若しくは突起状導電性端子5と内部電極2の間で断線を生じないという点から、50μm以下であることが望ましい。
【0040】
突起状導電性端子5及び板状導電部材は、銀、ニッケル、銅、金、アルミニウム、等の導電性を備えた金属及びそれらの合金からなり、このうち、内部電極との接合強度が強く、ヤング率が低いという点から、銀が望ましい。
【0041】
以上のように構成された積層型圧電素子は、外部電極4の端部が、不活性体1a2の側面の凹溝9が形成されている部分に接合されているので、アンカー効果により、外部電極4の端部が不活性体1a2の側面から剥離することを抑制することができ、外部端子4の端部からの剥離開始を抑制することができる。また、リード端子6に外力が作用し、引っ張られたとしても、外部電極4の接合強度が高いため、外部端子4の端部の剥離を抑制できる。
【0042】
本発明の積層型圧電素子はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0043】
図2は、本発明の噴射装置を示すもので、図において符号31は収納容器を示している。この収納容器31の一端には噴射孔33が設けられ、また収納容器31内には、噴射孔33を開閉することができるニードルバルブ35が収容されている。
【0044】
噴射孔33には燃料通路37が連通可能に設けられ、この燃料通路37は外部の燃料供給源に連結され、燃料通路37に常時一定の高圧で燃料が供給されている。従って、ニードルバルブ35が噴射孔33を開放すると、燃料通路37に供給されていた燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されている。
【0045】
また、ニードルバルブ35の上端部は直径が大きくなっており、収納容器31に形成されたシリンダ39と摺動可能なピストン41を有している。そして、収納容器31内には、上記した圧電アクチュエータ43が収納されている。
【0046】
このような噴射装置では、圧電アクチュエータ43が電圧を印加されて伸長すると、ピストン41が押圧され、ニードルバルブ35が噴射孔33を閉塞し、燃料の供給が停止される。また、電圧の印加が停止されると圧電アクチュエータ43が収縮し、皿バネ45がピストン41を押し返し、噴射孔33が燃料通路37と連通して燃料の噴射が行われるようになっている。
【0047】
【実施例】
まず、柱状積層体を作製した。圧電体は厚み150μmのPZTで形成し、内部電極は厚み3μmの銀−Pt合金によって形成し、圧電体及び内部電極の各々の積層数は300層とした。外部電極が形成される不活性体の側面に、ダイシング加工により、深さdが20μm、幅bが20μmの凹溝を100μm間隔で5本形成した。形成面積は、外部電極形成面積よりも僅かに大きい面積とした。
【0048】
次に、外部電極が形成される柱状積層体の側面に銀を含有するペーストを塗布し、800℃で焼き付け、柱状積層体の側面に露出した内部電極の端部に、積層方向と同一方向の幅Bが10μm、高さhが20μmの突起状導電性端子を形成した。この後、内部電極の端部一層おきに溝を形成し、該溝に絶縁体としてシリコーンゴムを充填した。
【0049】
次にポリイミドの前駆体であるポリアッミク酸をN−メチル−2−ピロリドン(NMP)に溶解させ、ワニス状にし、このワニスに銀粉末20重量%を混合、混練、ペースト状にしたものを、外部電極を形成する所定の位置に塗布し、220℃の空気中で溶媒を蒸発させるとともに、硬化反応を起こさせ、外部電極を形成した。
【0050】
この後、正極用外部電極、負極用外部電極の下側端部にリード端子を半田で接合し、図示しないが、アクチュエータの周囲にデイッピング等の方法により、シリコーンゴムを被覆し、さらに、正極、負極に3kVの分極電圧を印加し、アクチュエータ全体を分極処理することで、図1に示す積層型圧電アクチュエータを得た。
【0051】
得られた積層型圧電アクチュエータに150Vの直流電圧を印加した結果、積層方向に40μmの変位量が得られた。さらに、このアクチュエータに室温で0〜+150Vの交流電圧を60Hzの周波数にて印加し駆動試験を行った結果、1×109サイクルまで駆動したところ40μmの変位量が得られ、外部電極の剥離等の異常は見られなかった。
【0052】
また、本発明者は、凹溝の深さdを5〜100μmに変更する以外は、上記と同様にして、積層型圧電アクチュエータを作製し、得られた積層型圧電アクチュエータに150Vの直流電圧を印加した結果、積層方向に40μmの変位量が得られた。さらに、このアクチュエータに室温で0〜+150Vの交流電圧を60Hzの周波数にて印加し駆動試験を行った結果、1×109サイクルまで駆動したところ40μmの変位量が得られ、外部電極の剥離等の異常は見られなかった。
【0053】
一方、凹溝、突起状導電性端子を形成しない以外は、上記と同様にして、積層型圧電アクチュエータを作製し、得られた積層型圧電アクチュエータに150Vの直流電圧を印加した結果、積層方向に40μmの変位量が得られたものの、このアクチュエータに室温で0〜+150Vの交流電圧を60Hzの周波数にて印加し駆動試験を行った結果、1×106サイクル駆動後に変位量の低下が見られたため、駆動を停止し、アクチュエータを観察したところ、外部電極の下側端部が剥離していた。
【0054】
【発明の効果】
本発明の積層型圧電素子では、外部電極の端部が、不活性体の側面の凹溝が形成されている部分に接着されるため、不活性体の側面と外部電極との接合強度を向上でき、これにより、より高い電界を印加して大きな変位量を発生せしめ、この状態で長期間連続駆動させたとしても、外部電極の端部からの剥離を抑制することができ、外部電極の柱状積層体への接合強度を向上できる。従って、高温の使用環境下、高い印加電界、高速で連続駆動させる場合においても、外部電極と内部電極が断線することなく高耐久性を備えた積層型圧電素子を安価に提供することができる。
【図面の簡単な説明】
【図1】本発明の積層型圧電素子を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図、(c)は(a)の一部を拡大して示す斜視図、(d)は(b)の一部を拡大して示す断面図である。
【図2】本発明の噴射装置を示す説明図である。
【図3】従来の積層型圧電アクチュエータの縦断面図である。
【符号の説明】
1・・・圧電体
1a・・・柱状積層体
1a1・・・活性体
1a2・・・不活性体
2・・・内部電極
4・・・外部電極
5・・・突起状導電性端子
6・・・リード端子
9・・・凹溝
31・・・収納容器
33・・・噴射孔
35・・・バルブ
43・・・圧電アクチュエータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer piezoelectric element and an injection device, for example, a multilayer piezoelectric element and an injection device used for a precision positioning device such as a fuel injection device for an automobile and an optical device, a driving element for vibration prevention, and the like. .
[0002]
[Prior art]
Conventionally, in order to obtain a large amount of displacement using the electrostrictive effect, multilayer piezoelectric actuators in which piezoelectric bodies and internal electrode layers are alternately stacked have been proposed. Multi-layer piezoelectric actuators are classified into two types: simultaneous firing type and stack type in which piezoelectric ceramics and internal electrode plates are alternately stacked. Since the laminated piezoelectric actuator is advantageous for thinning, its superiority is being shown.
[0003]
FIG. 3 shows a conventional multilayer piezoelectric actuator. In this actuator, piezoelectric bodies 51 and internal electrodes 52 are alternately laminated to form active bodies 53a, and the active bodies 53a are not formed on the upper and lower surfaces in the stacking direction. An active body 53b is formed to form a columnar stacked body 53. One end of the internal electrode 52 is alternately covered with an insulator 54, and a conductive adhesive is applied and dried on the side surfaces of the active body 53a and the inactive body 53b from above to form a pair of strip-shaped external electrodes. Electrodes 56 are formed, and these strip-like external electrodes 56 are electrically connected to the internal electrode 52 every left and right layers.
[0004]
In this multilayer piezoelectric actuator, a lead terminal 57 is joined by solder 58 to the surface of the lower end portion of the strip-like external electrode 56 joined to the side surface of the inert body 53b.
[0005]
[Problems to be solved by the invention]
By the way, in recent years, in order to secure a large amount of displacement under a large pressure with a small piezoelectric actuator, the number of stacked layers is increased and a higher electric field is applied to continuously drive for a long time. The above-described conventional piezoelectric actuator has a problem that the end of the strip-shaped external electrode 56 is easily peeled off from the side surface of the inert body 53b.
[0006]
That is, a large displacement occurs in the stacking direction in the active body 53a, but no displacement occurs in the inactive body 53b. Therefore, the end of the belt-like external electrode 56 formed across the active body 53a and the inactive body 53b There is a problem that tensile stress or compressive stress in the stacking direction is generated in the portion, and the end portion of the strip-shaped external electrode 56 located on the inert body 53b is easily peeled off. If driving is continued in this state, the strip-shaped external electrode 56 is peeled off from the surface of the active body 53a not only at the end of the strip-shaped external electrode 56 joined to the inert body 53b but also at the portion located on the active body 53a. Thus, when the connection with the internal electrode 52 is released and the drive is continued for a long time under a high electric field and high pressure, a voltage is not supplied to some of the piezoelectric bodies 51 and the displacement characteristics change during the drive. there were.
[0007]
In addition, there is a problem that the lower end portion of the strip-shaped external electrode 56 to which the lead terminal 57 is bonded is particularly easily peeled off due to the lead terminal 57 being pulled for some reason.
[0008]
An object of the present invention is to provide a multilayer piezoelectric element and an injection device that can improve the bonding strength of an external electrode to a columnar laminate.
[0009]
[Means for Solving the Problems]
The multilayer piezoelectric element of the present invention is a columnar laminate comprising an active body formed by alternately laminating a plurality of piezoelectric bodies and a plurality of internal electrodes, and an inert body provided on each of the upper and lower surfaces of the active body. A pair of external electrodes to which the internal electrodes are alternately connected every other layer are bonded to the side surfaces of the external electrodes, and lead terminals are connected to the end portions of the external electrodes bonded to the side surfaces of the inert body. In the multilayer piezoelectric element, a concave groove is formed on a side surface of the inert body to which an end of the external electrode is bonded.
[0010]
In such a multilayer piezoelectric element, the end of the external electrode is adhered to the portion where the concave groove on the side surface of the inert body is formed, thereby improving the bonding strength between the side surface of the inert body and the external electrode. This can generate a large amount of displacement by applying a higher electric field, and even if it is continuously driven for a long time in this state, it is possible to suppress peeling from the end of the external electrode, and the columnar shape of the external electrode Bonding strength to the laminate can be improved.
[0011]
That is, the external electrode extends from an active body that generates displacement to an inactive body that does not generate displacement for the purpose of reliably joining the internal electrode, and the external electrode straddles the active body and the inactive body. The lead terminal must be joined to the end of the external electrode extended to the inert body because the stress is not generated due to the extension of the actuator in the lead terminal connecting portion. Since the end portion of the external electrode is joined to the portion where the concave groove on the side surface of the inert body is formed, the end portion of the external electrode is prevented from peeling from the side surface of the inert body due to the anchor effect. It is possible to suppress the start of peeling from the end of the external terminal.
[0012]
Moreover, in this invention, it is desirable for the depth of the ditch | groove formed in the side surface of an inert body to be 5-100 micrometers. By adopting such a configuration, it is possible to suppress breakage of the inert body and to effectively prevent peeling of the end portion of the external electrode.
[0013]
Further, in the present invention, it is desirable that the end of the internal electrode to which the external electrode is connected is provided with a protruding conductive terminal protruding from the side surface of the columnar laminate every other layer. By adopting such a configuration, peeling of the external electrode from the columnar stacked body can be further suppressed.
[0014]
In addition, the injection device of the present invention includes a storage container having an injection hole, the stacked piezoelectric element stored in the storage container, and a valve that ejects liquid from the injection hole by driving the stacked piezoelectric element. It comprises.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B show an embodiment of a multilayer piezoelectric element comprising a multilayer piezoelectric actuator according to the present invention. FIG. 1A is a perspective view, and FIG. 1B is a longitudinal section along the line AA 'in FIG. (C) is a perspective view showing a part of (a) in an enlarged manner, and (d) is a sectional view showing a part of (b) in an enlarged manner.
[0016]
As shown in FIG. 1, the multilayer piezoelectric actuator of the present invention includes an active body 1a 1 formed by alternately laminating a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2, and upper and lower surfaces of the active body 1a 1. On the side surface of the formed columnar columnar laminate 1 a made of the inert body 1 a 2 , the internal electrode 2 is covered with the insulator 3 every other end of the internal electrode 2 and not covered with the insulator 3. Protruding conductive terminals 5 are provided at the ends of the substrate, and a conductive adhesive is applied and dried on the side surfaces of the columnar laminate 1a so as to embed the protruding conductive terminals 5, thereby forming the external electrodes 4. A lead terminal 6 is connected and fixed to the lower end of the electrode 4.
[0017]
The external electrode 4 is formed from the active body 1a 1 to the inactive body 1a 2, and a plurality of concave grooves 9 are formed on the side surface of the inactive body 1a 2 where the lower end of the external electrode 4 is formed. Yes. These concave grooves 9 are formed in parallel with the exposed end of the internal electrode 2 and in an area range slightly larger than the external electrode formation area. The lead terminal 6 is joined to the end of the external electrode 4 located on the inactive body 1a 2 by solder or the like.
[0018]
The depth d of these concave grooves 9 is 5 to 100 μm. This is because if the depth is within this range, the inert body 1a 2 is not broken and the bonding strength of the external electrode 4 can be improved. On the other hand, when the depth of the concave groove 9 is shallower than 5 μm, the bonding strength of the external electrode 4 to the inactive body 1a 2 is low, and when deeper than 100 μm, it is inactive when driven at a high voltage. This is because easy broken at the portion of the groove 9 of the body 1a 2.
[0019]
The width b of the concave grooves 9 in the stacking direction is preferably 5 to 50 μm from the viewpoint of enhancing the anchor effect. Such a concave groove 9 can be formed by dicing or scratching.
[0020]
Incidentally, it has formed the groove 9 only on the side surfaces of the inert bodies 1a 2 of the lower lead terminals 6 are formed, it may also form a groove on the side surface of the upper inert body 1a 2 is Of course. Although the formation of the concave groove 9 in a slightly larger area extent than the external electrode formation area, it is of course possible to form the inert body 1a 2 whole side surface.
[0021]
Furthermore, although the concave groove 9 is formed in parallel with the exposed end portion of the internal electrode 2, it may be formed so as to be orthogonal to the exposed end portion of the internal electrode 2, and further, the concave groove 9 is formed in a lattice shape. It may be formed.
[0022]
The piezoelectric body 1 is made of, for example, a lead zirconate titanate Pb (Zr, Ti) O 3 (hereinafter abbreviated as PZT) or a piezoelectric ceramic material mainly composed of barium titanate BaTiO 3 . The piezoelectric ceramics are those piezoelectric strain constant d 33 indicating the piezoelectric characteristic is high is preferable.
[0023]
The thickness of the piezoelectric body 1, that is, the distance between the internal electrodes 2 is preferably 50 to 250 μm. In order to obtain a larger displacement amount by applying a voltage to the stacked piezoelectric actuator, a method of increasing the number of stacked layers is used. However, when the number of stacked layers is increased, the piezoelectric body 1 is too thick. This is because the actuator cannot be reduced in size and height, and on the other hand, if the thickness of the piezoelectric body 1 is too thin, dielectric breakdown tends to occur.
[0024]
An internal electrode 2 is disposed between the piezoelectric bodies 1, and the internal electrode 2 is formed of a metal material such as silver-palladium, and a predetermined voltage is applied to each piezoelectric body 1. It acts to cause displacement due to the reverse piezoelectric effect.
[0025]
A columnar laminate 1a formed by alternately laminating a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2 is first composed of a calcined powder of piezoelectric ceramics such as PZT and an organic polymer such as acrylic or butyral. A binder is mixed with a plasticizer such as DBP (dioctyl phthalate) or DOP (dibutyl phthalate) to produce a slurry, and the slurry is piezoelectric by a tape molding method such as a well-known doctor blade method or calendar roll method. A ceramic green sheet to be 1 is produced.
[0026]
Next, a conductive paste is prepared by adding a binder, a plasticizer, and the like to silver-palladium powder, and this is printed on the upper surface of each green sheet to a thickness of 1 to 40 μm by screen printing or the like.
[0027]
Then, a plurality of green sheets each having a conductive paste printed on the upper surface were laminated, and green sheets on which no conductive paste was printed were laminated on the upper and lower surfaces of the laminate, and the binder was removed at a predetermined temperature. Then, it is fabricated by firing at 900 to 1200 ° C.
[0028]
Then, the paste-like conductive terminal 5 is formed by applying a paste containing silver as a main component to the opposing side surfaces on which the external electrodes 4 of the columnar laminate 1a are formed and baking at 700 to 950 ° C. That is, in order to form such protruding conductive terminals 5, glass powder having a softening point of 600 ° C. to 950 ° C. is dispersed in a paste mainly composed of silver, and the paste is used as an external electrode. By performing application and baking on the formation surface of 4, the protruding conductive terminals 5 can be effectively formed.
[0029]
That is, by dispersing the glass component in the paste, the glass is softened during baking, and in this state, silver that is difficult to diffuse in the piezoelectric body 1 diffuses and gathers near the end of the internal electrode 2, and therefore, FIG. A protruding conductive terminal 5 as shown in (c) can be formed.
[0030]
The protruding conductive terminal 5 is formed on a part of the side surface of the columnar laminated body 1 a, is formed in a rail shape, and its length is substantially the same as the width of the external electrode 4. The length of the protruding conductive terminal 5 may be shorter than the width of the external electrode 4.
[0031]
Further, a groove having a depth of 50 to 500 μm and a width of 30 to 200 μm in the stacking direction is formed on the side surface of the columnar laminated body 1a on which the protruding conductive terminals 5 are formed. The insulator 3 is formed by filling a resin, a polyimide resin, a polyamideimide resin, a silicone rubber, or the like.
[0032]
The end of the internal electrode 2 where no groove is formed is connected to the external electrode 4 via the above-described protruding conductive terminal 5. Note that the external electrode 4 may be formed by bonding a plate-like conductive member to the protruding conductive terminal 5 and bonding the plate-like conductive member to the side surface of the columnar laminated body 1a with a conductive adhesive so as to embed the plate-like conductive member. good. In this case, it is desirable that the conductive adhesive has a small elastic coefficient and easily deforms. The joint between the protruding conductive terminal 5 and the plate-like conductive member is, for example, heat treated at 700 to 950 ° C. in a state where a load is applied, so that the main component silver is the protruding conductive terminal 5 and the plate-like conductive member. They can be diffused to each other, and so-called silver diffusion bonding can be performed.
[0033]
When the plate-like conductive member is connected to the internal electrode 2 through the protruding conductive terminal 5 in this way, the protruding conductive terminal 5 is deformed even when the actuator is continuously driven for a long time under a high electric field and high pressure. Since the protruding conductive terminal 5 can sufficiently absorb the stress generated during driving, the disconnection between the external electrode 4 and the internal electrode 2 can be suppressed, and an actuator having excellent durability can be provided.
[0034]
Furthermore, on the outer surface of the plate-like conductive member, a conductive auxiliary made of any one of a mesh of metal, a mesh-like metal plate, a conductive coil, a conductive corrugated plate, or a conductive fiber assembly (wool shape). A member may be formed. In this case, even when a large current is input to the actuator and driven at a high speed, the large current can flow through the conductive auxiliary member, and the current flowing through the external electrode 4 can be reduced. Can prevent local heat generation and disconnection, and can greatly improve durability.
[0035]
Further, the end portions of the internal electrodes 2 are alternately insulated by the insulator 3 every other layer, and the other non-insulated end portions of the internal electrodes 2 are joined to the external electrodes 4 through the protruding conductive terminals 5. Will be.
[0036]
The insulator 3 is preferably made of a material having a low elastic modulus that follows the displacement of the columnar laminate 1a, specifically, silicone rubber or the like, in order to strengthen the bonding with the columnar laminate 1a. It is.
[0037]
As shown in FIG. 1C, the width B in the same direction as the stacking direction of the protruding conductive terminals 5 lowers the resistance of the connecting portion between the external electrode 4 and the internal electrode 2 and is generated when the actuator is driven. From the viewpoint of sufficiently absorbing the stress, it is desirable that the thickness is 1 μm or more and 1/2 or less of the thickness of the piezoelectric body 1. In particular, the width B is desirably 5 to 25 μm.
[0038]
The protrusion height h of the protruding conductive terminal 5 is desirably 1/20 or more of the thickness of the piezoelectric body 1 from the viewpoint of sufficiently absorbing the stress generated by the expansion and contraction of the actuator. The protrusion height h is preferably 15 to 50 μm.
[0039]
Further, the thickness of the plate-like conductive member follows the expansion and contraction of the actuator, and no disconnection occurs between the external electrode 4 and the protruding conductive terminal 5 or between the protruding conductive terminal 5 and the internal electrode 2. Therefore, it is desirable that it is 50 μm or less.
[0040]
The projecting conductive terminal 5 and the plate-like conductive member are made of a metal having conductivity such as silver, nickel, copper, gold, aluminum, or an alloy thereof, and among these, the bonding strength with the internal electrode is strong, Silver is desirable because of its low Young's modulus.
[0041]
In the multilayer piezoelectric element configured as described above, the end portion of the external electrode 4 is joined to the portion where the concave groove 9 on the side surface of the inert body 1a 2 is formed. can end of the electrode 4 is prevented from being peeled off from the side of the inert body 1a 2, it is possible to suppress the peeling starting from the end of the external terminal 4. Even if an external force acts on the lead terminal 6 and is pulled, the bonding strength of the external electrode 4 is high, so that peeling of the end portion of the external terminal 4 can be suppressed.
[0042]
The multilayer piezoelectric element of the present invention is not limited to these, and various modifications can be made without departing from the gist of the present invention.
[0043]
FIG. 2 shows an injection device according to the present invention. In the figure, reference numeral 31 denotes a storage container. An injection hole 33 is provided at one end of the storage container 31, and a needle valve 35 that can open and close the injection hole 33 is stored in the storage container 31.
[0044]
A fuel passage 37 is provided in the injection hole 33 so as to be able to communicate. The fuel passage 37 is connected to an external fuel supply source, and fuel is always supplied to the fuel passage 37 at a constant high pressure. Therefore, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is formed to be injected into a fuel chamber (not shown) of the internal combustion engine at a constant high pressure.
[0045]
The upper end of the needle valve 35 has a large diameter, and has a cylinder 39 formed in the storage container 31 and a piston 41 that can slide. In the storage container 31, the piezoelectric actuator 43 described above is stored.
[0046]
In such an injection device, when the piezoelectric actuator 43 is extended by applying a voltage, the piston 41 is pressed, the needle valve 35 closes the injection hole 33, and the supply of fuel is stopped. When the application of voltage is stopped, the piezoelectric actuator 43 contracts, the disc spring 45 pushes back the piston 41, and the injection hole 33 communicates with the fuel passage 37 so that fuel is injected.
[0047]
【Example】
First, a columnar laminate was produced. The piezoelectric body was formed of PZT having a thickness of 150 μm, the internal electrode was formed of a silver-Pt alloy having a thickness of 3 μm, and the number of stacked layers of the piezoelectric body and the internal electrode was 300 layers. Five concave grooves having a depth d of 20 μm and a width b of 20 μm were formed at intervals of 100 μm on the side surface of the inert body on which the external electrodes were formed by dicing. The formation area was set to be slightly larger than the external electrode formation area.
[0048]
Next, a paste containing silver is applied to the side surface of the columnar laminated body on which the external electrode is formed, and baked at 800 ° C., and the end of the internal electrode exposed on the side surface of the columnar laminated body has the same direction as the laminating direction. A protruding conductive terminal having a width B of 10 μm and a height h of 20 μm was formed. After that, a groove was formed every other end of the internal electrode, and the groove was filled with silicone rubber as an insulator.
[0049]
Next, polyamic acid, which is a polyimide precursor, is dissolved in N-methyl-2-pyrrolidone (NMP) to form a varnish, and 20% by weight of silver powder is mixed, kneaded, and pasted into this varnish. It applied to the predetermined position which forms an electrode, and while evaporating a solvent in the air of 220 degreeC, the curing reaction was caused to form and the external electrode was formed.
[0050]
Thereafter, a lead terminal is joined to the lower end of the positive electrode external electrode and the negative electrode external electrode with solder, and although not shown, silicone rubber is coated around the actuator by a method such as dipping, and further, the positive electrode, A multilayer piezoelectric actuator shown in FIG. 1 was obtained by applying a polarization voltage of 3 kV to the negative electrode and polarizing the entire actuator.
[0051]
As a result of applying a DC voltage of 150 V to the obtained multilayer piezoelectric actuator, a displacement of 40 μm was obtained in the stacking direction. Furthermore, as a result of applying a driving test by applying an AC voltage of 0 to +150 V to this actuator at a frequency of 60 Hz at room temperature, a displacement of 40 μm was obtained when driving up to 1 × 10 9 cycles, peeling of external electrodes, etc. No abnormalities were observed.
[0052]
Further, the present inventor produced a laminated piezoelectric actuator in the same manner as described above except that the depth d of the concave groove was changed to 5 to 100 μm, and applied a DC voltage of 150 V to the obtained laminated piezoelectric actuator. As a result of the application, a displacement of 40 μm was obtained in the stacking direction. Furthermore, as a result of applying a driving test by applying an AC voltage of 0 to +150 V to this actuator at a frequency of 60 Hz at room temperature, a displacement of 40 μm was obtained when driving up to 1 × 10 9 cycles, peeling of external electrodes, etc. No abnormalities were observed.
[0053]
On the other hand, a laminated piezoelectric actuator was produced in the same manner as described above except that the concave groove and the projecting conductive terminal were not formed, and a DC voltage of 150 V was applied to the obtained laminated piezoelectric actuator. Although a displacement of 40 μm was obtained, a drive test was performed by applying an AC voltage of 0 to +150 V to the actuator at a frequency of 60 Hz at room temperature. As a result, a decrease in the displacement was observed after driving 1 × 10 6 cycles. Therefore, when driving was stopped and the actuator was observed, the lower end portion of the external electrode was peeled off.
[0054]
【The invention's effect】
In the multilayer piezoelectric element of the present invention, the end of the external electrode is bonded to the portion where the groove on the side surface of the inert body is formed, thereby improving the bonding strength between the side surface of the inert body and the external electrode. This can generate a large amount of displacement by applying a higher electric field, and even if it is continuously driven for a long time in this state, it is possible to suppress peeling from the end of the external electrode, and the columnar shape of the external electrode Bonding strength to the laminate can be improved. Therefore, even in the case of continuous driving at a high applied electric field and high speed under a high temperature use environment, a multi-layer piezoelectric element having high durability can be provided at low cost without disconnecting the external electrode and the internal electrode.
[Brief description of the drawings]
1A and 1B show a multilayer piezoelectric element of the present invention, in which FIG. 1A is a perspective view, FIG. 1B is a longitudinal sectional view taken along line AA ′ in FIG. 1A, and FIG. The perspective view which expands and shows a part of (b), (d) is sectional drawing which expands and shows a part of (b).
FIG. 2 is an explanatory view showing an injection device of the present invention.
FIG. 3 is a longitudinal sectional view of a conventional multilayer piezoelectric actuator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric body 1a ... Columnar laminated body 1a 1 ... Active body 1a 2 ... Inactive body 2 ... Internal electrode 4 ... External electrode 5 ... Projection-like conductive terminal 6 ... Lead terminal 9 ... Groove 31 ... Storage container 33 ... Injection hole 35 ... Valve 43 ... Piezoelectric actuator

Claims (4)

複数の圧電体と複数の内部電極とを交互に積層してなる活性体と、該活性体の上下面にそれぞれ設けられた不活性体とからなる柱状積層体の側面に、前記内部電極が一層おきに交互に接続する一対の外部電極を接着してなるとともに、前記不活性体の側面に接着された前記外部電極の端部にリード端子を接続してなる積層型圧電素子であって、前記外部電極の端部が接着される前記不活性体の側面に凹溝が形成されていることを特徴とする積層型圧電素子。The internal electrode is further formed on the side surface of a columnar laminate comprising an active body in which a plurality of piezoelectric bodies and a plurality of internal electrodes are alternately stacked, and an inactive body provided on each of the upper and lower surfaces of the active body. A laminated piezoelectric element formed by bonding a pair of external electrodes alternately connected to each other, and connecting a lead terminal to an end of the external electrode bonded to the side surface of the inert body, A laminated piezoelectric element characterized in that a concave groove is formed on a side surface of the inert body to which an end of an external electrode is bonded. 不活性体の側面に形成された凹溝の深さが5〜100μmであることを特徴とする請求項1記載の積層型圧電素子。2. The multilayer piezoelectric element according to claim 1, wherein the depth of the concave groove formed on the side surface of the inert body is 5 to 100 [mu] m. 外部電極と接続する内部電極の端部には、柱状積層体の側面から突出する突起状導電性端子が設けられていることを特徴とする請求項1又は2記載の積層型圧電素子。3. The multilayer piezoelectric element according to claim 1, wherein a projecting conductive terminal protruding from a side surface of the columnar laminate is provided at an end of the internal electrode connected to the external electrode. 噴射孔を有する収納容器と、該収納容器内に収容された請求項1乃至3のうちいずれかに記載の積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなることを特徴とする噴射装置。A storage container having an injection hole, the multilayer piezoelectric element according to any one of claims 1 to 3 accommodated in the storage container, and liquid is ejected from the injection hole by driving the multilayer piezoelectric element. An injection device comprising a valve.
JP2001088131A 2001-03-26 2001-03-26 Multilayer piezoelectric element and injection device Expired - Fee Related JP4841046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001088131A JP4841046B2 (en) 2001-03-26 2001-03-26 Multilayer piezoelectric element and injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001088131A JP4841046B2 (en) 2001-03-26 2001-03-26 Multilayer piezoelectric element and injection device

Publications (2)

Publication Number Publication Date
JP2002285937A JP2002285937A (en) 2002-10-03
JP4841046B2 true JP4841046B2 (en) 2011-12-21

Family

ID=18943268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001088131A Expired - Fee Related JP4841046B2 (en) 2001-03-26 2001-03-26 Multilayer piezoelectric element and injection device

Country Status (1)

Country Link
JP (1) JP4841046B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736422B2 (en) 2004-12-24 2011-07-27 株式会社デンソー Manufacturing method of multilayer piezoelectric element
JP5342919B2 (en) * 2009-04-22 2013-11-13 京セラ株式会社 Multilayer piezoelectric element, injection device and fuel injection system using the same
JP5724120B1 (en) 2014-02-27 2015-05-27 Tdk株式会社 Piezoelectric element unit and driving device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456179A (en) * 1990-06-21 1992-02-24 Alps Electric Co Ltd Lamination type piezoelectric element
JPH04214686A (en) * 1990-10-05 1992-08-05 Nec Corp Electrostrictive effect element
JPH0529680A (en) * 1991-07-25 1993-02-05 Hitachi Metals Ltd Laminated displacement element and manufacture thereof
JPH06181343A (en) * 1992-12-11 1994-06-28 Hitachi Metals Ltd Laminated displacement element and manufacture thereof
JPH06249706A (en) * 1993-02-26 1994-09-09 Fujikura Ltd Piezoelectric oscillation sensor
JPH10144974A (en) * 1996-11-08 1998-05-29 Denso Corp Piezoelectric actuator and its manufacturing method
JP3881474B2 (en) * 1999-05-31 2007-02-14 京セラ株式会社 Multilayer piezoelectric actuator
JP2001060843A (en) * 1999-08-23 2001-03-06 Murata Mfg Co Ltd Chip type piezoelectric part

Also Published As

Publication number Publication date
JP2002285937A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
US7705525B2 (en) Multi-layer piezoelectric element and method for manufacturing the same
JP4808915B2 (en) Multilayer piezoelectric element and injection device
JP3860746B2 (en) Multilayer piezoelectric element and injection device
JP2001210884A (en) Stacked type piezoelectric actuator
JP3667289B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP3730893B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP4290946B2 (en) Multilayer piezoelectric element and injection device
JP4841046B2 (en) Multilayer piezoelectric element and injection device
JP3598057B2 (en) Multilayer piezoelectric element and injection device
JP4737799B2 (en) Multilayer piezoelectric actuator and injection device
JP2001244514A (en) Laminated piezoelectric actuator and injector using the same
JP2002289932A (en) Laminated piezoelectric element, manufacturing method therefor, and jetting device
JP4498300B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP2005072325A (en) Laminated piezoelectric device and injection equipment
JP4290947B2 (en) Multilayer piezoelectric element and injection device
JP4299807B2 (en) Multilayer piezoelectric element and injection device
JP4593911B2 (en) Multilayer piezoelectric element and injection device
JP3909275B2 (en) Multilayer piezoelectric element and injection device
JP3909274B2 (en) Multilayer piezoelectric element and injection device
JP3909276B2 (en) Multilayer piezoelectric element and injection device
JP3872349B2 (en) Manufacturing method of multilayer piezoelectric element
JP2002261340A (en) Laminated piezoelectric element and injection device
JP3990613B2 (en) Multilayer piezoelectric element and injection device
JP4498299B2 (en) Manufacturing method of multilayer piezoelectric element
JP2002111088A (en) Multilayer piezoelectric actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4841046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees