JP3909275B2 - Multilayer piezoelectric element and injection device - Google Patents

Multilayer piezoelectric element and injection device Download PDF

Info

Publication number
JP3909275B2
JP3909275B2 JP2002245839A JP2002245839A JP3909275B2 JP 3909275 B2 JP3909275 B2 JP 3909275B2 JP 2002245839 A JP2002245839 A JP 2002245839A JP 2002245839 A JP2002245839 A JP 2002245839A JP 3909275 B2 JP3909275 B2 JP 3909275B2
Authority
JP
Japan
Prior art keywords
conductive
protruding
piezoelectric element
columnar
external electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002245839A
Other languages
Japanese (ja)
Other versions
JP2004087729A (en
Inventor
成信 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002245839A priority Critical patent/JP3909275B2/en
Publication of JP2004087729A publication Critical patent/JP2004087729A/en
Application granted granted Critical
Publication of JP3909275B2 publication Critical patent/JP3909275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、積層型圧電素子及び噴射装置に関し、例えば、自動車用燃料噴射装置、光学装置等の精密位置決め装置や振動防止用の駆動素子等に用いられる積層型圧電素子及び噴射装置に関するものである。
【0002】
【従来技術】
従来より、積層型圧電素子としては、圧電体と内部電極を交互に積層した積層型圧電アクチュエータが知られている。積層型圧電アクチュエータには、同時焼成タイプと、圧電磁器と内部電極板を交互に積層したスタックタイプとの2種類に分類されており、低電圧化、製造コスト低減の面から考慮すると、同時焼成タイプの積層型圧電アクチュエータが薄層化に対して有利であるために、その優位性を示しつつある。
【0003】
図4は、従来の積層型圧電アクチュエータを示すもので、このアクチュエータでは、圧電体51と内部電極52が交互に積層されて柱状積層体53が形成され、その積層方向における両端面には不活性層55が積層されている。内部電極52は、その一方の端部が左右交互に絶縁体61で被覆され、その上から帯状外部電極70が内部電極52と左右各々一層おきに導通するように形成されている。帯状外部電極70上には、さらにリード線76が半田77により固定されている。
【0004】
ところで、近年においては、小型の圧電アクチュエータで大きな圧力下において大きな変位量を確保するため、より高い電界を印加し、長期間連続駆動させることが行われている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した圧電アクチュエータでは、高電界、高圧力下で長期間連続駆動させた場合、圧電体51間に形成された内部電極52と、正極、負極用の外部電極70との間で剥離が発生し、一部の圧電体51に電圧供給されなくなり、駆動中に変位特性が変化するという問題があった。
【0006】
本発明は、高電界、高圧力下で長期間連続駆動させた場合でも、外部電極と内部電極とが断線することがなく、耐久性に優れた積層型圧電素子及び噴射装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の積層型圧電素子は、圧電体と内部電極とを交互に積層してなる柱状積層体と、該柱状積層体の側面に設けられ、前記内部電極が一層おきに交互に接続された一対の外部電極とを具備してなる積層型圧電素子であって、前記内部電極の端部に一層おきに前記柱状積層体の側面から突出する突起状導電性端子を設け、該突起状導電性端子の先端部に板状導電部材からなる外部電極を接合するとともに、該外部電極に導電性のメッシュ状部材を埋設した導電性接着剤からなる導電性補助部材を設けてなり、ガラスを主成分とするガラス領域が、前記突起状導電性端子の根元部の側面及び該側面につづく前記柱状積層体の側面を覆っていることを特徴とする。
【0008】
本発明の積層型圧電素子では、内部電極の端部に一層おきに柱状積層体の側面から突出する突起状導電性端子を設け、該突起状導電性端子の先端部に板状導電部材からなる外部電極を接合したため、アクチュエータが積層方向に駆動すると、突起状導電性端子が変形してアクチュエータの伸縮によって生じる応力を吸収する。これにより、高電界、高圧力下で長期間連続運転させた場合でも、外部電極と内部電極との断線を抑制することができ、耐久性を大幅に向上できる。
【0009】
また、本発明では、板状導電部材の外面に、導電性のメッシュ状部材を埋設した導電性接着剤からなる導電性補助部材を備えているため、アクチュエータに大電流を投入し、高速で駆動させる場合においても、大電流を前記導電性補助部材に流すことができる。これにより、外部電極が局所発熱を起こして断線するのを防ぐことができ、耐久性を大幅に向上させることができる。さらに、導電性接着剤には、導電性のメッシュ状部材が埋設されているため、アクチュエータの伸縮によって導電性接着剤にクラックが生じるといった問題が発生するのを防ぐことができる。
【0010】
さらに、本発明によれば、ガラスを主成分とするガラス領域が、突起状導電性端子の根元部の側面及び該側面につづく柱状積層体の側面を覆っているので、このガラス領域が突起状導電性端子を保持することができる。これにより、突起状導電性端子の強度を向上させることができる。
また、本発明におけるガラス領域が、柱状積層体の側面に垂直な方向の厚みが突起状導電性端子から離隔するにつれて漸次減少しているときには、ガラス領域の表面がなだらかに傾斜面となるので、ガラス領域の一部に応力が集中するのを防止することができる。
【0011】
また、本発明の積層型圧電素子は、柱状積層体側面の突起状導電性端子間には、内部電極端が露出する凹溝が形成されていることを特徴とする。このような積層型圧電素子では、いわゆる部分電極構造の積層型圧電素子に比較して発生応力を低減できるとともに、突起状導電性端子を介して外部電極に接続する内部電極端部の厚みを柱状積層体内部の内部電極の厚みよりも有効的に厚くすることができるため、内部電極と外部電極の間で接点不良の問題が生じるのを防ぐことができる。
【0012】
また、本発明の積層型圧電素子では、内部電極、突起状導電性端子および外部電極の主成分が銀であることが望ましい。このような構成によれば、内部電極と突起状導電性端子および外部電極の主成分を同一の銀とすることにより、突起状導電性端子と内部電極の間、及び突起状導電性端子と外部電極の間で、銀が相互拡散し、これにより、各々の間での接合強度を強固にすることができ、アクチュエータを高電界下で駆動させた場合にも、外部電極と内部電極が断線することなく、耐久性を大きく向上させることができる。また、突起状導電性端子と外部電極の主成分をヤング率の低い銀とすることによりアクチュエータの駆動時に生じる応力を十分吸収することができ、外部電極と内部電極との断線を抑制できる。
【0013】
さらに、本発明の積層型圧電素子では、導電性接着剤が導電材とイミド結合を有する樹脂とからなることを特徴とする。このような構成によれば、マトリックス樹脂を樹脂の中でも特に耐熱性に優れたポリイミドやポリアミドイミドなどのイミド結合を有する樹脂とすることにより、高温での耐久性に優れたアクチュエータを得ることができる。
【0014】
また、本発明の積層型圧電素子は、導電性接着剤の導電材が非球形の銀粉末であることを特徴とする。このような構成によれば、銀粉末が体積固有抵抗が小さく、耐酸化性に優れている上に、銀粉末の粒子形状を針状やフレーク状などの非球形にすることにより、略球形の場合よりも導電材粒子同士の絡み合いが大きくなり、結果として、導電性接着剤の剪断強度を大きく向上させることができ、また比抵抗も低くできる。
【0015】
また、本発明の噴射装置は、噴射孔を有する収納容器と、該収納容器内に収容された上記積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備するものである。
【0016】
このような噴射装置では、上記したように、積層型圧電素子自体において外部電極と内部電極との断線を抑制でき、耐久性を大幅に向上できるため、噴射装置の耐久性をも向上できる。
【0017】
【発明の実施の形態】
図1は本発明の積層型圧電アクチュエータからなる積層型圧電素子の一実施例を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図、(c)は(a)の一部を拡大して示す斜視図、(d)は内部電極と外部電極の接合部近傍の拡大図である。
【0018】
積層型圧電アクチュエータは、図1に示すように、複数の圧電体1と複数の内部電極2とを交互に積層してなる四角柱状の柱状積層体1aの側面において、内部電極2の端部を一層おきに絶縁体3で被覆し、絶縁体3で被覆していない内部電極2の端部に、積層型圧電素子の伸縮方向に変形可能な突起状導電性端子5を設け、該突起状導電性端子5の先端部に板状導電部材からなる外部電極4を接合して構成されている。
【0019】
外部電極4の外側には導電性補助部材7が設けられており、この導電性補助部材7は、導電性接着剤7a中に導電性のメッシュ状部材7bを埋設して構成されている。各導電性補助部材7にはリード線6が接続固定されている。
【0020】
圧電体1は、例えば、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3(以下PZTと略す)、或いはチタン酸バリウムBaTiO3を主成分とする圧電セラミックス材料等で形成されている。この圧電セラミックスは、その圧電特性を示す圧電歪み定数d33が高いものが望ましい。
【0021】
また、圧電体1の厚み、つまり内部電極2間の距離は50〜250μmが望ましい。これは、積層型圧電アクチュエータは電圧を印加してより大きな変位量を得るために、積層数を増加させる方法がとられるが、積層数を増加させた場合に圧電体1の厚みが厚すぎるとアクチュエータの小型化、低背化ができなくなり、一方、圧電体1の厚みが薄すぎると絶縁破壊しやすいからである。
【0022】
圧電体1の間には内部電極2が配されているが、この内部電極2は銀−パラジウム等の金属材料(銀主成分)で形成されており、各圧電体1に所定の電圧を印加し、圧電体1に逆圧電効果による変位を起こさせる作用をなす。
【0023】
また、突起状導電性端子5間における柱状積層体1aの側面には、内部電極2端が露出する、深さ50〜500μm、積層方向の幅30〜200μmの凹溝11が形成されており、この凹溝11内にはガラス、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーンゴム等が充填されて、絶縁体3が形成されている。この絶縁体3は、柱状積層体1aとの接合を強固とするため、柱状積層体1aの変形に対して追従する、弾性率が低い材料、具体的にはシリコーンゴム等からなることが好適である。
【0024】
突起状導電性端子5と絶縁体3は、外部電極4が形成される柱状積層体1aの側面に露出した内部電極2に交互に形成されている。
【0025】
即ち、凹溝11内に充填された絶縁体3により内部電極2の端部が互い違いに一層おきに絶縁され、内部電極2の絶縁されていない他方の端部は、突起状導電性端子5を介して板状導電部材からなる外部電極4と接合されている。
【0026】
柱状積層体1aの対向する側面には、それぞれ板状導電部材からなる外部電極4が突起状導電性端子5を介して内部電極2に接続固定されており、該外部電極4には、積層されている内部電極2が一層おきに電気的に接続されている。この板状導電部材からなる外部電極4は、接続されている各内部電極2に圧電体1を逆圧電効果により変位させるに必要な電圧を共通に供給する作用をなす。
【0027】
本発明では、このように板状導電部材からなる外部電極4が突起状導電性端子5を介して内部電極2に接続されているため、アクチュエータを高電界、高圧力下で長期間連続駆動させた場合でも、突起状導電性端子5がアクチュエータの伸縮によって生じる応力を吸収し、該外部電極4と内部電極2の断線を抑制することができ、耐久性に優れたアクチュエータを提供することができる。
【0028】
突起状導電性端子5の積層方向と同一方向の厚さBは、図1(c)に示すように、外部電極4と内部電極2との接続部の抵抗を低くし、且つアクチュエータの駆動時に生じる応力を十分に吸収するという点から、1μm以上且つ圧電体1厚みの1/2以下であることが望ましい。特には厚さBは5〜25μmが望ましい。
【0029】
また、突起状導電性端子5の突出高さhは、アクチュエータの伸縮によって生じる応力を十分に吸収するという点から、圧電体1厚みの1/20以上であることが望ましい。特には突出高さhは、15〜50μmが望ましい。
【0030】
さらに、板状導電部材からなる外部電極4の厚みtは、アクチュエータの伸縮に追従し、外部電極4と突起状導電性端子5の間、若しくは突起状導電性端子5と内部電極2の間で断線を生じないという点から、50μm以下であることが望ましい。
【0031】
さらに、導電性補助部材7にはリード線6が半田により接続固定されている。このリード線6は導電性補助部材7および外部電極4を外部の電圧供給部に接続する作用をなす。
【0032】
また、内部電極2は、銀、銀−パラジウム合金、銀−白金合金等の銀が主成分の金属および合金からなる。また、突起状導電性端子5および外部電極4に関しても主成分が銀であることが望ましい。これは、内部電極2と突起状導電性端子5および外部電極4の主成分を同一の銀とすることにより、突起状導電性端子5と内部電極2の間、及び突起状導電性端子5と外部電極4の間で、銀が相互拡散し、これにより、各々の間での接合強度を強固にすることができるためである。また、突起状導電性端子5と外部電極4は、アクチュエータの伸縮によって生じる応力を十分に吸収するという点からも、ヤング率の低い銀、若しくは銀が主成分の合金が望ましい。
【0033】
また、外部電極4の外側には、導電性のメッシュ状部材7bを埋設した導電性接着剤7aからなる導電性補助部材7が形成されているため、アクチュエータに大電流を投入し、高速で駆動させる場合においても、大電流を前記導電性補助部材7に流すことができ、外部電極4が局所発熱を起こして断線するのを防ぐことができ、耐久性を大幅に向上させることができる。さらに、前記導電性接着剤7aには、導電性のメッシュ状部材7bが埋設されているため、アクチュエータの伸縮によって導電性接着剤7aにクラックが生じるといった問題が発生するのを防ぐことができる。尚、メッシュ状部材7bとしては、金属線を編み込んだものや、金属板に多数の孔を形成したもの等がある。メッシュ状とすることにより、外部電極7の伸縮変形を向上できる。
【0034】
さらに、導電性補助部材7を構成する導電性接着剤7aに分散している導電材量は、該導電性接着剤7aの比抵抗を十分低くし、且つ高い接着強度を維持できるという点から、15〜80体積%が望ましい。即ち、導電材の含有量を15〜80体積%とすることにより、導電材粒子間の接触が容易になるため導電性接着剤7aの比抵抗を小さくでき、大電流を流した際に導電性接着剤7a部分での局所発熱を防止できるとともに、接着を担うマトリックス樹脂成分の含有量が適量であるため、高い接着強度を維持でき、駆動中における導電性接着剤7aの剥離を防止できる。
【0035】
また、導電性接着剤7aのマトリックスとして用いる樹脂については、該導電性接着剤7aと熱膨張の異なる外部電極4および該導電性接着剤7aに埋設するメッシュ状部材7bとの熱膨張の差によって生じる応力、および、アクチュエータの伸縮によって生じる応力を吸収することができ、駆動時に導電性接着剤7aが剥離したり、該導電性接着剤7aにクラックが生じたりするといった問題が生じるのを防ぐことができるという点から、弾性率は20GPa以下で且つ伸度は10%以上であることが望ましい。
【0036】
さらに、アクチュエータの伸縮によって生じる応力を吸収しやすくするという点から、導電性接着剤7aのボイド率は5%以上が好ましい。また、高温での使用においても強い接着力を維持できるという点から、導電性接着剤7aのマトリックス樹脂の5%重量減少温度は250℃以上であることが望ましい。
【0037】
ここで簡単に、樹脂の5%重量減少温度の測定方法について説明する。まず、使用前の形態がワニス状の樹脂である場合は、予め溶剤分の蒸発と樹脂の硬化を完了させておく。そして、5%重量減少温度の測定には一般的には熱重量分析法(TG)が用いられる。即ち、大気中で一定の昇温速度(1〜10℃/分)で試料となる樹脂を昇温させ、そのときの重量を逐次測定しておく。そして、初期の重量に対して5%の重量が減少した時点の温度がその樹脂の5%重量減少温度である。このように測定した5%重量減少温度が250℃以上の樹脂を導電性接着剤7aのマトリックスとして用いることにより、高温での耐久性に優れた導電性補助部材7を形成することができる。
【0038】
さらに、導電性接着剤7aのマトリックス樹脂は、樹脂の中でも特に耐熱性に優れたポリイミドやポリアミドイミドなどのイミド結合を有する樹脂とすることが望ましい。これにより高温での耐久性に優れたアクチュエータを得ることができる。
【0039】
また、低温と高温の間でのヒートサイクルの条件下において、柱状積層体1aおよび外部電極4との熱膨張差から生じる応力を緩和するという点から、導電性接着剤7aのマトリックス樹脂は熱可塑性であることが望ましい。さらには、高温での強度低下を防ぐという点から、温度環境的に厳しい自動車用燃料噴射弁等に用いられる場合の環境を考慮して、導電性接着剤7aのマトリックス樹脂のガラス転移温度は180℃以上とすることが望ましい。これは、一般に樹脂はそのガラス転移温度以上の温度での使用は接着強度の低下を招くからである。
【0040】
また、導電性接着剤7aを構成する導電材は、体積固有抵抗が小さく、耐酸化性に優れているという点から、銀粉末が好ましい。さらに、該導電材粉末の形状は、導電材粒子の絡み合いを大きくすることにより、導電性接着剤7aの剪断強度を大きく向上させるとともに、比抵抗も低くできるという点から、針状やフレーク状などの非球形であることが望ましい。
【0041】
次に、本発明の積層型圧電素子の製法について説明する。まず、柱状積層体1aを作製する。複数の圧電体1と複数の内部電極2とを交互に積層して成る柱状積層体1aは、PZT等の圧電セラミックスの仮焼粉末と、アクリル系、ブチラール系等の有機高分子から成るバインダーと、DBP(フタル酸ジオチル)、DOP(フタル酸ジブチル)等の可塑剤とを混合してスラリーを作製し、該スラリーを周知のドクターブレード法やカレンダーロール法等のテープ成型法により圧電体1となるセラミックグリーンシートを作製する。
【0042】
次に、銀−パラジウム粉末にバインダー、可塑剤等を添加混合して導電性ペーストを作製し、これを前記各グリーンシートの上面にスクリーン印刷等によって1〜40μmの厚みに印刷する。ここで、銀−パラジウム粉末は、銀70%、パラジウム30%の合金粉末を用いた。
【0043】
そして、上面に導電性ペーストが印刷されたグリーンシートを積層し、この積層体について所定の温度で脱バインダーを行った後、900〜1200℃で焼成することによって作製される。
【0044】
その後、図2(a)に示すようにダイシング装置等により柱状積層体1aの側面に一層おきに凹溝11を形成する。
【0045】
次に、図2(b)に示すように、凹溝11間における柱状積層体1aの側面に、粒径0.1〜10μmの銀粉末を50〜80体積%と、残部が粒径0.1〜10μmでケイ素を主成分とする軟化点が600〜950℃のガラス粉末20〜50体積%からなる混合物にバインダーを加えて作製した銀ガラス導電性ペースト21を塗布、乾燥する。この後、図2(c)に示すように、銀ガラス導電性ペースト21に外部電極4となる板状導電部材を押圧するように荷重を加えた状態で700〜950℃で熱処理することにより、銀ガラス導電性ペースト21中のガラスが溶融し、溶融したガラス中に存在する銀成分が内部電極2の端部に集合し、図2(d)に示すように、柱状積層体1aの側面から突出する突起状導電性端子5が形成されるとともに、該突起状導電性端子5の先端部を外部電極4に接続することができる。熱処理時に、銀ガラス導電ペースト21中の銀成分が内部電極2端部2aに拡散していき、図1(d)に示すように、内部電極2の端部2aの厚みが柱状積層体1a中央部の内部電極2の厚みよりも厚くなる。これにより、内部電極2の端部2aに対する突起状導電性端子5の接合強度を向上できる。
【0046】
即ち、ペーストにガラス成分を分散させておくことにより、上述の熱処理時ににガラスが軟化し、この状態において圧電体1には拡散しにくい銀が内部電極2の端部に拡散して寄り集まるため、図2(d)に示すような突起状導電性端子5を形成できる。即ち、内部電極2および銀ガラス導電性ペースト21および板状導電部材中の銀成分が相互に拡散して内部電極2と突起状導電性端子5の間および突起状導電性端子5と板状導電部材の間で強固に接合がなされる。また、該突起状導電性端子5の根元付近には、銀ガラス導電性ペースト21中のガラスが寄り集まって隆起部5aを形成し、該突起状導電性端子5を保持している。
【0047】
この突起状導電性端子5は柱状積層体1aの側面の一部に形成されており、レール状に形成され、その長さは板状導電部材からなる外部電極4の幅とほぼ同一とされている。尚、突起状導電性端子5の長さは、外部電極4の幅よりも短くても良い。
【0048】
銀ガラス導電性ペースト21中の銀粉末を50〜80体積%、残部のガラス粉末を20〜50体積%としたのは、この範囲内とすることにより、突起状導電端子5を構成する銀成分が適量となり、形成される突起状導電性端子5の突出高さhを高くできるとともに、銀ガラス導電性ペースト21中の固形分残部であるガラス成分が適量となるため、該銀ガラス導電性ペースト21の焼き付け時に溶融するガラス成分も適量であり、銀成分が内部電極2端部に容易に集合し、突起状導電性端子5の突出高さhを高くできる。
【0049】
なお、上述の突起状導電性端子5の形成と、該突起状導電性端子5と外部電極4を接合する熱処理時に加える荷重は圧力にして、2〜500kPaが望ましい。この範囲とすることにより、突起状導電性端子5と板状導電部材4aとの間で拡散接合を十分に行うことができ、接合部の強度を高くできるとともに、圧力が適度となるため、突起状導電性端子5の変形を防止できる。
【0050】
尚、予め、柱状積層体1aの凹溝11間に対応する板状導電部材の部分に、銀ガラス導電性ペースト21を塗布乾燥し、この板状導電部材を柱状積層体1aに押圧するように荷重を加えた状態で熱処理してもよい。また、板状導電部材の全面に銀ガラス導電性ペースト21を塗布乾燥し、この板状導電部材を、導電性ペースト塗布面側を柱状積層体1aの内部電極2が露出した面に押圧し、熱処理しても、突起状導電性端子5が形成され、その先端部を外部電極4に接続することができる。この場合にはさらに工程を短縮することができる。
【0051】
その後、図2(e)に示すように、外部電極4の外側に、導電材として針状やフレーク状などの非球形の銀粉末を15〜80体積%と、残部がマトリックスとして弾性率が20GPa以下で、伸度が10%以上、5%重量減少温度が250℃以上、ガラス転移温度が180℃以上でイミド結合を有する熱可塑性の樹脂を20〜85体積%と、溶剤を混合した導電性接着剤ペーストを塗布し、該導電性接着剤7aに導電性のメッシュ状部材7bを埋設した後、150〜300℃で該導電性接着剤7aを加熱硬化させ、導電性補助部材7を形成する。
【0052】
導電性接着剤7a中の導電材の含有量を15〜80体積%としたのは、この範囲内ならば、導電材粒子間の接触が良好であるため導電性接着剤7aの比抵抗が小さく、大電流を流した際に該導電性接着剤7a部分での局所発熱を防止できるとともに、接着を担うマトリックス樹脂成分の含有量が適量となるため、高い接着強度を維持でき、駆動中における導電性接着剤7aの剥離を防止できる。
【0053】
また、マトリックス樹脂の弾性率を20GPa以下で且つ伸度を10%以上とすることにより、該導電性接着剤7aと熱膨張の異なる板状導電部材および該導電性接着剤7aに埋設するメッシュ状部材7bとの熱膨張の差によって生じる応力、および、アクチュエータの伸縮によって生じる応力を吸収することができ、駆動時に該導電性接着剤7aが剥離したり、該導電性接着剤7aにクラックが生じたりするといった問題が生じるのを防ぐことができる。
【0054】
さらに、本発明では、導電性接着剤7aを構成するマトリックス樹脂の5%重量減少温度を250℃以上とすることが望ましい。これは、マトリックス樹脂として、5%重量減少温度が250℃以上の耐熱性の高い樹脂を用いることにより、高温での使用に際して強い接着力を維持することが可能となり、高温の使用環境下、高い印加電界で高速で連続駆動させる場合においても、該導電性接着剤7aが剥離することなく高耐久性を備えたアクチュエータを提供することができる。
【0055】
また、本発明では、導電性接着剤7aを構成するマトリックス樹脂がイミド結合を有する樹脂であることが望ましい。これは、マトリックス樹脂を樹脂の中でも特に耐熱性に優れたポリイミドやポリアミドイミドなどのイミド結合を有する樹脂とすることにより、高温での耐久性に優れたアクチュエータを得ることができる。
【0056】
さらに、本発明では、導電性接着剤7aを構成するマトリックス樹脂が熱可塑性を示し、ガラス転移温度が180℃以上であることが望ましい。これは、マトリックスとして用いる樹脂を熱可塑性樹脂とすることにより、高温での連続使用はもちろん、低温と高温の間でのヒートサイクルの条件下でも、柱状積層体1aおよび外部電極4との熱膨張差から生じる応力を吸収し、高強度を維持することができるからである。
【0057】
また、マトリックス樹脂のガラス転移点に関しては、一般に、樹脂のガラス転移点以上の温度での使用は、樹脂の強度が著しく低下するため、温度環境的に厳しい自動車用燃料噴射弁等に用いられる場合の環境を考慮して、180℃以上とすることが望ましい。
【0058】
また、導電性補助部材7を構成する導電性接着剤7aのボイド率を5%以上とすることが望ましい。これは、該導電性接着剤7a中のボイド率を5%以上とすることにより、アクチュエータの伸縮によって生じる応力を吸収しやすくするためである。
【0059】
なお、導電性接着剤7aのボイド率は、該導電性接着剤7aの加熱硬化前のペーストの粘度および該ペースト中に含まれる溶剤量および該導電性接着剤7aの加熱硬化の際の加熱温度プロファイルによって変更できる。
【0060】
その後、凹溝11に絶縁体3を充填し、リード線6を接続することにより本発明の積層型圧電素子が完成する。
【0061】
そして、リード線6を介して一対の外部電極4に0.1〜3kV/mmの直流電圧を印加し、柱状積層体1aを分極処理することによって、製品としての積層型圧電アクチュエータが完成し、リード線6を外部の電圧供給部に接続し、リード線6及び外部電極4を介して内部電極2に電圧を印加させれば、各圧電体1は逆圧電効果によって大きく変位し、これによって例えばエンジンに燃料を噴射供給する自動車用燃料噴射弁として機能する。
【0062】
以上のように構成された積層型圧電素子は、板状導電部材からなる外部電極4が突起状導電性端子5を介して内部電極2と接続されているため、アクチュエータを高電界下、連続で駆動させた場合でも、突起状導電性端子5が変形して突起状導電性端子5が駆動時に生じる応力を十分に吸収できるため、外部電極4と内部電極2との間でスパークが生じるといった問題を防ぐことができ、また、外部電極4の外側には導電性のメッシュ状部材7bを埋設した導電性接着剤7aからなる導電性補助部材7が設けられているため、大電流を投入しアクチュエータを高速で駆動させる場合においても、大電流を導電性補助部材7に流すことができるため、外部電極4が局所発熱を起こして断線するといった問題を防ぐことができ、高信頼性のアクチュエータを提供することができる。
【0063】
上記例では、柱状積層体1aの対向する側面に外部電極4を形成した例について説明したが、本発明では、例えば隣設する側面に一対の外部電極4を形成してもよい。
【0064】
図3は、本発明の噴射装置を示すもので、図において符号31は収納容器を示している。この収納容器31の一端には噴射孔33が設けられ、また収納容器31内には、噴射孔33を開閉することができるニードルバルブ35が収容されている。
【0065】
噴射孔33には燃料通路37が連通可能に設けられ、この燃料通路37は外部の燃料供給源に連結され、燃料通路37に常時一定の高圧で燃料が供給されている。従って、ニードルバルブ35が噴射孔33を開放すると、燃料通路37に供給されていた燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されている。
【0066】
また、ニードルバルブ35の上端部は直径が大きくなっており、収納容器31に形成されたシリンダ39と摺動可能なピストン41となっている。そして、収納容器31内には、上記した圧電アクチュエータ43が収納されている。
【0067】
このような噴射装置では、圧電アクチュエータ43が電圧を印加されて伸長すると、ピストン41が押圧され、ニードルバルブ35が噴射孔33を閉塞し、燃料の供給が停止される。また、電圧の印加が停止されると圧電アクチュエータ43が収縮し、皿バネ45がピストン41を押し返し、噴射孔33が燃料通路37と連通して燃料の噴射が行われるようになっている。
【0068】
【実施例】
まず、柱状積層体を作製した。圧電体は厚み150μmのPZTで形成し、内部電極は厚み3μmの銀70%、パラジウム30%の銀−パラジウム合金によって形成し、圧電体及び内部電極の各々の積層数は300層とした。
【0069】
次に、柱状積層体の外部電極形成面に露出した一層おきの内部電極の端部を含む柱状積層体の側面に、深さ150μm、幅75μmの凹溝を形成した。その後、凹溝間における柱状積層体側面に、平均粒径5μmの銀粉末を60体積%と、残部が平均粒径5μmでケイ素を主成分とする軟化点が750℃のガラス粉末40体積%からなる混合物にバインダーを加えて作製した銀ガラス導電性ペーストを塗布、乾燥した。
【0070】
さらに、この銀ガラス導電性ペーストに銀からなる厚み25μmの板状導電部材を30kPaで押圧した状態で900℃で熱処理を行い、柱状積層体から突出する突起状導電性端子を形成するとともに、該突起状導電性端子の先端部を前記板状導電部材に連結した。
【0071】
その後、板状導電部材の外側に、導電材としてフレーク状の平均粒径5μmの銀粉末を50体積%と、残部がマトリックスとして弾性率が10GPaで、伸度が30%、5%重量減少温度が300℃、ガラス転移温度が200℃以上の熱可塑性のポリイミド樹脂を50体積%と溶剤を混合した導電性接着剤ペーストを塗布し、該導電性接着剤ペーストにニッケルよりなる厚み50μmのメッシュ状部材を埋設した後、220℃で該導電性接着剤を加熱硬化させ、導電性補助部材を形成した。
【0072】
その後、凹溝に絶縁体としてシリコーンゴムを充填し、導電性補助部材にリード線を接続し、正極及び負極の外部電極にリード線を介して3kV/mmの直流電界を15分間印加して分極処理を行い、図1に示すような積層型圧電アクチュエータを作製した。
【0073】
なお、突起状導電性端子には、銀とパラジウムが分散していた。また、このときの、突起状導電性端子の高さは平均で20μmで、導電性接着剤のボイド率は10%であった。
【0074】
得られた積層型圧電アクチュエータに150Vの直流電圧を印加した結果、積層方向に40μmの変位量が得られた。さらに、このアクチュエータに室温で0〜+150Vの交流電圧を120Hzの周波数にて印加し駆動試験を行った結果、1×109サイクルまで駆動したところ40μmの変位量が得られ、外部電極の異常は見られなかった。
【0075】
また、上記同様に作製して得られた積層型圧電アクチュエータに150℃で0〜+150Vの交流電圧を120Hzの周波数にて印加し駆動試験を行った結果、1×109サイクルまで駆動したところ外部電極の異常は見られなかった。
【0076】
さらに、上記同様に作製して得られた積層型圧電アクチュエータに対して、室温で0〜+150Vの交流電圧を120Hzの周波数にて5×107サイクル印加する駆動試験と、150℃で0〜+150Vの交流電圧を120Hzの周波数にて5×107サイクル印加する駆動試験を交互に合計20回繰り返し、合計1×109サイクルまで駆動したところ外部電極の異常は見られなかった。
【0077】
一方、比較例として、内部電極の一方の端部を左右交互にガラスからなる絶縁体で被覆し、その上から上記した銀ガラス導電性ペーストを塗布して700℃で熱処理を行い、外部電極が内部電極と左右各々一層おきに導通した図4に示すアクチュエータを作製し、上記と同様の試験を行ったところ、駆動試験で1×105サイクルで外部電極にスパークが発生した。
【0078】
【発明の効果】
本発明の積層型圧電素子によれば、内部電極の端部に一層おきに柱状積層体の側面から突出する突起状導電性端子を設け、該突起状導電性端子の先端部に板状導電部材からなる外部電極を接合するとともに、該外部電極に導電性のメッシュ状部材を埋設した導電性接着剤からなる導電性補助部材を設けてなり、ガラスを主成分とするガラス領域が、前記突起状導電性端子の根元部の側面及び該側面につづく前記柱状積層体の側面を覆っているので、高い信頼性を備えた積層型圧電素子を提供することができる。
【図面の簡単な説明】
【図1】本発明の積層型圧電素子を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図、(c)は(a)の一部を拡大して示す斜視図、(d)は(b)の一部を拡大して示す断面図である。
【図2】本発明の積層型圧電素子の製法を示す工程図である。
【図3】本発明の噴射装置を示す説明図である。
【図4】従来の積層型圧電アクチュエータの縦断面図である。
【符号の説明】
1・・・圧電体
1a・・・柱状積層体
2・・・内部電極
4・・・外部電極
5・・・突起状導電性端子
7・・・導電性補助部材
7a・・・導電性接着剤
7b・・・メッシュ状部材
11・・・凹溝
31・・・収納容器
33・・・噴射孔
35・・・バルブ
43・・・圧電アクチュエータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer piezoelectric element and an injection device, for example, a multilayer piezoelectric element and an injection device used for a precision positioning device such as a fuel injection device for an automobile and an optical device, a driving element for vibration prevention, and the like. .
[0002]
[Prior art]
Conventionally, as a multilayer piezoelectric element, a multilayer piezoelectric actuator in which piezoelectric bodies and internal electrodes are alternately stacked is known. Multilayer piezoelectric actuators are classified into two types: the simultaneous firing type and the stack type in which piezoelectric ceramics and internal electrode plates are alternately laminated. Since the multilayer piezoelectric actuator of the type is advantageous for thinning, its superiority is being shown.
[0003]
FIG. 4 shows a conventional laminated piezoelectric actuator. In this actuator, piezoelectric bodies 51 and internal electrodes 52 are alternately laminated to form a columnar laminated body 53, which is inactive on both end faces in the laminating direction. Layer 55 is laminated. The internal electrode 52 is formed so that one end thereof is alternately covered with the insulator 61 on the left and right sides, and the strip-like external electrode 70 is electrically connected to the internal electrode 52 every two layers on the left and right. On the strip-shaped external electrode 70, a lead wire 76 is further fixed with solder 77.
[0004]
By the way, in recent years, in order to ensure a large amount of displacement under a large pressure with a small piezoelectric actuator, a higher electric field is applied to continuously drive for a long time.
[0005]
[Problems to be solved by the invention]
However, in the above-described piezoelectric actuator, when continuously driven for a long time under a high electric field and high pressure, peeling occurs between the internal electrode 52 formed between the piezoelectric bodies 51 and the external electrode 70 for the positive electrode and the negative electrode. There is a problem that the voltage is not supplied to some of the piezoelectric bodies 51 and the displacement characteristics change during driving.
[0006]
The present invention provides a multilayer piezoelectric element and an injection device that are excellent in durability without disconnecting the external electrode and the internal electrode even when continuously driven for a long time under a high electric field and high pressure. Objective.
[0007]
[Means for Solving the Problems]
The multilayer piezoelectric element of the present invention includes a pair of columnar laminates formed by alternately laminating piezoelectric bodies and internal electrodes, and a pair of the internal electrodes connected alternately every other layer. A plurality of external electrodes, and a protruding conductive terminal protruding from a side surface of the columnar stacked body is provided at every other end of the internal electrode, and the protruding conductive terminal with joining external electrode to become the tip from the plate-like conductive member, it is provided a conductive auxiliary member made of a conductive adhesive buried conductive mesh member to the external electrode, and the main component of glass glass region, characterized in that there I covering the side surface of the columnar laminate following the side surface and the side surface of the root portion of the protruding conductive terminals.
[0008]
In the multi-layer piezoelectric element of the present invention, a protruding conductive terminal protruding from the side surface of the columnar stacked body is provided at every other end of the internal electrode, and a plate-shaped conductive member is formed at the tip of the protruding conductive terminal. Since the external electrodes are joined, when the actuator is driven in the stacking direction, the protruding conductive terminals are deformed to absorb the stress generated by the expansion and contraction of the actuator . Thereby , even when it is made to operate continuously for a long time under a high electric field and high pressure, disconnection between the external electrode and the internal electrode can be suppressed, and the durability can be greatly improved.
[0009]
Further, in the present invention, since the conductive auxiliary member made of the conductive adhesive in which the conductive mesh-like member is embedded is provided on the outer surface of the plate-like conductive member, the actuator is driven at a high speed by supplying a large current. Even in the case of making it, a large current can be passed through the conductive auxiliary member . Thereby, it can prevent that an external electrode raise | generates local heat_generation | fever and is disconnected, and durability can be improved significantly. Furthermore, since a conductive mesh-like member is embedded in the conductive adhesive, it is possible to prevent a problem that a crack occurs in the conductive adhesive due to expansion and contraction of the actuator.
[0010]
Furthermore, according to the present invention, the glass region mainly composed of glass, since there I covering the side surface of the columnar laminate following the side surface and the side surface of the root portion of the protruding conductive terminals, the glass area projection The conductive terminal can be held. Thereby, the intensity | strength of a protruding conductive terminal can be improved.
In addition, when the glass region in the present invention is gradually decreasing as the thickness in the direction perpendicular to the side surface of the columnar laminate is separated from the protruding conductive terminal, the surface of the glass region becomes a gently inclined surface, It is possible to prevent stress from being concentrated on a part of the glass region.
[0011]
Moreover, the multilayer piezoelectric element of the present invention is characterized in that a concave groove is formed between the protruding conductive terminals on the side surface of the columnar multilayer body so that the end of the internal electrode is exposed. In such a multilayer piezoelectric element, the generated stress can be reduced compared to a so-called partial electrode structure multilayer piezoelectric element, and the thickness of the end portion of the internal electrode connected to the external electrode via the protruding conductive terminal is columnar. Since it can be effectively made thicker than the thickness of the internal electrode inside the laminate, it is possible to prevent the problem of contact failure between the internal electrode and the external electrode.
[0012]
In the multilayer piezoelectric element of the present invention, it is desirable that the main component of the internal electrode, the protruding conductive terminal and the external electrode is silver. According to such a configuration, the main components of the internal electrode, the protruding conductive terminal, and the external electrode are made of the same silver, so that the protruding conductive terminal and the external electrode are connected, and the protruding conductive terminal and the external electrode are externally connected. Silver interdiffuses between the electrodes, thereby strengthening the bonding strength between them, and the external electrode and the internal electrode are disconnected even when the actuator is driven under a high electric field. Therefore, the durability can be greatly improved. Further, by using silver having a low Young's modulus as the main component of the protruding conductive terminals and the external electrode, the stress generated when the actuator is driven can be sufficiently absorbed, and disconnection between the external electrode and the internal electrode can be suppressed.
[0013]
Furthermore, in the multilayer piezoelectric element of the present invention, the conductive adhesive is made of a conductive material and a resin having an imide bond. According to such a configuration, an actuator excellent in durability at high temperatures can be obtained by using a matrix resin as a resin having an imide bond such as polyimide or polyamideimide, which is particularly excellent in heat resistance among the resins. .
[0014]
In the multilayer piezoelectric element of the present invention, the conductive material of the conductive adhesive is non-spherical silver powder. According to such a configuration, the silver powder has a small volume resistivity and excellent oxidation resistance, and further, by making the particle shape of the silver powder a non-spherical shape such as a needle shape or a flake shape, The entanglement between the conductive material particles becomes larger than the case, and as a result, the shear strength of the conductive adhesive can be greatly improved, and the specific resistance can also be lowered.
[0015]
In addition, the injection device of the present invention includes a storage container having an injection hole, the stacked piezoelectric element stored in the storage container, and a valve that ejects liquid from the injection hole by driving the stacked piezoelectric element. It comprises.
[0016]
In such an injection device, as described above, the disconnection between the external electrode and the internal electrode can be suppressed in the multilayer piezoelectric element itself, and the durability can be greatly improved. Therefore, the durability of the injection device can also be improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B show an embodiment of a multilayer piezoelectric element comprising a multilayer piezoelectric actuator according to the present invention. FIG. 1A is a perspective view, and FIG. 1B is a longitudinal section along the line AA 'in FIG. FIG. 4C is a perspective view showing a part of FIG. 2A in an enlarged manner, and FIG.
[0018]
As shown in FIG. 1, the multilayer piezoelectric actuator has an end portion of the internal electrode 2 on the side surface of a quadrangular columnar stacked body 1a in which a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2 are alternately stacked. Protruding conductive terminals 5 that can be deformed in the expansion and contraction direction of the laminated piezoelectric element are provided at the ends of the internal electrodes 2 that are covered with the insulator 3 every other layer and are not covered with the insulator 3, The external electrode 4 made of a plate-like conductive member is joined to the tip of the conductive terminal 5.
[0019]
A conductive auxiliary member 7 is provided outside the external electrode 4, and the conductive auxiliary member 7 is configured by embedding a conductive mesh member 7 b in a conductive adhesive 7 a. A lead wire 6 is connected and fixed to each conductive auxiliary member 7.
[0020]
The piezoelectric body 1 is made of, for example, lead zirconate titanate Pb (Zr, Ti) O 3 (hereinafter abbreviated as PZT) or a piezoelectric ceramic material mainly composed of barium titanate BaTiO 3 . The piezoelectric ceramics are those piezoelectric strain constant d 33 indicating the piezoelectric characteristic is high is preferable.
[0021]
The thickness of the piezoelectric body 1, that is, the distance between the internal electrodes 2 is preferably 50 to 250 μm. In order to obtain a larger displacement amount by applying a voltage to the stacked piezoelectric actuator, a method of increasing the number of stacked layers is used. However, when the number of stacked layers is increased, the piezoelectric body 1 is too thick. This is because the actuator cannot be reduced in size and height, and on the other hand, if the thickness of the piezoelectric body 1 is too thin, dielectric breakdown tends to occur.
[0022]
An internal electrode 2 is arranged between the piezoelectric bodies 1. The internal electrode 2 is formed of a metal material (silver main component) such as silver-palladium, and applies a predetermined voltage to each piezoelectric body 1. Thus, the piezoelectric body 1 is caused to cause displacement due to the reverse piezoelectric effect.
[0023]
Further, on the side surface of the columnar stacked body 1a between the protruding conductive terminals 5, a groove 11 having a depth of 50 to 500 μm and a width of 30 to 200 μm in the stacking direction is formed so that the end of the internal electrode 2 is exposed. The insulator 11 is formed by filling the concave groove 11 with glass, epoxy resin, polyimide resin, polyamideimide resin, silicone rubber, or the like. The insulator 3 is preferably made of a material having a low elastic modulus, specifically silicone rubber, which follows the deformation of the columnar laminate 1a in order to strengthen the bonding with the columnar laminate 1a. is there.
[0024]
The protruding conductive terminals 5 and the insulators 3 are alternately formed on the internal electrodes 2 exposed on the side surfaces of the columnar laminated body 1a on which the external electrodes 4 are formed.
[0025]
That is, the end portions of the internal electrodes 2 are alternately insulated by the insulators 3 filled in the concave grooves 11, and the other uninsulated end portions of the internal electrodes 2 are connected to the protruding conductive terminals 5. It is joined to the external electrode 4 made of a plate-like conductive member.
[0026]
External electrodes 4 each made of a plate-like conductive member are connected and fixed to the internal electrodes 2 via projecting conductive terminals 5 on the opposite side surfaces of the columnar laminate 1a, and are laminated on the external electrodes 4. The internal electrodes 2 are electrically connected every other layer. The external electrode 4 made of this plate-like conductive member serves to commonly supply a voltage necessary for displacing the piezoelectric body 1 by the inverse piezoelectric effect to each connected internal electrode 2.
[0027]
In the present invention, since the external electrode 4 made of a plate-like conductive member is connected to the internal electrode 2 via the protruding conductive terminal 5 in this way, the actuator is driven continuously for a long time under a high electric field and high pressure. Even in this case, the projecting conductive terminal 5 can absorb the stress generated by the expansion and contraction of the actuator, and the disconnection between the external electrode 4 and the internal electrode 2 can be suppressed, and an actuator having excellent durability can be provided. .
[0028]
As shown in FIG. 1C, the thickness B in the same direction as the stacking direction of the projecting conductive terminals 5 lowers the resistance of the connecting portion between the external electrode 4 and the internal electrode 2 and drives the actuator. From the viewpoint of sufficiently absorbing the generated stress, it is desirable that the thickness be 1 μm or more and 1/2 or less of the thickness of the piezoelectric body 1. In particular, the thickness B is desirably 5 to 25 μm.
[0029]
The protrusion height h of the protruding conductive terminal 5 is desirably 1/20 or more of the thickness of the piezoelectric body 1 from the viewpoint of sufficiently absorbing the stress generated by the expansion and contraction of the actuator. In particular, the protrusion height h is desirably 15 to 50 μm.
[0030]
Further, the thickness t of the external electrode 4 made of a plate-like conductive member follows the expansion and contraction of the actuator, and between the external electrode 4 and the protruding conductive terminal 5 or between the protruding conductive terminal 5 and the internal electrode 2. From the viewpoint of not causing disconnection, it is desirable that the thickness is 50 μm or less.
[0031]
Furthermore, the lead wire 6 is connected and fixed to the conductive auxiliary member 7 with solder. The lead wire 6 serves to connect the conductive auxiliary member 7 and the external electrode 4 to an external voltage supply unit.
[0032]
The internal electrode 2 is made of a metal or alloy containing silver as a main component, such as silver, a silver-palladium alloy, or a silver-platinum alloy. The main component of the protruding conductive terminals 5 and the external electrodes 4 is preferably silver. This is because the inner electrode 2, the protruding conductive terminal 5, and the outer electrode 4 are made of the same silver as the main component so that the protruding conductive terminal 5 and the protruding electrode 5 This is because silver interdiffuses between the external electrodes 4, thereby strengthening the bonding strength between them. Also, the protruding conductive terminals 5 and the external electrodes 4 are preferably made of silver having a low Young's modulus or an alloy containing silver as a main component from the viewpoint of sufficiently absorbing the stress generated by the expansion and contraction of the actuator.
[0033]
Further, since the conductive auxiliary member 7 made of the conductive adhesive 7a in which the conductive mesh member 7b is embedded is formed outside the external electrode 4, a large current is supplied to the actuator to drive at high speed. Even in this case, a large current can be passed through the conductive auxiliary member 7, the external electrode 4 can be prevented from being disconnected due to local heat generation, and the durability can be greatly improved. Furthermore, since the conductive mesh-like member 7b is embedded in the conductive adhesive 7a, it is possible to prevent a problem that a crack occurs in the conductive adhesive 7a due to expansion and contraction of the actuator. As the mesh member 7b, there are a member in which a metal wire is knitted, a member in which a large number of holes are formed in a metal plate, and the like. By making the mesh shape, the expansion and contraction deformation of the external electrode 7 can be improved.
[0034]
Furthermore, the amount of the conductive material dispersed in the conductive adhesive 7a constituting the conductive auxiliary member 7 can sufficiently reduce the specific resistance of the conductive adhesive 7a and maintain high adhesive strength. 15-80 volume% is desirable. That is, by setting the content of the conductive material to 15 to 80% by volume, the contact between the conductive material particles becomes easy, so that the specific resistance of the conductive adhesive 7a can be reduced, and the conductive material becomes conductive when a large current is passed. Local heat generation at the adhesive 7a portion can be prevented, and since the content of the matrix resin component responsible for adhesion is appropriate, high adhesive strength can be maintained, and peeling of the conductive adhesive 7a during driving can be prevented.
[0035]
Further, the resin used as the matrix of the conductive adhesive 7a is caused by the difference in thermal expansion between the conductive adhesive 7a and the external electrode 4 having a different thermal expansion and the mesh member 7b embedded in the conductive adhesive 7a. It is possible to absorb the generated stress and the stress generated by the expansion and contraction of the actuator, and prevent the problem that the conductive adhesive 7a is peeled off during driving or the conductive adhesive 7a is cracked. It is desirable that the elastic modulus is 20 GPa or less and the elongation is 10% or more.
[0036]
Furthermore, the void ratio of the conductive adhesive 7a is preferably 5% or more from the viewpoint of easily absorbing the stress generated by the expansion and contraction of the actuator. In addition, the 5% weight reduction temperature of the matrix resin of the conductive adhesive 7a is desirably 250 ° C. or higher from the viewpoint that a strong adhesive force can be maintained even when used at a high temperature.
[0037]
Here, a method for measuring the 5% weight reduction temperature of the resin will be briefly described. First, when the form before use is a varnish-like resin, the evaporation of the solvent and the curing of the resin are completed in advance. In general, thermogravimetric analysis (TG) is used to measure the 5% weight loss temperature. That is, the temperature of the resin as a sample is increased at a constant temperature increase rate (1 to 10 ° C./min) in the atmosphere, and the weight at that time is sequentially measured. The temperature at which 5% of the initial weight is reduced is the 5% weight reduction temperature of the resin. By using a resin having a measured 5% weight loss temperature of 250 ° C. or higher as the matrix of the conductive adhesive 7a, the conductive auxiliary member 7 having excellent durability at high temperatures can be formed.
[0038]
Furthermore, it is desirable that the matrix resin of the conductive adhesive 7a is a resin having an imide bond such as polyimide or polyamideimide that is particularly excellent in heat resistance among the resins. Thereby, an actuator excellent in durability at high temperatures can be obtained.
[0039]
In addition, the matrix resin of the conductive adhesive 7a is thermoplastic because it relieves the stress caused by the difference in thermal expansion between the columnar laminate 1a and the external electrode 4 under the condition of a heat cycle between low temperature and high temperature. It is desirable that Furthermore, considering the environment when used for a fuel injection valve for automobiles, etc., where the temperature environment is severe, the glass transition temperature of the matrix resin of the conductive adhesive 7a is 180 in order to prevent a decrease in strength at high temperatures. It is desirable that the temperature be higher than or equal to ° C. This is because the use of a resin at a temperature higher than its glass transition temperature generally causes a decrease in adhesive strength.
[0040]
The conductive material constituting the conductive adhesive 7a is preferably silver powder because it has a small volume resistivity and excellent oxidation resistance. Furthermore, the shape of the conductive material powder is such as increasing the entanglement of the conductive material particles, thereby greatly improving the shear strength of the conductive adhesive 7a and reducing the specific resistance. The non-spherical shape is desirable.
[0041]
Next, the manufacturing method of the multilayer piezoelectric element of the present invention will be described. First, the columnar laminate 1a is produced. A columnar laminate 1a formed by alternately laminating a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2 includes a calcined powder of piezoelectric ceramics such as PZT and a binder made of an organic polymer such as acrylic or butyral. , DBP (diethyl phthalate), DOP (dibutyl phthalate) and the like are mixed with a plasticizer to produce a slurry, and the slurry is bonded to the piezoelectric body 1 by a tape molding method such as a known doctor blade method or calendar roll method. A ceramic green sheet is produced.
[0042]
Next, a conductive paste is prepared by adding a binder, a plasticizer, and the like to silver-palladium powder, and this is printed on the upper surface of each green sheet to a thickness of 1 to 40 μm by screen printing or the like. Here, as the silver-palladium powder, an alloy powder of 70% silver and 30% palladium was used.
[0043]
Then, a green sheet having a conductive paste printed on the upper surface is laminated, the binder is debindered at a predetermined temperature, and then fired at 900 to 1200 ° C.
[0044]
Thereafter, as shown in FIG. 2A, the concave grooves 11 are formed on every other side surface of the columnar laminated body 1a by a dicing apparatus or the like.
[0045]
Next, as shown in FIG. 2 (b), 50 to 80% by volume of silver powder having a particle size of 0.1 to 10 μm is formed on the side surface of the columnar laminate 1 a between the concave grooves 11, and the balance is 0. A silver glass conductive paste 21 prepared by adding a binder to a mixture of 20 to 50% by volume of glass powder having a softening point of 1 to 10 μm and containing silicon as a main component and having a softening point of 600 to 950 ° C. is applied and dried. Thereafter, as shown in FIG. 2 (c), heat treatment is performed at 700 to 950 ° C. with a load applied to the silver glass conductive paste 21 so as to press the plate-like conductive member serving as the external electrode 4. The glass in the silver glass conductive paste 21 is melted, and silver components present in the melted glass gather at the end of the internal electrode 2, and as shown in FIG. 2 (d), from the side surface of the columnar laminate 1 a. A protruding conductive terminal 5 that protrudes can be formed, and the tip of the protruding conductive terminal 5 can be connected to the external electrode 4. During the heat treatment, the silver component in the silver glass conductive paste 21 diffuses into the end 2a of the internal electrode 2, and as shown in FIG. 1 (d), the thickness of the end 2a of the internal electrode 2 is the center of the columnar laminate 1a. It becomes thicker than the thickness of the internal electrode 2 of a part. Thereby, the joint strength of the protruding conductive terminal 5 with respect to the end 2a of the internal electrode 2 can be improved.
[0046]
That is, by dispersing the glass component in the paste, the glass is softened during the above-described heat treatment, and in this state, silver that does not easily diffuse into the piezoelectric body 1 diffuses and gathers at the end of the internal electrode 2. A protruding conductive terminal 5 as shown in FIG. 2D can be formed. That is, the internal electrode 2, the silver glass conductive paste 21 and the silver component in the plate-like conductive member are diffused to each other and between the internal electrode 2 and the protruding conductive terminal 5 and between the protruding conductive terminal 5 and the plate-like conductive material. The members are firmly joined. Further, in the vicinity of the base of the protruding conductive terminal 5, the glass in the silver glass conductive paste 21 gathers to form a raised portion 5 a to hold the protruding conductive terminal 5.
[0047]
This protruding conductive terminal 5 is formed on a part of the side surface of the columnar laminate 1a, is formed in a rail shape, and its length is substantially the same as the width of the external electrode 4 made of a plate-like conductive member. Yes. The length of the protruding conductive terminal 5 may be shorter than the width of the external electrode 4.
[0048]
The silver component in the silver glass conductive paste 21 is 50 to 80% by volume, and the remaining glass powder is 20 to 50% by volume. Becomes an appropriate amount, and the protruding height h of the formed projecting conductive terminal 5 can be increased, and the glass component which is the remaining solid content in the silver glass conductive paste 21 becomes an appropriate amount. The glass component that melts at the time of baking 21 is also an appropriate amount, the silver component easily gathers at the end of the internal electrode 2, and the protruding height h of the protruding conductive terminal 5 can be increased.
[0049]
The load applied during the formation of the above-mentioned protruding conductive terminal 5 and the heat treatment for bonding the protruding conductive terminal 5 and the external electrode 4 is preferably 2 to 500 kPa in terms of pressure. By setting this range, it is possible to sufficiently perform diffusion bonding between the protruding conductive terminal 5 and the plate-like conductive member 4a, increase the strength of the bonded portion, and the pressure becomes appropriate. The deformation of the conductive electrode 5 can be prevented.
[0050]
Note that the silver glass conductive paste 21 is applied and dried in advance on the portion of the plate-like conductive member corresponding to the space between the concave grooves 11 of the columnar laminate 1a, and this plate-like conductive member is pressed against the columnar laminate 1a. You may heat-process in the state which added the load. Moreover, the silver glass conductive paste 21 is applied and dried on the entire surface of the plate-like conductive member, and this plate-like conductive member is pressed against the surface where the internal electrode 2 of the columnar laminate 1a is exposed on the conductive paste application surface side. Even if the heat treatment is performed, the protruding conductive terminals 5 are formed, and the tip portions thereof can be connected to the external electrodes 4. In this case, the process can be further shortened.
[0051]
Thereafter, as shown in FIG. 2 (e), on the outside of the external electrode 4, 15-80% by volume of non-spherical silver powder such as needles or flakes as a conductive material, and the balance as a matrix with an elastic modulus of 20 GPa. Below, 20% to 85% by volume of a thermoplastic resin having an imide bond with an elongation of 10% or more, a 5% weight loss temperature of 250 ° C. or more, a glass transition temperature of 180 ° C. or more, and a conductivity mixed with a solvent. After applying an adhesive paste and embedding a conductive mesh member 7b in the conductive adhesive 7a, the conductive adhesive 7a is heated and cured at 150 to 300 ° C. to form the conductive auxiliary member 7. .
[0052]
The reason why the content of the conductive material in the conductive adhesive 7a is 15 to 80% by volume is within this range, since the contact between the conductive material particles is good, and the specific resistance of the conductive adhesive 7a is small. In addition, it is possible to prevent local heat generation in the conductive adhesive 7a portion when a large current is passed, and the content of the matrix resin component responsible for adhesion is appropriate, so that high adhesive strength can be maintained, and conductivity during driving can be maintained. Peeling of the adhesive 7a can be prevented.
[0053]
Further, by setting the elastic modulus of the matrix resin to 20 GPa or less and the elongation to 10% or more, a plate-like conductive member having a thermal expansion different from that of the conductive adhesive 7a and a mesh shape embedded in the conductive adhesive 7a. The stress generated by the difference in thermal expansion from the member 7b and the stress generated by the expansion and contraction of the actuator can be absorbed, and the conductive adhesive 7a is peeled off during driving or cracks are generated in the conductive adhesive 7a. Can be prevented from occurring.
[0054]
Furthermore, in the present invention, it is desirable that the 5% weight reduction temperature of the matrix resin constituting the conductive adhesive 7a is 250 ° C. or higher. It is possible to maintain a strong adhesive force when used at a high temperature by using a resin having high heat resistance with a 5% weight loss temperature of 250 ° C. or higher as a matrix resin. Even when continuously driving at high speed with an applied electric field, an actuator having high durability can be provided without the conductive adhesive 7a being peeled off.
[0055]
In the present invention, the matrix resin constituting the conductive adhesive 7a is desirably a resin having an imide bond. This makes it possible to obtain an actuator excellent in durability at high temperatures by making the matrix resin a resin having an imide bond such as polyimide or polyamideimide, which is particularly excellent in heat resistance among the resins.
[0056]
Furthermore, in the present invention, it is desirable that the matrix resin constituting the conductive adhesive 7a exhibits thermoplasticity and has a glass transition temperature of 180 ° C. or higher. This is because the resin used as the matrix is a thermoplastic resin, so that the thermal expansion of the columnar laminate 1a and the external electrode 4 is possible not only for continuous use at high temperatures but also for heat cycle conditions between low and high temperatures. This is because stress resulting from the difference can be absorbed and high strength can be maintained.
[0057]
In addition, regarding the glass transition point of the matrix resin, in general, when the resin is used at a temperature higher than the glass transition point of the resin, the strength of the resin is significantly reduced. Considering the environment, it is desirable that the temperature be 180 ° C. or higher.
[0058]
Moreover, it is desirable that the void ratio of the conductive adhesive 7a constituting the conductive auxiliary member 7 is 5% or more. This is to make it easier to absorb the stress caused by the expansion and contraction of the actuator by setting the void ratio in the conductive adhesive 7a to 5% or more.
[0059]
Note that the void ratio of the conductive adhesive 7a depends on the viscosity of the paste before the heat curing of the conductive adhesive 7a, the amount of the solvent contained in the paste, and the heating temperature during the heat curing of the conductive adhesive 7a. Can be changed by profile.
[0060]
Thereafter, the groove 3 is filled with the insulator 3 and the lead wire 6 is connected to complete the multilayer piezoelectric element of the present invention.
[0061]
Then, by applying a direct current voltage of 0.1 to 3 kV / mm to the pair of external electrodes 4 via the lead wires 6 to polarize the columnar laminated body 1a, a laminated piezoelectric actuator as a product is completed, When the lead wire 6 is connected to an external voltage supply unit and a voltage is applied to the internal electrode 2 via the lead wire 6 and the external electrode 4, each piezoelectric body 1 is greatly displaced by the reverse piezoelectric effect, and for example, It functions as an automobile fuel injection valve that supplies fuel to the engine.
[0062]
In the multilayer piezoelectric element configured as described above, since the external electrode 4 made of a plate-like conductive member is connected to the internal electrode 2 via the protruding conductive terminals 5, the actuator can be operated continuously under a high electric field. Even when driven, the projecting conductive terminal 5 is deformed and the projecting conductive terminal 5 can sufficiently absorb the stress generated during driving, so that a spark is generated between the external electrode 4 and the internal electrode 2. Further, since the conductive auxiliary member 7 made of the conductive adhesive 7a in which the conductive mesh member 7b is embedded is provided on the outside of the external electrode 4, a large current is supplied to the actuator. In the case of driving at a high speed, a large current can be passed through the conductive auxiliary member 7, so that the problem that the external electrode 4 is disconnected due to local heat generation can be prevented, and a highly reliable actuating device can be obtained. It is possible to provide a mediator.
[0063]
In the above example, the example in which the external electrode 4 is formed on the opposing side surface of the columnar laminate 1a has been described. However, in the present invention, for example, a pair of external electrodes 4 may be formed on the adjacent side surfaces.
[0064]
FIG. 3 shows an injection device according to the present invention. In the figure, reference numeral 31 denotes a storage container. An injection hole 33 is provided at one end of the storage container 31, and a needle valve 35 that can open and close the injection hole 33 is stored in the storage container 31.
[0065]
A fuel passage 37 is provided in the injection hole 33 so as to be able to communicate. The fuel passage 37 is connected to an external fuel supply source, and fuel is always supplied to the fuel passage 37 at a constant high pressure. Therefore, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is formed to be injected into a fuel chamber (not shown) of the internal combustion engine at a constant high pressure.
[0066]
Further, the upper end portion of the needle valve 35 has a large diameter, and serves as a piston 41 slidable with a cylinder 39 formed in the storage container 31. In the storage container 31, the piezoelectric actuator 43 described above is stored.
[0067]
In such an injection device, when the piezoelectric actuator 43 is extended by applying a voltage, the piston 41 is pressed, the needle valve 35 closes the injection hole 33, and the supply of fuel is stopped. When the application of voltage is stopped, the piezoelectric actuator 43 contracts, the disc spring 45 pushes back the piston 41, and the injection hole 33 communicates with the fuel passage 37 so that fuel is injected.
[0068]
【Example】
First, a columnar laminate was produced. The piezoelectric body was formed of PZT with a thickness of 150 μm, the internal electrode was formed with a silver-palladium alloy of 70% silver and 30% palladium with a thickness of 3 μm, and the number of stacked piezoelectric bodies and internal electrodes was 300 layers.
[0069]
Next, a concave groove having a depth of 150 μm and a width of 75 μm was formed on the side surface of the columnar laminate including the ends of every other internal electrode exposed on the external electrode formation surface of the columnar laminate. Thereafter, from the volume of the silver powder having an average particle diameter of 5 μm on the side surface of the columnar laminated body between the concave grooves, the balance is from 40 volume% of the glass powder having an average particle diameter of 5 μm and a softening point mainly composed of silicon of 750 ° C. A silver glass conductive paste prepared by adding a binder to the resulting mixture was applied and dried.
[0070]
Furthermore, heat treatment is performed at 900 ° C. in a state where a plate-like conductive member made of silver having a thickness of 25 μm is pressed at 30 kPa on the silver glass conductive paste, thereby forming projecting conductive terminals protruding from the columnar laminate, The tip of the protruding conductive terminal was connected to the plate-shaped conductive member.
[0071]
Thereafter, on the outside of the plate-like conductive member, 50 vol% of flaky silver powder having an average particle diameter of 5 μm as a conductive material, the balance being a matrix with an elastic modulus of 10 GPa, an elongation of 30%, and a 5% weight loss temperature Is applied with a conductive adhesive paste in which 50% by volume of a thermoplastic polyimide resin having a glass transition temperature of 200 ° C. or higher and a solvent is mixed, and the conductive adhesive paste is made into a mesh having a thickness of 50 μm made of nickel. After embedding the member, the conductive adhesive was heated and cured at 220 ° C. to form a conductive auxiliary member.
[0072]
Thereafter, silicone rubber is filled in the concave groove as an insulator, lead wires are connected to the conductive auxiliary member, and a 3 kV / mm DC electric field is applied to the external electrodes of the positive and negative electrodes through the lead wires for 15 minutes for polarization. The laminated piezoelectric actuator as shown in FIG.
[0073]
Note that silver and palladium were dispersed in the protruding conductive terminals. At this time, the average height of the protruding conductive terminals was 20 μm, and the void ratio of the conductive adhesive was 10%.
[0074]
As a result of applying a DC voltage of 150 V to the obtained multilayer piezoelectric actuator, a displacement of 40 μm was obtained in the stacking direction. Furthermore, as a result of applying a driving test by applying an AC voltage of 0 to +150 V at a frequency of 120 Hz to this actuator at a room temperature, a displacement of 40 μm was obtained when driving up to 1 × 10 9 cycles, and abnormalities in the external electrodes were observed. I couldn't see it.
[0075]
Further, as a result of a drive test by applying an AC voltage of 0 to +150 V at 150 ° C. at a frequency of 120 Hz to the laminated piezoelectric actuator manufactured in the same manner as described above, when driving up to 1 × 10 9 cycles, the external No abnormality of the electrode was observed.
[0076]
Furthermore, a driving test in which an AC voltage of 0 to +150 V is applied at a frequency of 120 Hz at a frequency of 120 × 5 × 10 7 cycles to a laminated piezoelectric actuator manufactured in the same manner as described above, and 0 to +150 V at 150 ° C. A drive test in which 5 × 10 7 cycles of AC voltage was applied at a frequency of 120 Hz was alternately repeated 20 times in total, and when driving was performed up to a total of 1 × 10 9 cycles, no abnormality was found in the external electrodes.
[0077]
On the other hand, as a comparative example, one end portion of the internal electrode is alternately covered with an insulator made of glass, and the above-described silver glass conductive paste is applied thereon and heat-treated at 700 ° C. When the actuator shown in FIG. 4 that is electrically connected to the internal electrode every other layer on the left and right sides was manufactured and tested in the same manner as described above, sparks were generated in the external electrode in 1 × 10 5 cycles in the driving test.
[0078]
【The invention's effect】
According to the multilayer piezoelectric element of the present invention, the protruding conductive terminals protruding from the side surfaces of the columnar stacked body are provided at every other end of the internal electrode, and the plate-shaped conductive member is provided at the tip of the protruding conductive terminal. A conductive auxiliary member made of a conductive adhesive in which a conductive mesh-like member is embedded in the external electrode, and a glass region mainly composed of glass has the protruding shape the because there I covering the side surface of the columnar laminate following the side surface and the side surface of the root portion of the conductive terminal, it is possible to provide a multilayer piezoelectric element having high reliability.
[Brief description of the drawings]
1A and 1B show a multilayer piezoelectric element of the present invention, in which FIG. 1A is a perspective view, FIG. 1B is a longitudinal sectional view taken along line AA ′ in FIG. 1A, and FIG. The perspective view which expands and shows a part of (b), (d) is sectional drawing which expands and shows a part of (b).
FIG. 2 is a process diagram showing a method for producing a multilayer piezoelectric element of the present invention.
FIG. 3 is an explanatory view showing an injection device of the present invention.
FIG. 4 is a longitudinal sectional view of a conventional multilayer piezoelectric actuator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric body 1a ... Columnar laminated body 2 ... Internal electrode 4 ... External electrode 5 ... Protruding conductive terminal 7 ... Conductive auxiliary member 7a ... Conductive adhesive 7b ... Mesh-like member 11 ... Concave groove 31 ... Storage container 33 ... Injection hole 35 ... Valve 43 ... Piezoelectric actuator

Claims (4)

圧電体と内部電極とを交互に積層してなる柱状積層体と、該柱状積層体の側面に設けられ、前記内部電極が一層おきに交互に接続された一対の外部電極とを具備してなる積層型圧電素子であって、
前記内部電極の端部に一層おきに前記柱状積層体の側面から突出する突起状導電性端子を設け、該突起状導電性端子の先端部に板状導電部材からなる外部電極を接合するとともに、該外部電極に導電性のメッシュ状部材を埋設した導電性接着剤からなる導電性補助部材を設けてなり、
ガラスを主成分とするガラス領域が、前記突起状導電性端子の根元部の側面及び該側面につづく前記柱状積層体の側面を覆っていることを特徴とする積層型圧電素子。
A columnar laminated body formed by alternately laminating piezoelectric bodies and internal electrodes, and a pair of external electrodes provided on the side surfaces of the columnar laminated body and having the internal electrodes alternately connected every other layer. A laminated piezoelectric element,
Providing a protruding conductive terminal protruding from the side surface of the columnar laminated body at every other end of the internal electrode, and joining an external electrode made of a plate-like conductive member to the tip of the protruding conductive terminal; A conductive auxiliary member made of a conductive adhesive in which a conductive mesh member is embedded in the external electrode is provided,
Glass region mainly composed of glass, laminated piezoelectric elements, characterized in that there I covering the side surface of the columnar laminate following the side surface and the side surface of the root portion of the protruding conductive terminals.
前記ガラス領域は、前記柱状積層体の側面に垂直な方向の厚みが、前記突起状導電性端子から離隔するにつれて漸次減少していることを特徴とする請求項1記載の積層型圧電素子。  2. The multilayer piezoelectric element according to claim 1, wherein a thickness of the glass region in a direction perpendicular to a side surface of the columnar laminated body gradually decreases as the distance from the protruding conductive terminal is increased. 前記柱状積層体の側面の前記突起状導電性端子間には、内部電極端が露出する凹溝が形成されていることを特徴とする請求項1又は2記載の積層型圧電素子。  3. The multilayer piezoelectric element according to claim 1, wherein a concave groove in which an end of the internal electrode is exposed is formed between the projecting conductive terminals on the side surface of the columnar laminate. 噴射孔を有する収納容器と、該収納容器内に収容された請求項1乃至3のいずれかに記載の積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなることを特徴とする噴射装置。  A storage container having an injection hole, the multilayer piezoelectric element according to any one of claims 1 to 3 accommodated in the storage container, and a valve for ejecting liquid from the injection hole by driving the multilayer piezoelectric element An injection device comprising:
JP2002245839A 2002-08-26 2002-08-26 Multilayer piezoelectric element and injection device Expired - Fee Related JP3909275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245839A JP3909275B2 (en) 2002-08-26 2002-08-26 Multilayer piezoelectric element and injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245839A JP3909275B2 (en) 2002-08-26 2002-08-26 Multilayer piezoelectric element and injection device

Publications (2)

Publication Number Publication Date
JP2004087729A JP2004087729A (en) 2004-03-18
JP3909275B2 true JP3909275B2 (en) 2007-04-25

Family

ID=32053913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245839A Expired - Fee Related JP3909275B2 (en) 2002-08-26 2002-08-26 Multilayer piezoelectric element and injection device

Country Status (1)

Country Link
JP (1) JP3909275B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405503B1 (en) * 2009-03-04 2015-11-25 Kyocera Corporation Laminated piezoelectric element, jetting device provided with same, and fuel jetting system
JP6542618B2 (en) * 2015-08-28 2019-07-10 京セラ株式会社 Piezoelectric actuator

Also Published As

Publication number Publication date
JP2004087729A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
US20020158552A1 (en) Laminated piezo-electric device
JP4808915B2 (en) Multilayer piezoelectric element and injection device
WO2005029602A1 (en) Multilayer piezoelectric device
JP3860746B2 (en) Multilayer piezoelectric element and injection device
JP2001210884A (en) Stacked type piezoelectric actuator
JP3730893B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP3667289B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
US20070080612A1 (en) Multi-layer piezoelectric element
JP4290946B2 (en) Multilayer piezoelectric element and injection device
JP2001244514A (en) Laminated piezoelectric actuator and injector using the same
JP2005072325A (en) Laminated piezoelectric device and injection equipment
JP3598057B2 (en) Multilayer piezoelectric element and injection device
JP4498300B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP3909275B2 (en) Multilayer piezoelectric element and injection device
JP3929858B2 (en) Multilayer piezoelectric element
JP4737799B2 (en) Multilayer piezoelectric actuator and injection device
JP2002289932A (en) Laminated piezoelectric element, manufacturing method therefor, and jetting device
JP3872349B2 (en) Manufacturing method of multilayer piezoelectric element
JP4841046B2 (en) Multilayer piezoelectric element and injection device
JP3990613B2 (en) Multilayer piezoelectric element and injection device
JP3909274B2 (en) Multilayer piezoelectric element and injection device
JP4290947B2 (en) Multilayer piezoelectric element and injection device
JP3909276B2 (en) Multilayer piezoelectric element and injection device
JP4299807B2 (en) Multilayer piezoelectric element and injection device
JP4593911B2 (en) Multilayer piezoelectric element and injection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees