JP2005072325A - Laminated piezoelectric device and injection equipment - Google Patents

Laminated piezoelectric device and injection equipment Download PDF

Info

Publication number
JP2005072325A
JP2005072325A JP2003301189A JP2003301189A JP2005072325A JP 2005072325 A JP2005072325 A JP 2005072325A JP 2003301189 A JP2003301189 A JP 2003301189A JP 2003301189 A JP2003301189 A JP 2003301189A JP 2005072325 A JP2005072325 A JP 2005072325A
Authority
JP
Japan
Prior art keywords
external electrode
piezoelectric element
element according
multilayer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003301189A
Other languages
Japanese (ja)
Other versions
JP4480371B2 (en
Inventor
Shigenobu Nakamura
成信 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003301189A priority Critical patent/JP4480371B2/en
Publication of JP2005072325A publication Critical patent/JP2005072325A/en
Application granted granted Critical
Publication of JP4480371B2 publication Critical patent/JP4480371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated piezoelectric device which hardly suffers from disconnection between an external electrode and an internal electrode and is superior in durability even if it is operated in a high electrical field under a high pressure for a long term and an injection equipment. <P>SOLUTION: The laminated piezoelectric device is provided with a laminated body 1a that a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2 are alternately laminated, and a pair of external electrodes 4 on the side of the laminated body 1a wherein the internal electrodes 2 are alternately connected with every layer therebetween. The external electrode 4 contains a conductive material and a glass, and it is made of porous conductor forming a three-dimensional mesh structure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層型圧電素子及び噴射装置に関し、例えば、圧電トランスや、自動車用燃料噴射装置、光学装置等の精密位置決め装置や振動防止用の駆動素子等に用いられる積層型圧電アクチュエータ等の積層型圧電素子及び噴射装置に関するものである。   The present invention relates to a laminated piezoelectric element and an injection device, for example, a laminated structure such as a piezoelectric transformer, a precision positioning device such as an automobile fuel injection device and an optical device, a laminated piezoelectric actuator used for a vibration preventing drive element, and the like. The present invention relates to a type piezoelectric element and an injection device.

従来より、積層型圧電素子としては、圧電体と内部電極を交互に積層した積層型圧電アクチュエータが知られている。積層型圧電アクチュエータには、同時焼成タイプと、圧電磁器と内部電極板を交互に積層したスタックタイプとの2種類に分類されており、低電圧化、製造コスト低減の面から考慮すると、同時焼成タイプの積層型圧電アクチュエータが薄層化に対して有利であるために、その優位性を示しつつある。   Conventionally, as a multilayer piezoelectric element, a multilayer piezoelectric actuator in which piezoelectric bodies and internal electrodes are alternately stacked is known. Multilayer piezoelectric actuators are classified into two types: the simultaneous firing type and the stack type in which piezoelectric ceramics and internal electrode plates are alternately laminated. Since the multilayer piezoelectric actuator of the type is advantageous for thinning, its superiority is being shown.

図6は、従来の積層型圧電アクチュエータを示すもので、このアクチュエータでは、圧電体51と内部電極52が交互に積層されて柱状積層体53が形成され、その積層方向における両端面には不活性層55が積層されている。内部電極52は、その一方の端部が柱状積層体53の側面に左右交互に露出しており、この内部電極52の端部が露出した柱状積層体53の側面に、外部電極70が形成されている。内部電極52の他方の端部は絶縁体61により被覆され、外部電極70とは絶縁されている。   FIG. 6 shows a conventional laminated piezoelectric actuator. In this actuator, piezoelectric bodies 51 and internal electrodes 52 are alternately laminated to form a columnar laminated body 53, which is inactive on both end faces in the laminating direction. Layer 55 is laminated. One end portion of the internal electrode 52 is alternately exposed on the side surface of the columnar stacked body 53, and the external electrode 70 is formed on the side surface of the columnar stacked body 53 where the end portion of the internal electrode 52 is exposed. ing. The other end of the internal electrode 52 is covered with an insulator 61 and insulated from the external electrode 70.

外部電極は、従来、銀71〜95質量%と、残部がガラス粉末5〜29質量%と、有機成分からなる導電性ペーストを、柱状積層体53の側面に塗布し、500〜1000℃で焼き付けて形成されていた(例えば、特許文献1参照)。
特開2000−40635号
Conventionally, an external electrode is formed by applying a conductive paste made of organic components of 71 to 95% by mass of silver and 5 to 29% by mass of the glass powder, and the rest is baked at 500 to 1000 ° C. (For example, refer to Patent Document 1).
JP 2000-40635

しかしながら、従来の積層型圧電アクチュエータでは、高電界、高圧力下で長期間連続駆動させた場合、外部電極70が積層体53の伸縮に追従できずに断線したり、外部電極70と内部電極52の間で接点不良を起こしたりして、一部の圧電体51に電圧が供給されなくなり、駆動中に変位特性が変化するという問題があった。   However, in the conventional multilayer piezoelectric actuator, when driven continuously for a long time under a high electric field and high pressure, the external electrode 70 may not be able to follow the expansion and contraction of the multilayer body 53 or may be disconnected, or the external electrode 70 and the internal electrode 52 may be disconnected. There is a problem that a contact failure occurs between them, and voltage is not supplied to some of the piezoelectric bodies 51, and the displacement characteristics change during driving.

即ち、近年においては、小型の積層型圧電アクチュエータで大きな圧力下において大きな変位量を確保するため、より高い電界を印加し、長期間連続駆動させることが行われているが、導電性ペーストを単に柱状積層体53の側面に塗布し、焼き付けただけでは、外部電極70がフレキシブルではなく、柱状積層体53の積層方向への伸縮に追従できず、内部電極52と外部電極70との接続が解除され剥離が発生したり、また外部電極70にクラックが発生して断線し、一部の圧電体51に電圧供給されなくなり、駆動中に変位特性が変化するという問題があった。   That is, in recent years, in order to ensure a large amount of displacement under a large pressure with a small multilayer piezoelectric actuator, a higher electric field is applied and driven continuously for a long period of time. The external electrode 70 is not flexible simply by applying and baking on the side surface of the columnar laminate 53, and cannot follow expansion and contraction in the stacking direction of the columnar laminate 53, and the connection between the internal electrode 52 and the external electrode 70 is released. There is a problem that peeling occurs or a crack occurs in the external electrode 70 and the wire is disconnected, so that voltage is not supplied to some of the piezoelectric bodies 51 and the displacement characteristics change during driving.

本発明は、高電界、高圧力下で長期間連続駆動させた場合でも、外部電極と内部電極とが断線することがなく、耐久性に優れた積層型圧電素子及び噴射装置を提供することを目的とする。   The present invention provides a multilayer piezoelectric element and an injection device that are excellent in durability without disconnecting the external electrode and the internal electrode even when continuously driven for a long time under a high electric field and high pressure. Objective.

本発明の積層型圧電素子は、複数の圧電体と複数の内部電極とを交互に積層してなる積層体と、該積層体の側面に設けられ、前記内部電極が一層おきに交互に接続された一対の外部電極とを具備してなる積層型圧電素子であって、前記外部電極が導電材とガラスを含有し、且つ3次元網目構造をなす多孔質導電体からなることを特徴とする。   The multilayer piezoelectric element of the present invention is provided on a side surface of a multilayer body in which a plurality of piezoelectric bodies and a plurality of internal electrodes are alternately stacked, and the internal electrodes are alternately connected every other layer. A laminated piezoelectric element comprising a pair of external electrodes, wherein the external electrodes are made of a porous conductor containing a conductive material and glass and having a three-dimensional network structure.

このような積層型圧電素子では、外部電極が導電材とガラスを含有し、且つ3次元網目構造をなす多孔質導電体からなるため、例えば、積層体であるアクチュエータ本体が駆動時に積層方向に伸縮した場合においても、外部電極がフレキシブルであるため、外部電極が積層体の伸縮に追従でき、外部電極の断線や外部電極と内部電極の接点不良といった問題が生じるのを防ぐことができる。   In such a laminated piezoelectric element, the external electrode contains a conductive material and glass and is made of a porous conductor having a three-dimensional network structure. For example, the actuator body that is a laminated body expands and contracts in the laminating direction when driven. Even in this case, since the external electrode is flexible, the external electrode can follow the expansion and contraction of the laminate, and problems such as disconnection of the external electrode and defective contact between the external electrode and the internal electrode can be prevented.

また、本発明の積層型圧電素子は、外部電極が積層体側面に部分的に接合していることを特徴とする。このような積層型圧電素子では、外部電極を積層体側面に部分的に接合させることにより、全面で接合させる場合よりも、積層体の伸縮に対して発生する応力を柔軟に吸収することができる。   The multilayer piezoelectric element of the present invention is characterized in that the external electrode is partially bonded to the side surface of the multilayer body. In such a multilayer piezoelectric element, the external electrode is partially bonded to the side surface of the multilayer body, so that the stress generated with respect to the expansion and contraction of the multilayer body can be absorbed more flexibly than the case where the entire surface is bonded. .

さらに、本発明の積層型圧電素子は、外部電極が積層体側面に露出した内部電極端部と拡散接合していることを特徴とする。このような積層型圧電素子では、外部電極を構成する導電材と内部電極を拡散接合することにより強固に接合でき、これにより駆動時に内部電極と外部電極との接続部分での局所発熱やスパークの発生を防ぐことができる。   Furthermore, the multilayer piezoelectric element of the present invention is characterized in that the external electrode is diffusion bonded to the end portion of the internal electrode exposed on the side surface of the multilayer body. In such a laminated piezoelectric element, the conductive material constituting the external electrode and the internal electrode can be firmly bonded by diffusion bonding, thereby causing local heat generation or sparking at the connection portion between the internal electrode and the external electrode during driving. Occurrence can be prevented.

また、本発明の積層型圧電素子は、内部電極端部にネック部が形成されており、このネック部が外部電極中に埋設されていることが望ましい。このような積層型圧電素子では、積層体側面に露出した内部電極端部がネック部を介して外部電極と接続され、積層型圧電素子に大電流を流し、高速で駆動させる場合においても内部電極と外部電極の接合部での局所発熱を防止できる。   In the multilayer piezoelectric element of the present invention, it is desirable that a neck portion is formed at the end portion of the internal electrode, and this neck portion is embedded in the external electrode. In such a multilayer piezoelectric element, the internal electrode end exposed on the side surface of the multilayer body is connected to the external electrode through the neck portion, and even when a large current is passed through the multilayer piezoelectric element to drive it at high speed, And local heat generation at the joint of the external electrode can be prevented.

さらに、本発明の積層型圧電素子は、外部電極の導電材が銀を主成分とすることを特徴とする。このような積層型圧電素子では、外部電極を形成する導電材をヤング率の低い銀とすることにより、積層体の伸縮により発生する応力を柔軟に吸収できる。また、外部電極を構成する導電材を銀とすることにより、内部電極の導電材として一般に用いられている銀−パラジウム合金との拡散接合がしやすくなり、より強固に外部電極と内部電極とを接続することができる。   Furthermore, the multilayer piezoelectric element of the present invention is characterized in that the conductive material of the external electrode is mainly composed of silver. In such a multilayer piezoelectric element, the stress generated by the expansion and contraction of the multilayer body can be flexibly absorbed by using silver having a low Young's modulus as the conductive material forming the external electrode. In addition, by using silver as the conductive material constituting the external electrode, diffusion bonding with a silver-palladium alloy generally used as a conductive material for the internal electrode is facilitated, and the external electrode and the internal electrode are more firmly connected. Can be connected.

また、本発明の積層型圧電素子は、外部電極の空隙率が30〜70体積%であることを特徴とする。外部電極の空隙率を30〜70体積%とすることにより、積層体の伸縮によって生じる応力を充分に吸収できる。   In the multilayer piezoelectric element of the present invention, the external electrode has a porosity of 30 to 70% by volume. By setting the porosity of the external electrode to 30 to 70% by volume, the stress generated by the expansion and contraction of the laminate can be sufficiently absorbed.

さらに、本発明の積層型圧電素子は、外部電極を構成するガラスの軟化点が、前記外部電極を構成する導電材の融点以下であることを特徴とする。このような積層型圧電素子では、外部電極の焼き付け温度を、導電材の融点以下で且つガラス成分の軟化点以上の温度にすることができ、導電材の凝集を防止でき、ガラス成分による十分な接合強度を得ることができる。   Furthermore, the laminated piezoelectric element of the present invention is characterized in that the softening point of the glass constituting the external electrode is not more than the melting point of the conductive material constituting the external electrode. In such a multilayer piezoelectric element, the baking temperature of the external electrode can be set to a temperature not higher than the melting point of the conductive material and not lower than the softening point of the glass component, and the aggregation of the conductive material can be prevented. Bonding strength can be obtained.

また、本発明の積層型圧電素子は、外部電極を構成するガラスが非晶質であることを特徴とする。ガラス成分を非晶質とすることにより、結晶質よりもヤング率が低いので、外部電極におけるクラックを抑制できる。   Moreover, the multilayer piezoelectric element of the present invention is characterized in that the glass constituting the external electrode is amorphous. By making the glass component amorphous, the Young's modulus is lower than that of crystalline, so that cracks in the external electrode can be suppressed.

また、本発明の積層型圧電素子は、外部電極の厚みが積層体を構成する圧電体の厚みよりも薄いことを特徴とする。外部電極の厚みを圧電体の厚みよりも薄くすることにより、外部電極の硬度が小さくなり、積層体が伸縮した際に外部電極と内部電極の接点における負荷を小さくでき、接点不良を抑制できる。   The multilayer piezoelectric element of the present invention is characterized in that the thickness of the external electrode is smaller than the thickness of the piezoelectric body constituting the multilayer body. By making the thickness of the external electrode thinner than the thickness of the piezoelectric body, the hardness of the external electrode is reduced, the load at the contact between the external electrode and the internal electrode can be reduced when the laminate expands and contracts, and the contact failure can be suppressed.

さらに、本発明の積層型圧電素子は、外部電極の焼き付け温度(℃)が積層体の焼成温度(℃)の4/5以下の温度であることが望ましい。外部電極の焼き付け温度が柱状積層体の焼成温度の4/5以下であることにより、外部電極を構成するガラス成分の積層体への拡散量を適量とでき、積層体と外部電極の接合強度低下を防止できる。   Further, in the multilayer piezoelectric element of the present invention, it is desirable that the baking temperature (° C.) of the external electrode is 4/5 or less of the firing temperature (° C.) of the multilayer body. When the baking temperature of the external electrode is 4/5 or less of the firing temperature of the columnar laminate, the amount of diffusion of the glass component constituting the external electrode into the laminate can be made appropriate, and the bonding strength between the laminate and the external electrode is reduced. Can be prevented.

また、本発明の積層型圧電素子は、積層体側面に形成された凹溝内に圧電体よりもヤング率の低い絶縁体が充填され、内部電極と外部電極が一層置きに絶縁されていることを特徴とする。積層体の側面に凹溝を形成し、この凹溝内に絶縁体を充填することにより、内部電極と外部電極との絶縁を確保できるとともに、凹溝内には圧電体よりもヤング率の低い絶縁体が充填されているため、積層体の変形に対して凹溝内の絶縁体が追従して変形し、凹溝近傍におけるクラック等の発生を防止でき、また、発生する応力も低減できる。   In the multilayer piezoelectric element of the present invention, the concave groove formed on the side surface of the multilayer body is filled with an insulator having a Young's modulus lower than that of the piezoelectric body, and the internal electrode and the external electrode are insulated every other layer. It is characterized by. By forming a groove on the side of the laminate and filling the groove with an insulator, insulation between the internal electrode and the external electrode can be secured, and the Young's modulus is lower in the groove than the piezoelectric body. Since the insulator is filled, the insulator in the concave groove is deformed following the deformation of the laminated body, and the generation of cracks and the like in the vicinity of the concave groove can be prevented, and the generated stress can be reduced.

また、本発明の積層型圧電素子は、内部電極の含有する金属成分が、Agを主成分とし、PdおよびPt族金属のうち1種以上を15原子%以下含有することを特徴とする。内部電極の含有するPdおよびPt族金属の含有量を15原子%以下とすることにより、内部電極と外部電極の組成差を小さくすることができるので、内部電極と外部電極間の金属の相互拡散が良好となり、内部電極と外部電極間の接合の信頼性を向上させ、耐久性を向上させることができる。   The multilayer piezoelectric element of the present invention is characterized in that the metal component contained in the internal electrode contains Ag as a main component and contains one or more of Pd and Pt group metals in an amount of 15 atomic% or less. By making the content of the Pd and Pt group metals contained in the internal electrode 15 atomic% or less, the compositional difference between the internal electrode and the external electrode can be reduced, so that the mutual diffusion of metal between the internal electrode and the external electrode This improves the reliability of bonding between the internal electrode and the external electrode, and improves the durability.

さらに、本発明の積層型圧電素子は、外部電極の外面に、金属のメッシュ若しくはメッシュ状の金属板が埋設された導電性接着剤からなる導電性補助部材が設けられていることを特徴とする。これにより積層体に大電流を投入し、高速で駆動させる場合においても、大電流を導電性補助部材に流すことができるため、外部電極が局所発熱を起こして断線するのを防ぐことができ、耐久性を大幅に向上させることができる。   Furthermore, the multilayer piezoelectric element of the present invention is characterized in that a conductive auxiliary member made of a conductive adhesive in which a metal mesh or a mesh-like metal plate is embedded is provided on the outer surface of the external electrode. . Thereby, even when a large current is input to the laminated body and driven at a high speed, the large current can flow through the conductive auxiliary member, so that the external electrode can be prevented from being disconnected due to local heat generation, Durability can be greatly improved.

また、導電性接着剤には、金属のメッシュ若しくはメッシュ状の金属板が埋設されているため、積層体の伸縮によって導電性接着剤にクラックが生じるといった問題の発生を防止できる。   Moreover, since the metal mesh or the mesh-like metal plate is embedded in the conductive adhesive, it is possible to prevent the problem that the conductive adhesive cracks due to the expansion and contraction of the laminate.

また、本発明の積層型圧電素子は、導電性接着剤が導電性粒子を分散させたポリイミド樹脂からなることを特徴とする。導電性接着剤のマトリックス成分を耐熱性の高いポリイミド樹脂にすることにより、高温での使用に際しても前記導電性接着剤が高い接着強度を維持することができる。   In addition, the multilayer piezoelectric element of the present invention is characterized in that the conductive adhesive is made of a polyimide resin in which conductive particles are dispersed. By using a highly heat-resistant polyimide resin as the matrix component of the conductive adhesive, the conductive adhesive can maintain high adhesive strength even when used at high temperatures.

さらに、導電性接着剤の導電性粒子が銀粉末であることを特徴とする。導電性粒子として比抵抗の低い銀粉末を用いることにより、該導電性接着剤の抵抗値を低くでき、大電流を流して駆動させる場合においても、局所発熱を防ぐことができる。さらに、導電性粒子間の絡み合いを強固にでき、該導電性接着剤の強度をより高めることができるという理由から、前記導電性粒子はフレーク状や針状などの非球形の粒子であることが望ましい。   Furthermore, the conductive particles of the conductive adhesive are silver powder. By using silver powder having a low specific resistance as the conductive particles, the resistance value of the conductive adhesive can be lowered, and local heat generation can be prevented even when driven by flowing a large current. Further, the conductive particles may be non-spherical particles such as flakes and needles because the entanglement between the conductive particles can be strengthened and the strength of the conductive adhesive can be further increased. desirable.

また、本発明の噴射装置は、噴射孔を有する収納容器と、該収納容器内に収容された上記積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備するものである。   In addition, the injection device of the present invention includes a storage container having an injection hole, the stacked piezoelectric element stored in the storage container, and a valve that ejects liquid from the injection hole by driving the stacked piezoelectric element. It comprises.

このような噴射装置では、上記したように、積層型圧電素子自体において外部電極と内部電極との断線を抑制でき、耐久性を大幅に向上できるため、噴射装置の耐久性をも向上できる。   In such an injection device, as described above, the disconnection between the external electrode and the internal electrode can be suppressed in the multilayer piezoelectric element itself, and the durability can be greatly improved. Therefore, the durability of the injection device can also be improved.

本発明の積層型圧電素子によれば、外部電極を導電材とガラスを含有する3次元網目構造をなす多孔質導電体にて形成したので、積層型圧電素子の伸縮によって生じる応力を外部電極が十分に吸収することができるため、高電界、高圧力下で高速で長期間連続運転させた場合でも、外部電極と内部電極の断線を抑制することができ、高信頼性を備えた積層型圧電素子を提供することができる。   According to the multilayer piezoelectric element of the present invention, since the external electrode is formed of a porous conductor having a three-dimensional network structure containing a conductive material and glass, the external electrode generates stress caused by expansion and contraction of the multilayer piezoelectric element. Since it can absorb sufficiently, it is possible to suppress disconnection of external electrode and internal electrode even when operated continuously at high speed under high electric field and high pressure for a long time. An element can be provided.

図1は本発明の積層型圧電アクチュエータからなる積層型圧電素子の一実施例を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図である。   1A and 1B show an embodiment of a multilayer piezoelectric element comprising a multilayer piezoelectric actuator according to the present invention. FIG. 1A is a perspective view, and FIG. 1B is a longitudinal section along the line AA 'in FIG. FIG.

積層型圧電アクチュエータは、図1に示すように、複数の圧電体1と複数の内部電極2とを交互に積層してなる四角柱状の柱状積層体1aの側面において、内部電極2の端部を一層おきに絶縁体3で被覆し、絶縁体3で被覆していない内部電極2の端部に、銀を主成分とする導電材とガラスからなり、且つ3次元網目構造をなす多孔質導電体からなる外部電極4を接合し、各外部電極4にリード線6を接続固定して構成されている。尚、符号9は不活性層である。   As shown in FIG. 1, the multilayer piezoelectric actuator has an end portion of the internal electrode 2 on the side surface of a quadrangular columnar stacked body 1a in which a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2 are alternately stacked. A porous conductor that is covered with an insulator 3 every other layer and is made of a conductive material and glass mainly composed of silver and has a three-dimensional network structure at the end of the internal electrode 2 that is not covered with the insulator 3 The external electrodes 4 are joined and lead wires 6 are connected and fixed to the external electrodes 4. Reference numeral 9 denotes an inactive layer.

圧電体1は、例えば、チタン酸ジルコン酸鉛Pb(Zr,Ti)O(以下PZTと略す)、或いはチタン酸バリウムBaTiOを主成分とする圧電セラミックス材料等で形成されている。この圧電セラミックスは、その圧電特性を示す圧電歪み定数d33が高いものが望ましい。 The piezoelectric body 1 is made of, for example, a lead ceramic zirconate titanate Pb (Zr, Ti) O 3 (hereinafter abbreviated as PZT) or a piezoelectric ceramic material mainly composed of barium titanate BaTiO 3 . The piezoelectric ceramics are those piezoelectric strain constant d 33 indicating the piezoelectric characteristic is high is preferable.

また、圧電体1の厚み、つまり内部電極2間の距離は50〜250μmが望ましい。これにより、積層型圧電アクチュエータは電圧を印加してより大きな変位量を得るために積層数を増加させたとしても、アクチュエータの小型化、低背化ができるとともに、圧電体1の絶縁破壊を防止できる。   The thickness of the piezoelectric body 1, that is, the distance between the internal electrodes 2 is preferably 50 to 250 μm. As a result, the multilayer piezoelectric actuator can reduce the size and height of the actuator and prevent dielectric breakdown of the piezoelectric body 1 even if the number of layers is increased in order to obtain a larger displacement by applying a voltage. it can.

圧電体1の間には内部電極2が配されているが、この内部電極2は銀−パラジウム等の金属材料で形成されており、各圧電体1に所定の電圧を印加し、圧電体1に逆圧電効果による変位を起こさせる作用をなす。   An internal electrode 2 is disposed between the piezoelectric bodies 1, and the internal electrode 2 is formed of a metal material such as silver-palladium, and a predetermined voltage is applied to each piezoelectric body 1. It acts to cause displacement due to the reverse piezoelectric effect.

また、柱状積層体1aの側面に一層おきに深さ30〜500μm、積層方向の幅30〜200μmの溝が形成されており、この溝内には、圧電体1よりもヤング率の低いガラス、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーンゴム等が充填されて絶縁体3が形成されている。この絶縁体3は、柱状積層体1aとの接合を強固とするために、柱状積層体1aの変位に対して追従する弾性率が低い材料、特にはシリコーンゴム等からなることが好適である。   Further, a groove having a depth of 30 to 500 μm and a width in the stacking direction of 30 to 200 μm is formed on the side surface of the columnar laminated body 1 a, and glass having a lower Young's modulus than the piezoelectric body 1 is formed in the groove, An insulator 3 is formed by filling an epoxy resin, a polyimide resin, a polyamideimide resin, a silicone rubber, or the like. The insulator 3 is preferably made of a material having a low elastic modulus that follows the displacement of the columnar laminate 1a, particularly silicone rubber, in order to strengthen the bonding with the columnar laminate 1a.

柱状積層体1aの対向する側面には外部電極4が接合されており、該外部電極4には、積層されている内部電極2が一層おきに電気的に接続されている。この外部電極4は、接続されている各内部電極2に圧電体1を逆圧電効果により変位させるに必要な電圧を共通に供給する作用をなす。   External electrodes 4 are joined to opposing side surfaces of the columnar laminate 1a, and the laminated internal electrodes 2 are electrically connected to the external electrodes 4 every other layer. The external electrode 4 serves to commonly supply a voltage necessary for displacing the piezoelectric body 1 to each connected internal electrode 2 by the inverse piezoelectric effect.

さらに、外部電極4にはリード線6が半田により接続固定されている。このリード線6は外部電極4を外部の電圧供給部に接続する作用をなす。   Furthermore, a lead wire 6 is connected and fixed to the external electrode 4 with solder. The lead wire 6 serves to connect the external electrode 4 to an external voltage supply unit.

そして本発明では、外部電極4が、導電材とガラスを含有し、図2に示すように、3次元網目構造をなす多孔質導電体から構成されている。ここで、3次元網目構造とは、外部電極4にいわゆる球形のボイドが存在している状態を意味するのではなく、外部電極4を構成する導電材粉末とガラス粉末が、比較的低温で焼き付けられている為に、焼結が進みきらずにボイドがある程度連結した状態で存在し、外部電極4を構成する導電材粉末とガラス粉末が3次元的に連結、接合した状態を指す。尚、図2(a)は、図1(b)の一部を拡大した断面図、(b)は(a)をさらに拡大した断面図である。   In the present invention, the external electrode 4 includes a conductive material and glass, and is composed of a porous conductor having a three-dimensional network structure as shown in FIG. Here, the three-dimensional network structure does not mean a state in which a so-called spherical void exists in the external electrode 4, but the conductive material powder and the glass powder constituting the external electrode 4 are baked at a relatively low temperature. Therefore, the void exists in a state where the sintering is not completed and the voids are connected to some extent, and the conductive material powder and the glass powder constituting the external electrode 4 are three-dimensionally connected and joined. 2A is an enlarged cross-sectional view of a part of FIG. 1B, and FIG. 2B is an enlarged cross-sectional view of FIG.

外部電極4は、導電材80〜97体積%と、ガラス3〜20体積%からなり、微量のガラスが導電材中に分散している。ガラスは5〜15体積%含有することが望ましい。この外部電極4は、柱状積層体1aの側面に部分的に接合している。即ち、柱状積層体1aの側面に露出した内部電極2の端部とは拡散接合しており、柱状積層体1aの圧電体1の側面とは部分的に接合している。つまり、圧電体1の側面には導電材とガラスの混合物が一部接合し、圧電体1の側面と外部電極4との間には空隙4aが形成されている。また、外部電極4中にも空隙4aが多数形成され、これにより、外部電極4が多孔質導電体から構成されている。空隙4aの形状は、導電材とガラスの焼き付け前の形状が比較的そのまま残存した複雑な形状である。   The external electrode 4 is composed of 80 to 97% by volume of a conductive material and 3 to 20% by volume of glass, and a small amount of glass is dispersed in the conductive material. It is desirable to contain 5 to 15% by volume of glass. The external electrode 4 is partially joined to the side surface of the columnar laminate 1a. That is, the end portion of the internal electrode 2 exposed on the side surface of the columnar laminated body 1a is diffusion bonded, and the side surface of the piezoelectric body 1 of the columnar laminated body 1a is partially bonded. That is, a mixture of a conductive material and glass is partially bonded to the side surface of the piezoelectric body 1, and a gap 4 a is formed between the side surface of the piezoelectric body 1 and the external electrode 4. Also, a large number of voids 4a are formed in the external electrode 4 so that the external electrode 4 is made of a porous conductor. The shape of the gap 4a is a complicated shape in which the shape before baking of the conductive material and the glass remains relatively as it is.

本発明では、このように導電材とガラスからなり、且つ3次元網目構造をなす多孔質導体からなる外部電極4が内部電極2と拡散接合し、また、柱状積層体1aと部分的に接合されているため、アクチュエータを高電界、高圧力下で長時間連続駆動させた場合でも、外部電極4と内部電極2の間でスパークを起こしたり、また、外部電極4が柱状積層体1aから剥離したり、断線したりするといった問題が生じるのを防ぐことができる。本発明では、外部電極4を形成する導電材とガラスからなる導電材ペーストを比較的低温で焼き付けを行うことにより、外部電極4を全体的に多孔質体にすることができ、柱状積層体1aの側面に部分的に接合できる。   In the present invention, the outer electrode 4 made of a conductive material and glass and made of a porous conductor having a three-dimensional network structure is diffusion bonded to the inner electrode 2 and partially bonded to the columnar laminate 1a. Therefore, even when the actuator is continuously driven for a long time under a high electric field and high pressure, a spark is caused between the external electrode 4 and the internal electrode 2, or the external electrode 4 is peeled off from the columnar laminate 1a. Or the problem of disconnection can be prevented. In the present invention, the external electrode 4 can be made entirely porous by baking a conductive material made of glass and a conductive material forming the external electrode 4 at a relatively low temperature, and the columnar laminate 1a. Can be partially joined to the side of

外部電極4を構成する導電材はアクチュエータの伸縮によって生じる応力を十分に吸収するという点から、ヤング率の低い銀、若しくは銀が主成分の合金が望ましい。   The conductive material constituting the external electrode 4 is preferably silver having a low Young's modulus or an alloy containing silver as a main component from the viewpoint of sufficiently absorbing the stress generated by the expansion and contraction of the actuator.

また、本発明では、図2(b)に示すように、外部電極4と接続している内部電極2端部にネック部4bが形成されており、内部電極2と外部電極4の強固な接続が実現できている。ネック部4bは、外部電極4中の導電材と内部電極2の電極材料とが拡散接合することによって形成されている。   In the present invention, as shown in FIG. 2B, the neck 4b is formed at the end of the internal electrode 2 connected to the external electrode 4, and the internal electrode 2 and the external electrode 4 are firmly connected. Has been realized. The neck portion 4b is formed by diffusion bonding of the conductive material in the external electrode 4 and the electrode material of the internal electrode 2.

さらに、本発明では、外部電極4中の空隙率、即ち、外部電極4中にしめる空隙4aの比率が30〜70体積%とされている。これにより、アクチュエータの伸縮によって生じる応力を柔軟に受けることができる。つまり、外部電極4中の空隙率が30体積%より小さい場合においては、外部電極4がアクチュエータの伸縮によって生じる応力に耐えきれずに、外部電極4が断線してしまう可能性がある。一方で、外部電極4中の空隙率が70体積%より大きい場合には外部電極4の抵抗値が大きくなってしまい、大電流を流した際に外部電極4が局所発熱を起こし、断線してしまう可能性がある。   Furthermore, in the present invention, the porosity in the external electrode 4, that is, the ratio of the void 4 a in the external electrode 4 is 30 to 70% by volume. Thereby, the stress which arises by expansion / contraction of an actuator can be received flexibly. That is, when the porosity in the external electrode 4 is smaller than 30% by volume, the external electrode 4 may not withstand the stress generated by the expansion and contraction of the actuator, and the external electrode 4 may be disconnected. On the other hand, when the porosity in the external electrode 4 is greater than 70% by volume, the resistance value of the external electrode 4 increases, and when a large current is passed, the external electrode 4 generates local heat and is disconnected. There is a possibility.

また、本発明では、外部電極4を構成するガラス成分の軟化点が、外部電極4を構成する導電材の融点以下とされている。これは、外部電極4の焼き付け温度を導電材の融点以下で且つガラス成分の軟化点以上の温度にすることができるためである。これにより、ガラス成分の軟化点以上で且つ導電材の融点以下の温度で焼き付けを行うことができるため、導電材の凝集を防ぎ、多孔質体とでき、十分な接合強度で焼き付けを行うことができる。   In the present invention, the softening point of the glass component constituting the external electrode 4 is not higher than the melting point of the conductive material constituting the external electrode 4. This is because the baking temperature of the external electrode 4 can be made lower than the melting point of the conductive material and higher than the softening point of the glass component. As a result, baking can be performed at a temperature not lower than the softening point of the glass component and not higher than the melting point of the conductive material, so that aggregation of the conductive material can be prevented, a porous body can be formed, and baking can be performed with sufficient bonding strength. it can.

また、本発明では、外部電極4を構成するガラス成分が非晶質とされている。これによって、アクチュエータの伸縮によって生じる応力を外部電極4が吸収することができ、クラック等の発生を防ぐことができる。   In the present invention, the glass component constituting the external electrode 4 is amorphous. As a result, the external electrode 4 can absorb the stress generated by the expansion and contraction of the actuator, and the occurrence of cracks and the like can be prevented.

また、本発明では、外部電極4の厚みが柱状積層体1aを構成する圧電体1の厚みよりも薄くされていることが望ましい。これにより、外部電極4が柱状積層体1aの積層方向に対して適度の強度を有し、アクチュエータが伸縮した際に外部電極4と内部電極2の接点における負荷の増大を防止でき、接点不良を防止できる。   In the present invention, it is desirable that the thickness of the external electrode 4 be thinner than the thickness of the piezoelectric body 1 constituting the columnar laminated body 1a. As a result, the external electrode 4 has an appropriate strength in the stacking direction of the columnar laminate 1a, and when the actuator expands and contracts, it is possible to prevent an increase in load at the contact point between the external electrode 4 and the internal electrode 2, thereby preventing a contact failure Can be prevented.

本発明の積層型圧電素子の製法について説明する。まず、柱状積層体1aを作製する。複数の圧電体1と複数の内部電極2とを交互に積層して成る柱状積層体1aは、PZT等の圧電セラミックスの仮焼粉末と、アクリル系、ブチラール系等の有機高分子から成るバインダーと、DBP(フタル酸ジオチル)、DOP(フタル酸ジブチル)等の可塑剤とを混合してスラリーを作製し、該スラリーを周知のドクターブレード法やカレンダーロール法等のテープ成型法により圧電体1となるセラミックグリーンシートを作製する。   A method for producing the multilayer piezoelectric element of the present invention will be described. First, the columnar laminate 1a is produced. A columnar laminate 1a formed by alternately laminating a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2 includes a calcined powder of piezoelectric ceramics such as PZT and a binder made of an organic polymer such as acrylic or butyral. , DBP (diethyl phthalate), DOP (dibutyl phthalate) and the like are mixed with a plasticizer to produce a slurry, and the slurry is formed into a piezoelectric material 1 by a tape molding method such as a known doctor blade method or calendar roll method. A ceramic green sheet is produced.

次に、銀−パラジウム粉末にバインダー、可塑剤等を添加混合して導電性ペーストを作製し、これを前記各グリーンシートの上面にスクリーン印刷等によって1〜40μmの厚みに印刷する。   Next, a conductive paste is prepared by adding a binder, a plasticizer, and the like to silver-palladium powder, and this is printed on the upper surface of each green sheet to a thickness of 1 to 40 μm by screen printing or the like.

そして、上面に導電性ペーストが印刷されたグリーンシートを複数積層し、この積層体について所定の温度で脱バインダーを行った後、900〜1200℃で焼成することによって柱状積層体1aが作製される。   Then, a plurality of green sheets each having a conductive paste printed on the upper surface are laminated, the binder is debindered at a predetermined temperature, and then fired at 900 to 1200 ° C., thereby producing the columnar laminate 1a. .

尚、柱状積層体1aは、上記製法によって作製されるものに限定されるものではなく、複数の圧電体と複数の内部電極とを交互に積層してなる柱状積層体1aを作製できれば、どのような製法によって形成されても良い。   The columnar laminate 1a is not limited to the one produced by the above-described manufacturing method, and any method can be used as long as the columnar laminate 1a formed by alternately laminating a plurality of piezoelectric bodies and a plurality of internal electrodes can be produced. It may be formed by any manufacturing method.

その後、図3(a)に示すように、ダイシング装置等により柱状積層体1aの側面に一層おきに溝を形成する。   Thereafter, as shown in FIG. 3A, grooves are formed on every other side of the columnar laminate 1a by a dicing apparatus or the like.

さらに、粒径0.1〜10μmの銀粉末を80〜97体積%と、残部が粒径0.1〜10μmでケイ素を主成分とする軟化点が450〜800℃のガラス粉末3〜20体積%からなる混合物に、バインダーを加えて銀ガラス導電性ペーストを作製し、これをシート状に成形し、乾燥した(溶媒を飛散させた)シート21の生密度を6〜9g/cmに制御し、このシート21を、図3(b)に示すように、溝が形成された柱状積層体1aの外部電極形成面に転写し、ガラスの軟化点よりも高い温度、且つ銀の融点(965℃)以下の温度で、且つ焼成温度(℃)の4/5以下の温度で焼き付けを行うことにより、図3(c)に示すように、銀ガラス導電性ペーストを用いて作製したシート21中のバインダー成分が飛散消失し、3次元網目構造をなす多孔質導電体からなる外部電極4を形成することができる。 Further, 80 to 97% by volume of silver powder having a particle size of 0.1 to 10 μm, 3 to 20 volume of glass powder having a remaining particle size of 0.1 to 10 μm and a softening point of 450 to 800 ° C. mainly composed of silicon. %, A binder is added to produce a silver glass conductive paste, which is formed into a sheet and dried (the solvent is scattered), and the raw density of the sheet 21 is controlled to 6 to 9 g / cm 3 . Then, as shown in FIG. 3B, the sheet 21 is transferred to the external electrode forming surface of the columnar laminate 1a having grooves, and is heated to a temperature higher than the softening point of the glass and the melting point of silver (965). In the sheet 21 produced using the silver glass conductive paste, as shown in FIG. 3 (c), by baking at a temperature of 4/5 or less of the firing temperature (° C.). The binder component is scattered and disappears, and the three-dimensional network structure It is possible to form the external electrode 4 formed of a porous conductive material that forms the.

特に、3次元網目構造の外部電極4を形成するには、シート21の生密度を6〜9g/cmに制御することが重要である。シート21の生密度はアルキメデス法により測定できる。特に、外部電極4の空隙率を30〜70%とするためには、生密度を6.2〜7.0g/cmとすることが望ましい。 In particular, in order to form the external electrode 4 having a three-dimensional network structure, it is important to control the raw density of the sheet 21 to 6 to 9 g / cm 3 . The raw density of the sheet 21 can be measured by the Archimedes method. In particular, in order to set the porosity of the external electrode 4 to 30 to 70%, it is desirable to set the green density to 6.2 to 7.0 g / cm 3 .

この銀ガラス導電性ペーストの焼き付けの際に、外部電極4中に空隙4aが形成されるとともに、銀ガラス導電性ペースト中の銀が内部電極2中の銀−パラジウム合金と拡散接合し、ネック部4bが形成され、また、該外部電極4が積層体側面に部分的に接合される。ネック部4bは、内部電極2からPdが拡散し、銀−パラジウム合金を形成している。   When this silver glass conductive paste is baked, voids 4a are formed in the external electrode 4, and silver in the silver glass conductive paste is diffusion-bonded to the silver-palladium alloy in the internal electrode 2 to form a neck portion. 4b is formed, and the external electrode 4 is partially bonded to the side surface of the laminate. In the neck portion 4b, Pd diffuses from the internal electrode 2 to form a silver-palladium alloy.

なお、前記銀ガラス導電性ペーストの焼き付け温度は、ネック部4bを有効的に形成し、銀ガラス導電性ペースト中の銀と内部電極2を拡散接合させ、また、外部電極4中の空隙を有効に残存させ、さらには、外部電極4と柱状積層体1a側面とを部分的に接合させるという点から、550〜700℃が望ましい。また、銀ガラス導電性ペースト中のガラス成分の軟化点は、500〜700℃が望ましい。   The baking temperature of the silver glass conductive paste effectively forms the neck portion 4b, diffuses and joins the silver in the silver glass conductive paste and the internal electrode 2, and makes the void in the external electrode 4 effective. 550 to 700 ° C. is desirable in that the external electrode 4 and the side surface of the columnar laminate 1a are partially joined. The softening point of the glass component in the silver glass conductive paste is preferably 500 to 700 ° C.

焼き付け温度が700℃より高い場合には、銀ガラス導電性ペーストの銀粉末の焼結が進みすぎ、有効的な3次元網目構造をなす多孔質導電体を形成することができず、外部電極4が緻密になりすぎてしまい、結果として外部電極4のヤング率が高くなりすぎ駆動時の応力を十分に吸収することができずに外部電極4が断線してしまう可能性がある。好ましくは、ガラスの軟化点の1.2倍以内の温度で焼き付けを行った方がよい。   When the baking temperature is higher than 700 ° C., the sintering of the silver powder of the silver glass conductive paste proceeds so much that a porous conductor having an effective three-dimensional network structure cannot be formed, and the external electrode 4 Becomes too dense, and as a result, the Young's modulus of the external electrode 4 becomes too high to absorb the stress during driving sufficiently, and the external electrode 4 may be disconnected. Preferably, baking should be performed at a temperature within 1.2 times the softening point of the glass.

一方、焼き付け温度が550℃よりも低い場合には、内部電極2端部と外部電極4の間で十分に拡散接合がなされないために、ネック部4bが形成されず、駆動時に内部電極2と外部電極4の間でスパークを起こしてしまう可能性がある。   On the other hand, when the baking temperature is lower than 550 ° C., since the diffusion bonding is not sufficiently performed between the end portion of the internal electrode 2 and the external electrode 4, the neck portion 4 b is not formed and There is a possibility of causing a spark between the external electrodes 4.

なお、銀ガラス導電性ペーストのシート21の厚みは、圧電体1の厚みよりも薄いことが望ましい。さらに好ましくは、アクチュエータの伸縮に追従するという点から、50μm以下がよい。 It is desirable that the thickness of the silver glass conductive paste sheet 21 is smaller than the thickness of the piezoelectric body 1. More preferably, it is 50 μm or less from the viewpoint of following the expansion and contraction of the actuator.

銀ガラス導電性ペースト21中の銀粉末を80〜97体積%、残部のガラス粉末を3〜20体積%としたのは、銀粉末が80体積%より少ない場合には、相対的にガラス成分が多くなり、焼き付けを行った際に、外部電極4中に有効的に空隙4aを形成することや該外部電極4を柱状積層体1a側面に部分的に接合することができず、一方、銀粉末が97体積%より多い場合には、相対的にガラス成分が少なくなり外部電極4と柱状積層体1aとの接合強度が弱くなり、アクチュエータを駆動中に外部電極4が柱状積層体1aから剥離してしまう恐れがあるためである。   The reason why the silver powder in the silver glass conductive paste 21 is 80 to 97 vol% and the remaining glass powder is 3 to 20 vol% is that when the silver powder is less than 80 vol%, the glass component is relatively small. When the baking is performed, the void 4a cannot be effectively formed in the external electrode 4 and the external electrode 4 cannot be partially bonded to the side surface of the columnar laminate 1a. Is more than 97% by volume, the glass component is relatively reduced, the bonding strength between the external electrode 4 and the columnar laminate 1a is weakened, and the external electrode 4 is peeled off from the columnar laminate 1a while driving the actuator. This is because there is a risk of losing.

また、外部電極4を構成するガラス成分は、シリカガラス、ソーダ石灰ガラス、鉛アルカリけい酸ガラス、アルミノほうけい酸塩ガラス、ほうけい酸塩ガラス、アルミノけい酸塩ガラス、ほう酸塩ガラス、りん酸塩ガラス等を用いる。   The glass components constituting the external electrode 4 are silica glass, soda lime glass, lead alkali silicate glass, aluminoborosilicate glass, borosilicate glass, aluminosilicate glass, borate glass, phosphoric acid. Salt glass or the like is used.

例えば、ほうけい酸塩ガラスとしては、SiO40〜70質量%、B2〜30質量%、Al0〜20質量%、MgO、CaO、SrO、BaOのようなアルカリ土類金属酸化物を総量で0〜10質量%、アルカリ金属酸化物0〜10質量%含有するものを使用することができる。また、上記ほうけい酸塩ガラスに、5〜30質量%のZnOを含むようなガラスとしても構わない。ZnOは、ほうけい酸塩ガラスの作業温度を低下させる効果がある。 For example, as borosilicate glass, alkaline earth such as SiO 2 40 to 70 mass%, B 2 O 3 2 to 30 mass%, Al 2 O 3 0 to 20 mass%, MgO, CaO, SrO, BaO. What contains 0-10 mass% of alkali metal oxides in a total amount, and 0-10 mass% of alkali metal oxides can be used. Further, the borosilicate glass may be a glass containing 5 to 30% by mass of ZnO. ZnO has the effect of lowering the working temperature of borosilicate glass.

また、りん酸塩ガラスとしては、P40〜80質量%、Al0〜30質量%、B0〜30質量%、ZnO0〜30質量%、アルカリ土類金属酸化物0〜30質量%、アルカリ金属酸化物0〜10質量%を含むようなガラスを使用することができる。 As the phosphate glass, P 2 O 5 40 to 80 wt%, Al 2 O 3 0 to 30 wt%, B 2 O 3 0 to 30 wt%, ZnO0~30 mass% alkaline earth metal oxide Glass containing 0 to 30% by mass of the product and 0 to 10% by mass of the alkali metal oxide can be used.

また、鉛ガラスとしては、PbO30〜80質量%、SiO0〜40質量%、Bi0〜30質量%、Al0〜20質量%、ZnO0〜30質量%、アルカリ土類金属酸化物0〜30質量%、アルカリ金属酸化物0〜10質量%を含むようなガラスを使用することができる。 As the lead glass, PbO30~80 wt%, SiO 2 0 to 40 wt%, Bi 2 O 3 0 to 30 wt%, Al 2 O 3 0 to 20 wt%, ZnO0~30 wt%, an alkaline earth Glasses containing 0 to 30% by mass of metal oxide and 0 to 10% by mass of alkali metal oxide can be used.

次に、外部電極4を形成した柱状積層体1aをシリコーンゴム溶液に浸漬するとともに、シリコーンゴム溶液を真空脱気することにより、柱状積層体1aの溝内部にシリコーンゴムを充填し、その後シリコーンゴム溶液から柱状積層体1aを引き上げ、柱状積層体1aの側面にシリコーンゴムをコーティングする。その後、溝内部に充填、及び柱状積層体1aの側面にコーティングした前記シリコーンゴムを硬化させる。   Next, the columnar laminated body 1a on which the external electrode 4 is formed is immersed in a silicone rubber solution, and the silicone rubber solution is vacuum degassed to fill the groove of the columnar laminated body 1a with silicone rubber. The columnar laminate 1a is pulled up from the solution, and the side surface of the columnar laminate 1a is coated with silicone rubber. Thereafter, the silicone rubber filled in the groove and coated on the side surface of the columnar laminate 1a is cured.

その後、外部電極4にリード線6を接続することにより本発明の積層型圧電素子が完成する。   Thereafter, the lead wire 6 is connected to the external electrode 4 to complete the multilayer piezoelectric element of the present invention.

そして、リード線6を介して一対の外部電極4に0.1〜3kV/mmの直流電圧を印加し、柱状積層体1aを分極処理することによって、製品としての積層型圧電アクチュエータが完成し、リード線6を外部の電圧供給部に接続し、リード線6及び外部電極4を介して内部電極2に電圧を印加させれば、各圧電体1は逆圧電効果によって大きく変位し、これによって例えばエンジンに燃料を噴射供給する自動車用燃料噴射弁として機能する。   Then, by applying a direct current voltage of 0.1 to 3 kV / mm to the pair of external electrodes 4 via the lead wires 6 to polarize the columnar laminated body 1a, a laminated piezoelectric actuator as a product is completed, When the lead wire 6 is connected to an external voltage supply unit and a voltage is applied to the internal electrode 2 via the lead wire 6 and the external electrode 4, each piezoelectric body 1 is greatly displaced by the reverse piezoelectric effect, and for example, It functions as an automobile fuel injection valve that supplies fuel to the engine.

以上のように構成された積層型圧電素子は、銀を主成分とした導電材とガラスを含有し、且つ3次元網目構造をなす多孔質導電体からなる外部電極4が部分的に柱状積層体1a側面に接続されているため、アクチュエータを高電界下、連続で駆動させた場合でも、外部電極4が駆動時に発生する応力を十分に吸収できるため、外部電極4と内部電極2の間でスパークを起こしたり、外部電極4が断線したりするといった問題が生じることを防ぐことができ、高信頼性のアクチュエータを提供することができる。   The multilayer piezoelectric element configured as described above has a columnar laminated body in which the external electrode 4 is made of a porous conductor containing a conductive material mainly composed of silver and glass and having a three-dimensional network structure. Since it is connected to the side surface 1a, even when the actuator is continuously driven under a high electric field, the external electrode 4 can sufficiently absorb the stress generated during driving, so that the spark between the external electrode 4 and the internal electrode 2 can be obtained. Can be prevented, and the external electrode 4 can be prevented from being broken, and a highly reliable actuator can be provided.

さらに、本発明では、図4に示すように、外部電極4の外面に、金属のメッシュ若しくはメッシュ状の金属板7bが埋設された導電性接着剤7aからなる導電性補助部材7を形成してもよい。この場合には、外部電極4の外面に導電性補助部材7を設けることによりアクチュエータに大電流を投入し、高速で駆動させる場合においても、大電流を導電性補助部材7に流すことができ、外部電極4に流れる電流を低減できるという理由から、外部電極4が局所発熱を起こし断線することを防ぐことができ、耐久性を大幅に向上させることができる。さらには、導電性接着剤7a中に金属のメッシュ若しくはメッシュ状の金属板7bを埋設しているため、前記導電性接着剤7aにクラックが生じるのを防ぐことができる。   Furthermore, in the present invention, as shown in FIG. 4, a conductive auxiliary member 7 made of a conductive adhesive 7 a in which a metal mesh or a mesh-like metal plate 7 b is embedded is formed on the outer surface of the external electrode 4. Also good. In this case, by providing a conductive auxiliary member 7 on the outer surface of the external electrode 4, a large current can be supplied to the conductive auxiliary member 7 even when a large current is input to the actuator and driven at high speed. Because the current flowing through the external electrode 4 can be reduced, it is possible to prevent the external electrode 4 from causing local heat generation and disconnection, and the durability can be greatly improved. Furthermore, since the metal mesh or the mesh-like metal plate 7b is embedded in the conductive adhesive 7a, it is possible to prevent the conductive adhesive 7a from cracking.

尚、図2(a)、図4(c)では、便宜上外部電極の厚みを圧電体の厚みよりも厚く形成した。   In FIGS. 2A and 4C, the thickness of the external electrode is made larger than the thickness of the piezoelectric body for convenience.

金属のメッシュとは金属線を編み込んだものであり、メッシュ状の金属板とは、金属板に孔を形成してメッシュ状にしたものをいう。   The metal mesh is a braided metal wire, and the mesh metal plate is a mesh formed by forming holes in a metal plate.

また、本発明では、内部電極2の含有する金属成分が、Agを主成分とし、PdおよびPt族金属のうち1種以上を15原子%以下含有することが好ましい。内部電極2の含有するPdおよびPt族金属の含有量を15原子%以下とすることにより、内部電極2と外部電極4の組成差を小さくすることができるので、内部電極2と外部電極4間の金属の相互拡散が良好となり、内部電極2と外部電極4間の接合の信頼性を向上させ、耐久性を向上させることができる。また、内部電極2には、柱状積層体1aと略同一の組成の粉末を適宜含有させることにより、柱状積層体1a中の内部電極2の接合力を向上させることができる。   In the present invention, it is preferable that the metal component contained in the internal electrode 2 contains Ag as a main component and contains one or more of Pd and Pt group metals in an amount of 15 atomic% or less. By setting the content of the Pd and Pt group metals contained in the internal electrode 2 to 15 atomic% or less, the compositional difference between the internal electrode 2 and the external electrode 4 can be reduced. The interdiffusion of the metal becomes good, the reliability of the joint between the internal electrode 2 and the external electrode 4 can be improved, and the durability can be improved. Moreover, the internal electrode 2 can be improved in bonding force of the internal electrode 2 in the columnar laminate 1a by appropriately containing a powder having substantially the same composition as that of the columnar laminate 1a.

さらに、前記導電性補助部材7を構成する導電性接着剤7aは銀粉末を分散させたポリイミド樹脂からなることが望ましい。即ち、比抵抗の低い銀粉末を、耐熱性の高いポリイミド樹脂に分散させることにより、高温での使用に際しても、抵抗値が低く且つ高い接着強度を維持した導電性補助部材7を形成することができる。さらに望ましくは、前記導電性粒子はフレーク状や針状などの非球形の粒子であることが望ましい。これは、導電性粒子の形状をフレーク状や針状などの非球形の粒子とすることにより、該導電性粒子間の絡み合いを強固にすることができ、該導電性接着剤7aのせん断強度をより高めることができるためである。   Further, the conductive adhesive 7a constituting the conductive auxiliary member 7 is preferably made of a polyimide resin in which silver powder is dispersed. That is, by dispersing silver powder having a low specific resistance in a polyimide resin having a high heat resistance, the conductive auxiliary member 7 having a low resistance value and a high adhesive strength can be formed even when used at a high temperature. it can. More preferably, the conductive particles are non-spherical particles such as flakes or needles. This is because the entanglement between the conductive particles can be strengthened by making the shape of the conductive particles non-spherical particles such as flakes and needles, and the shear strength of the conductive adhesive 7a can be increased. It is because it can raise more.

本発明の積層型圧電素子はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。   The multilayer piezoelectric element of the present invention is not limited to these, and various modifications can be made without departing from the gist of the present invention.

また、上記例では、柱状積層体1aの対向する側面に外部電極4を形成した例について説明したが、本発明では、例えば隣設する側面に一対の外部電極を形成してもよい。   Moreover, although the example which formed the external electrode 4 in the side surface which the columnar laminated body 1a opposes was demonstrated in the said example, in this invention, you may form a pair of external electrode in the side surface provided adjacently, for example.

図5は、本発明の噴射装置を示すもので、図において符号31は収納容器を示している。この収納容器31の一端には噴射孔33が設けられ、また収納容器31内には、噴射孔33を開閉することができるニードルバルブ35が収容されている。   FIG. 5 shows an injection apparatus according to the present invention. In the figure, reference numeral 31 denotes a storage container. An injection hole 33 is provided at one end of the storage container 31, and a needle valve 35 that can open and close the injection hole 33 is stored in the storage container 31.

噴射孔33には燃料通路37が連通可能に設けられ、この燃料通路37は外部の燃料供給源に連結され、燃料通路37に常時一定の高圧で燃料が供給されている。従って、ニードルバルブ35が噴射孔33を開放すると、燃料通路37に供給されていた燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されている。   A fuel passage 37 is provided in the injection hole 33 so as to be able to communicate. The fuel passage 37 is connected to an external fuel supply source, and fuel is always supplied to the fuel passage 37 at a constant high pressure. Therefore, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is formed to be injected into a fuel chamber (not shown) of the internal combustion engine at a constant high pressure.

また、ニードルバルブ35の上端部は直径が大きくなっており、収納容器31に形成されたシリンダ39と摺動可能なピストン41となっている。そして、収納容器31内には、上記した圧電アクチュエータ43が収納されている。   Further, the upper end portion of the needle valve 35 has a large diameter, and serves as a piston 41 slidable with a cylinder 39 formed in the storage container 31. In the storage container 31, the piezoelectric actuator 43 described above is stored.

このような噴射装置では、圧電アクチュエータ43が電圧を印加されて伸長すると、ピストン41が押圧され、ニードルバルブ35が噴射孔33を閉塞し、燃料の供給が停止される。また、電圧の印加が停止されると圧電アクチュエータ43が収縮し、皿バネ45がピストン41を押し返し、噴射孔33が燃料通路37と連通して燃料の噴射が行われるようになっている。   In such an injection device, when the piezoelectric actuator 43 is extended by applying a voltage, the piston 41 is pressed, the needle valve 35 closes the injection hole 33, and the supply of fuel is stopped. When the application of voltage is stopped, the piezoelectric actuator 43 contracts, the disc spring 45 pushes back the piston 41, and the injection hole 33 communicates with the fuel passage 37 so that fuel is injected.

実施例
まず、柱状積層体を作製した。圧電体は厚み150μmのPZTで形成し、内部電極は厚み3μmの銀−パラジウム合金(Pd 10原子%含有)によって形成し、圧電体及び内部電極の各々の積層数は300層とした。なお、焼成温度は1000℃であった。
Example First, a columnar laminate was produced. The piezoelectric body was formed of PZT having a thickness of 150 μm, the internal electrode was formed of a 3 μm-thick silver-palladium alloy (containing 10 atomic% Pd), and the number of stacked layers of the piezoelectric body and the internal electrode was 300 layers. The firing temperature was 1000 ° C.

その後、図3(a)に示すように、ダイシング装置により柱状積層体の側面の内部電極の端部に一層おきに深さ50μm、幅50μmの溝を形成した。   Thereafter, as shown in FIG. 3A, grooves having a depth of 50 μm and a width of 50 μm were formed at every other end of the internal electrode on the side surface of the columnar laminate by a dicing apparatus.

次に、平均粒径2μmのフレーク状の銀粉末を90体積%と、残部が平均粒径2μmのケイ素を主成分とする軟化点が640℃の非晶質のガラス粉末10体積%との混合物に、バインダーを銀粉末とガラス粉末の合計重量100質量部に対して8質量部添加し、十分に混合して銀ガラス導電性ペーストを作製した。このようにして作製した銀ガラス導電性ペーストを離型フィルム上にスクリーン印刷によって形成し、乾燥後、離型フィルムより剥がして、銀ガラス導電性ペーストのシートを得た。このシートの生密度をアルキメデス法にて測定したところ、6.5g/cmであった。 Next, a mixture of 90% by volume of flaky silver powder having an average particle diameter of 2 μm and 10% by volume of amorphous glass powder having a remaining softening point of 640 ° C. mainly composed of silicon having an average particle diameter of 2 μm. In addition, 8 parts by mass of the binder was added to 100 parts by mass of the total weight of the silver powder and the glass powder and mixed well to prepare a silver glass conductive paste. The silver glass conductive paste thus produced was formed on a release film by screen printing, dried and then peeled off from the release film to obtain a sheet of silver glass conductive paste. The raw density of this sheet was measured by the Archimedes method and found to be 6.5 g / cm 3 .

次に、図3(b)に示すように、前記銀ガラスペーストのシートを柱状積層体の外部電極面に転写し、650℃で30分焼き付けを行い、図3(c)に示すように、3次元網目構造をなす多孔質導電体からなる外部電極を形成した。なお、この時の外部電極の空隙率は、外部電極の断面写真を画像解析装置を用いて測定したところ40%であった。また、分析電子顕微鏡(EPMA)により測定したところ、銀ガラス導電性ペースト中の銀と内部電極中の銀−パラジウム合金が互いに拡散し、接合され、内部電極との接合部に、内部電極からパラジウムが拡散したネック部が形成されていた。さらに、外部電極の断面写真により測定したところ、外部電極と柱状積層体側面の接合部分は、約50%であった。   Next, as shown in FIG. 3 (b), the sheet of silver glass paste is transferred to the external electrode surface of the columnar laminate, and baked at 650 ° C. for 30 minutes. As shown in FIG. 3 (c), An external electrode made of a porous conductor having a three-dimensional network structure was formed. The porosity of the external electrode at this time was 40% when a cross-sectional photograph of the external electrode was measured using an image analyzer. Further, when measured with an analytical electron microscope (EPMA), silver in the silver glass conductive paste and silver-palladium alloy in the internal electrode diffused and joined to each other, and the palladium from the internal electrode was joined to the joint with the internal electrode. The neck part which diffused was formed. Furthermore, when measured with a cross-sectional photograph of the external electrode, the joint between the external electrode and the side surface of the columnar laminate was about 50%.

その後、外部電極にリード線を接続し、正極及び負極の外部電極にリード線を介して3kV/mmの直流電界を15分間印加して分極処理を行い、図1に示すような積層型圧電アクチュエータを作製した。   Thereafter, a lead wire is connected to the external electrode, a 3 kV / mm DC electric field is applied to the positive and negative external electrodes via the lead wire for 15 minutes to perform polarization treatment, and the laminated piezoelectric actuator as shown in FIG. Was made.

得られた積層型圧電アクチュエータに170Vの直流電圧を印加した結果、積層方向に45μmの変位量が得られた。さらに、このアクチュエータに室温で0〜+170Vの交流電圧を150Hzの周波数にて印加し駆動試験を行った結果、2×10サイクルまで駆動したところ45μmの変位量が得られ、外部電極の異常は見られなかった。また、銀ガラス導電性ペーストの生密度を変化させ、外部電極の空隙率が30体積%、70体積%の外部電極を形成した以外は、上記と同様にして積層型圧電アクチュエータを作製し、評価したところ、2×10サイクルまで駆動したところ45μmの変位量が得られ、外部電極の異常は見られなかった。 As a result of applying a DC voltage of 170 V to the obtained multilayer piezoelectric actuator, a displacement of 45 μm was obtained in the stacking direction. Furthermore, as a result of applying a driving test by applying an AC voltage of 0 to +170 V to this actuator at a frequency of 150 Hz at a room temperature, a displacement of 45 μm was obtained when driving up to 2 × 10 8 cycles, and abnormalities in the external electrodes were observed. I couldn't see it. In addition, a laminated piezoelectric actuator was fabricated and evaluated in the same manner as described above except that the raw density of the silver glass conductive paste was changed to form external electrodes having a porosity of 30% by volume and 70% by volume. As a result, when it was driven up to 2 × 10 8 cycles, a displacement of 45 μm was obtained, and no abnormality of the external electrode was observed.

比較例
銀ガラス導電性ペーストを、柱状積層体の側面に塗布し乾燥し(生密度9.1g/cm)、焼き付け温度を820℃に変更した以外は実施例と同様の構成の積層型圧電アクチュエータを作製した。この時の外部電極は3次元網目構造をなしておらず、ほぼバルク体であり、空隙率は10%で、球形状のボイドを有し、柱状積層体側面とは全面で接合されていた。
Comparative Example A laminated piezoelectric material having the same structure as in the example except that the silver glass conductive paste was applied to the side surface of the columnar laminate and dried (green density 9.1 g / cm 3 ), and the baking temperature was changed to 820 ° C. An actuator was produced. At this time, the external electrode did not have a three-dimensional network structure, was almost a bulk body, had a porosity of 10%, had a spherical void, and was bonded to the entire side surface of the columnar laminate.

得られた積層型圧電アクチュエータに、実施例と同様に、室温で0〜+170Vの交流電圧を150Hzの周波数にて印加し駆動試験を行った結果、5×10サイクルで外部電極が断線し、スパークが生じてしまった。 As in the example, the obtained laminated piezoelectric actuator was subjected to a driving test by applying an AC voltage of 0 to +170 V at a frequency of 150 Hz at room temperature. As a result, the external electrode was disconnected in 5 × 10 6 cycles, A spark has occurred.

本発明の積層型圧電素子を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図である。The laminated piezoelectric element of this invention is shown, (a) is a perspective view, (b) is a longitudinal cross-sectional view along the A-A 'line of (a). (a)及び(b)は図1(b)の一部を拡大して示す断面図、(c)は断面写真である。(A) And (b) is sectional drawing which expands and shows a part of FIG.1 (b), (c) is sectional drawing. 本発明の積層型圧電素子の製法を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method of the lamination type piezoelectric element of this invention. 外部電極の外面に導電性補助部材を形成した積層型圧電素子を示すもので、(a)は斜視図、(b)は(a)のA−A’線断面図、(c)は(b)の一部を拡大して示す断面図である。1 shows a laminated piezoelectric element in which a conductive auxiliary member is formed on the outer surface of an external electrode, wherein (a) is a perspective view, (b) is a cross-sectional view taken along line AA ′ of (a), and (c) is (b). It is sectional drawing which expands and shows a part of). 本発明の噴射装置を示す説明図である。It is explanatory drawing which shows the injection apparatus of this invention. 従来の積層型圧電アクチュエータの縦断面図である。It is a longitudinal cross-sectional view of a conventional multilayer piezoelectric actuator.

符号の説明Explanation of symbols

1・・・圧電体
1a・・・柱状積層体
2・・・内部電極
3・・・絶縁体
4・・・外部電極
4a・・・空隙
4b・・・ネック部
7・・・導電性補助部材
31・・・収納容器
33・・・噴射孔
35・・・バルブ
43・・・圧電アクチュエータ
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric body 1a ... Columnar laminated body 2 ... Internal electrode 3 ... Insulator 4 ... External electrode 4a ... Air gap 4b ... Neck part 7 ... Conductive auxiliary member 31 ... Storage container 33 ... Injection hole 35 ... Valve 43 ... Piezoelectric actuator

Claims (14)

複数の圧電体と複数の内部電極とを交互に積層してなる積層体と、該積層体の側面に設けられ、前記内部電極が一層おきに交互に接続された一対の外部電極とを具備してなる積層型圧電素子であって、前記外部電極が導電材とガラスを含有し、且つ3次元網目構造をなす多孔質導電体からなることを特徴とする積層型圧電素子。 A laminated body formed by alternately laminating a plurality of piezoelectric bodies and a plurality of internal electrodes, and a pair of external electrodes provided on the side surface of the laminated body, wherein the internal electrodes are alternately connected every other layer. A laminated piezoelectric element, wherein the external electrode is made of a porous conductor containing a conductive material and glass and having a three-dimensional network structure. 外部電極が積層体側面に部分的に接合していることを特徴とする請求項1記載の積層型圧電素子。 2. The multilayer piezoelectric element according to claim 1, wherein the external electrode is partially bonded to the side surface of the multilayer body. 外部電極が積層体側面に露出した内部電極端部と拡散接合していることを特徴とする請求項1又は2記載の積層型圧電素子。 The multilayer piezoelectric element according to claim 1 or 2, wherein the external electrode is diffusion-bonded to an end portion of the internal electrode exposed on the side surface of the multilayer body. 外部電極の導電材が銀を主成分とすることを特徴とする請求項1乃至3のうちいずれかに記載の積層型圧電素子。 4. The multilayer piezoelectric element according to claim 1, wherein the conductive material of the external electrode is mainly composed of silver. 外部電極の空隙率が30〜70体積%であることを特徴とする請求項1乃至4のうちいずれかに記載の積層型圧電素子。 The multilayer piezoelectric element according to claim 1, wherein the porosity of the external electrode is 30 to 70% by volume. 外部電極を構成するガラスの軟化点が、前記外部電極を構成する導電材の融点以下であることを特徴とする請求項1乃至5のうちいずれかに記載の積層型圧電素子。 The laminated piezoelectric element according to any one of claims 1 to 5, wherein the softening point of the glass constituting the external electrode is not higher than the melting point of the conductive material constituting the external electrode. 外部電極を構成するガラスが非晶質であることを特徴とする請求項1乃至6のうちいずれかに記載の積層型圧電素子。 The laminated piezoelectric element according to claim 1, wherein the glass constituting the external electrode is amorphous. 外部電極の厚みが積層体を構成する圧電体の厚みよりも薄いことを特徴とする請求項1乃至7のうちいずれかに記載の積層型圧電素子。 The multilayer piezoelectric element according to any one of claims 1 to 7, wherein the thickness of the external electrode is thinner than the thickness of the piezoelectric body constituting the multilayer body. 積層体側面に形成された凹溝内に圧電体よりもヤング率の低い絶縁体が充填され、内部電極と外部電極が一層置きに絶縁されていることを特徴とする請求項1乃至8のうちいずれかに記載の積層型圧電素子。 9. An insulating material having a Young's modulus lower than that of a piezoelectric body is filled in a concave groove formed on a side surface of the laminated body, and the internal electrode and the external electrode are insulated every other layer. The multilayer piezoelectric element according to any one of the above. 内部電極の金属成分がAgを主成分とし、PdおよびPt族金属のうち1種以上を15原子%以下含有することを特徴とする請求項1乃至9のうちいずれかに記載の積層型圧電素子。 The multilayer piezoelectric element according to any one of claims 1 to 9, wherein the metal component of the internal electrode contains Ag as a main component and contains at least one of Pd and Pt group metals in an amount of 15 atomic% or less. . 外部電極の外面に、金属のメッシュ若しくはメッシュ状の金属板が埋設された導電性接着剤からなる導電性補助部材が設けられていることを特徴とする請求項1乃至10のうちいずれかに記載の積層型圧電素子。 The conductive auxiliary member made of a conductive adhesive in which a metal mesh or a mesh-like metal plate is embedded is provided on the outer surface of the external electrode. Multilayer piezoelectric element. 導電性接着剤が導電性粒子を分散させたポリイミド樹脂からなることを特徴とする請求項11記載の積層型圧電素子。 The multilayer piezoelectric element according to claim 11, wherein the conductive adhesive is made of a polyimide resin in which conductive particles are dispersed. 導電性粒子が銀粉末であることを特徴とする請求項12記載の積層型圧電素子。 The multilayer piezoelectric element according to claim 12, wherein the conductive particles are silver powder. 噴射孔を有する収納容器と、該収納容器内に収容された請求項1乃至13のうちいずれかに記載の積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなることを特徴とする噴射装置。 A storage container having an injection hole, the stacked piezoelectric element according to any one of claims 1 to 13 stored in the storage container, and a liquid is ejected from the injection hole by driving the stacked piezoelectric element. An injection device comprising a valve.
JP2003301189A 2003-08-26 2003-08-26 Multilayer piezoelectric element and injection device Expired - Fee Related JP4480371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301189A JP4480371B2 (en) 2003-08-26 2003-08-26 Multilayer piezoelectric element and injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301189A JP4480371B2 (en) 2003-08-26 2003-08-26 Multilayer piezoelectric element and injection device

Publications (2)

Publication Number Publication Date
JP2005072325A true JP2005072325A (en) 2005-03-17
JP4480371B2 JP4480371B2 (en) 2010-06-16

Family

ID=34405882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301189A Expired - Fee Related JP4480371B2 (en) 2003-08-26 2003-08-26 Multilayer piezoelectric element and injection device

Country Status (1)

Country Link
JP (1) JP4480371B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1675190A1 (en) * 2003-09-24 2006-06-28 Kyocera Corporation Multilayer piezoelectric device
EP1677370A1 (en) * 2003-09-24 2006-07-05 Kyocera Corporation Multilayer piezoelectric device
JP2007281286A (en) * 2006-04-10 2007-10-25 Fujifilm Corp Piezoelectric element, and manufacturing method therefor as well as liquid spray unit
DE102008055131A1 (en) * 2008-12-23 2010-07-01 Robert Bosch Gmbh Piezoactuator for use in fuel-injector to adjust e.g. control valve, has electrode firmly connected with piezobody using sintered paste or by adhesive, soldering or welding material and designed as open porous sintered mold
US7868524B2 (en) * 2005-01-26 2011-01-11 Epcos Ag Piezoelectric component
JP2011147228A (en) * 2010-01-13 2011-07-28 Fujikura Rubber Ltd Polymer actuator
JP2012509582A (en) * 2008-11-20 2012-04-19 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Multilayer actuator with external electrodes as a porous stretchable metal conductive layer
EP2631959A2 (en) 2012-02-21 2013-08-28 NGK Insulators, Ltd. Piezoelectric element and method for manufacturing the same
WO2014069452A1 (en) * 2012-10-29 2014-05-08 京セラ株式会社 Multilayered piezo element, as well as piezo actuator, injection apparatus, and fuel injection system provided with said element
CN107240639A (en) * 2017-07-27 2017-10-10 苏州攀特电陶科技股份有限公司 Prevent actuator, preparation method and the terminal of Crack Extension

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936108B2 (en) 2003-09-24 2011-05-03 Kyocera Corporation Multi-layer piezoelectric element with electrodes made of glass and conductive material
US8004155B2 (en) 2003-09-24 2011-08-23 Kyocera Corporation Multi-layer piezoelectric element
EP1675190A4 (en) * 2003-09-24 2008-02-13 Kyocera Corp Multilayer piezoelectric device
EP1677370A4 (en) * 2003-09-24 2008-02-27 Kyocera Corp Multilayer piezoelectric device
US7633214B2 (en) 2003-09-24 2009-12-15 Kyocera Corporation Multi-layer piezoelectric element
EP2012374A3 (en) * 2003-09-24 2010-06-23 Kyocera Corporation Multi-layer piezoelectric element
EP1675190A1 (en) * 2003-09-24 2006-06-28 Kyocera Corporation Multilayer piezoelectric device
US7791256B2 (en) 2003-09-24 2010-09-07 Kyocera Corporation Multi-layer piezoelectric element
EP1677370A1 (en) * 2003-09-24 2006-07-05 Kyocera Corporation Multilayer piezoelectric device
US7868524B2 (en) * 2005-01-26 2011-01-11 Epcos Ag Piezoelectric component
JP2007281286A (en) * 2006-04-10 2007-10-25 Fujifilm Corp Piezoelectric element, and manufacturing method therefor as well as liquid spray unit
JP2012509582A (en) * 2008-11-20 2012-04-19 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Multilayer actuator with external electrodes as a porous stretchable metal conductive layer
DE102008055131A1 (en) * 2008-12-23 2010-07-01 Robert Bosch Gmbh Piezoactuator for use in fuel-injector to adjust e.g. control valve, has electrode firmly connected with piezobody using sintered paste or by adhesive, soldering or welding material and designed as open porous sintered mold
JP2011147228A (en) * 2010-01-13 2011-07-28 Fujikura Rubber Ltd Polymer actuator
EP2631959A2 (en) 2012-02-21 2013-08-28 NGK Insulators, Ltd. Piezoelectric element and method for manufacturing the same
US9142750B2 (en) 2012-02-21 2015-09-22 Ngk Insulators, Ltd. Piezoelectric element with electrodes allowing substrate strain and method for manufacturing the same
WO2014069452A1 (en) * 2012-10-29 2014-05-08 京セラ株式会社 Multilayered piezo element, as well as piezo actuator, injection apparatus, and fuel injection system provided with said element
US9373773B2 (en) 2012-10-29 2016-06-21 Kyocera Corporation Multi-layer piezoelectric element, and piezoelectric actuator, injection device, and fuel injection system provided with the multi-layer piezoelectric element
CN104350624B (en) * 2012-10-29 2017-04-05 京瓷株式会社 Piezoelektrisches mehrschichtelement and possess its piezo-activator, injection apparatus and fuel injection system
CN107240639A (en) * 2017-07-27 2017-10-10 苏州攀特电陶科技股份有限公司 Prevent actuator, preparation method and the terminal of Crack Extension

Also Published As

Publication number Publication date
JP4480371B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4942659B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP4931334B2 (en) Injection device
JP4808915B2 (en) Multilayer piezoelectric element and injection device
WO2005029602A1 (en) Multilayer piezoelectric device
WO2005029603A1 (en) Multilayer piezoelectric device
JP4480371B2 (en) Multilayer piezoelectric element and injection device
JP2006013437A (en) Laminated piezoelectric element, its manufacturing method, and injection device using it
JP4290946B2 (en) Multilayer piezoelectric element and injection device
JP4817610B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE USING THE SAME
JP3667289B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP2003101092A (en) Laminated piezoelectric element and manufacturing method therefor, and injection device
JP3929858B2 (en) Multilayer piezoelectric element
JP4925563B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP4498300B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP4493619B2 (en) Manufacturing method of multilayer piezoelectric element
JP4741197B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP4868707B2 (en) Multilayer piezoelectric element and injection device
JP3909275B2 (en) Multilayer piezoelectric element and injection device
JP3990595B2 (en) Multilayer piezoelectric element and injection device
JP3909276B2 (en) Multilayer piezoelectric element and injection device
JP2011176343A (en) Laminated piezoelectric element, and method of manufacturing the same
JP3909274B2 (en) Multilayer piezoelectric element and injection device
JP4873837B2 (en) Multilayer piezoelectric element and injection device
JP4498299B2 (en) Manufacturing method of multilayer piezoelectric element
JP3990613B2 (en) Multilayer piezoelectric element and injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4480371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees