JP4299807B2 - Multilayer piezoelectric element and injection device - Google Patents

Multilayer piezoelectric element and injection device Download PDF

Info

Publication number
JP4299807B2
JP4299807B2 JP2005142146A JP2005142146A JP4299807B2 JP 4299807 B2 JP4299807 B2 JP 4299807B2 JP 2005142146 A JP2005142146 A JP 2005142146A JP 2005142146 A JP2005142146 A JP 2005142146A JP 4299807 B2 JP4299807 B2 JP 4299807B2
Authority
JP
Japan
Prior art keywords
inactive
active
external electrode
piezoelectric element
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005142146A
Other languages
Japanese (ja)
Other versions
JP2005268820A (en
Inventor
進 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005142146A priority Critical patent/JP4299807B2/en
Publication of JP2005268820A publication Critical patent/JP2005268820A/en
Application granted granted Critical
Publication of JP4299807B2 publication Critical patent/JP4299807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、自動車用燃料噴射弁、光学装置等の精密位置決め装置や振動防止用の駆動素子等に用いられる積層型圧電素子及び噴射装置に関する。 The present invention relates to a laminated piezoelectric element and an injection device used for a precision positioning device such as a fuel injection valve for an automobile and an optical device, a drive element for vibration prevention, and the like.

従来より、電歪効果を利用して大きな変位量を得るために、圧電体と内部電極を交互に積層した積層型圧電素子が提案されている。積層型圧電素子には、同時焼成タイプと圧電磁器と内部電極板を交互に積層したスタックタイプの2種類に分類されており、低電圧化、製造コスト低減の面から考慮すると、同時焼成タイプの積層型圧電素子が薄層化に対して有利であるために、その優位性を示しつつある。 Conventionally, in order to obtain a large amount of displacement using the electrostrictive effect, multilayer piezoelectric elements in which piezoelectric bodies and internal electrodes are alternately stacked have been proposed. Multilayer piezoelectric elements are classified into two types: simultaneous firing type and stack type in which piezoelectric ceramics and internal electrode plates are alternately laminated. Since the multilayer piezoelectric element is advantageous for thinning, its superiority is being shown.

同時焼成タイプの積層型圧電素子は、従来、先ず、圧電材料を含有するグリーンシートと内部電極材料を含有する内部電極パターンが交互に積層された活性部成形体の上下面に、上記グリーンシートを複数積層して形成された不活性部成形体が積層された素子本体成形体を作製する。この素子本体成形体の側面に露出した内部電極パターンの端部部分に、交互に凹溝を形成し、素子本体成形体の対向する側面に内部電極パターンの端部が交互に露出するように、前記凹溝内に絶縁体を充填し、焼成し、素子本体を作製する。   Conventionally, the co-fired multilayer piezoelectric element has conventionally been made by first placing the green sheet on the upper and lower surfaces of an active part molded body in which green sheets containing piezoelectric materials and internal electrode patterns containing internal electrode materials are alternately laminated. An element body molded body in which a plurality of inactive part molded bodies formed by laminating is laminated is manufactured. In the end portion of the internal electrode pattern exposed on the side surface of the element body molded body, the concave grooves are alternately formed, and the end portions of the internal electrode pattern are alternately exposed on the opposite side surface of the element body molded body, An insulator is filled in the concave groove and baked to produce an element body.

この後、素子本体の内部電極が交互に露出した側面及び不活性部の側面に、金属粉末とガラスフリットを含有するペーストを塗布して焼き付け、内部電極と交互に接続される外部電極が素子本体の側面(活性部及び不活性部の側面)に接合されていた。   Thereafter, a paste containing metal powder and glass frit is applied and baked on the side surface of the element body where the internal electrodes are alternately exposed and on the side surface of the inactive portion, and the external electrodes alternately connected to the internal electrodes are connected to the element body. To the side surfaces (side surfaces of the active portion and the inactive portion).

この外部電極は、外部電極を構成する金属粉末と内部電極材料が拡散して接合するとともに、外部電極を構成するガラスフリット中のSiが活性部の圧電体、及び不活性部に拡散することにより、素子本体に接合されていた。   This external electrode is formed by diffusing and joining the metal powder constituting the external electrode and the internal electrode material, and diffusing Si in the glass frit constituting the external electrode into the active part piezoelectric body and the inactive part. It was joined to the element body.

しかしながら、従来の積層型圧電素子においては、不活性部には内部電極が存在しないため、不活性部と外部電極との接合は、外部電極を構成するガラスフリット中のSiが不活性部に拡散することによってのみ行われており、外部電極と活性部との接合強度に比べて、外部電極と不活性部との接合強度が弱く、駆動中に外部電極の不活性部側端から剥離が発生し易いという問題があった。   However, in the conventional multilayer piezoelectric element, since there is no internal electrode in the inactive part, Si in the glass frit constituting the external electrode diffuses into the inactive part when joining the inactive part to the external electrode. The bonding strength between the external electrode and the inactive portion is weaker than the bonding strength between the external electrode and the active portion, and peeling occurs from the inactive portion side end of the external electrode during driving. There was a problem that it was easy to do.

即ち、積層型圧電素子を駆動させると、活性部は逆圧電効果により変位するが、不活性部では逆圧電効果による変位が生じないため、活性部と不活性部との境界部近傍に応力が集中し、接合強度の弱い外部電極の端部、即ち外部電極の不活性部側端から剥離が発生し、これを起点とし活性部と外部電極とが剥離していき、内部電極との電気的接続が切断され、特性を低下させるという問題があった。   That is, when the stacked piezoelectric element is driven, the active portion is displaced by the reverse piezoelectric effect, but the inactive portion is not displaced by the reverse piezoelectric effect, so that stress is applied in the vicinity of the boundary between the active portion and the inactive portion. Separation occurs from the edge of the external electrode, which is concentrated and weak in bonding strength, that is, the inactive part side end of the external electrode, and the active part and the external electrode are separated from this as the starting point. There was a problem that the connection was cut and the characteristics deteriorated.

また、外部電極中のガラスフリット中のSiを増加させ、外部電極中のSiを活性部や不活性部に多量に拡散させることも考えられるが、Siの過剰な拡散は活性部や不活性部の外部電極が接合される圧電体表面を脆化させ、却って外部電極の接合強度を低下させるという問題があった。特に、内部電極が存在しない不活性部と外部電極との接合強度低下が著しくなるという問題があった。   Further, it is conceivable that Si in the glass frit in the external electrode is increased to diffuse a large amount of Si in the external electrode into the active part and the inactive part, but excessive diffusion of Si is caused by the active part and the inactive part. There is a problem that the surface of the piezoelectric body to which the external electrode is bonded becomes brittle and the bonding strength of the external electrode is decreased. In particular, there is a problem that the bonding strength between the inactive portion where no internal electrode is present and the external electrode is significantly reduced.

本発明は、上記問題点を解決するものであり、外部電極の不活性部側端部からの剥離を防止することができ、耐久性に優れ、信頼性の高い積層型圧電素子及び噴射装置を提供することを目的とする。   The present invention solves the above-described problems, and can provide a laminated piezoelectric element and an injection device that can prevent the external electrode from peeling from the end portion on the inactive portion side, have excellent durability, and high reliability. The purpose is to provide.

本発明の積層型圧電素子は、複数の圧電体と複数の内部電極とを交互に積層してなり、変位する活性部と、該活性部の積層方向両端に設けられた、変位しない不活性部とからなる素子本体と、該素子本体の側面に前記活性部から前記不活性部に延在して接合され、前記内部電極が交互に接続された一対の外部電極とを具備する積層型圧電素子であって、前記外部電極が、Siを含有するガラスを有するとともに、前記不活性部のSi含有量が前記活性部よりも多いことを特徴とする。 The multilayer piezoelectric element of the present invention includes a plurality of piezoelectric bodies and a plurality of internal electrodes that are alternately stacked, an active portion that is displaced, and an inactive portion that is provided at both ends of the active portion in the stacking direction and is not displaced. And a pair of external electrodes which are joined to the side surfaces of the element body extending from the active portion to the inactive portion and having the internal electrodes alternately connected to each other. And the said external electrode has glass containing Si, and Si content of the said inactive part is more than the said active part, It is characterized by the above-mentioned.

また、複数の圧電体と複数の内部電極とを交互に積層してなり、変位する活性部と、該活性部の積層方向両端に設けられた、変位しない不活性部とからなる素子本体と、該素子本体の側面に前記活性部から前記不活性部に延在して接合され、前記内部電極が交互に接続された一対の外部電極とを具備する積層型圧電素子であって、前記素子本体が前記不活性部に前記活性部よりも多くのSiを含有しており、前記外部電極が、Siを含有するガラスを有するとともに、前記外部電極から前記不活性部へのSi拡散距離が、前記外部電極から前記活性部へのSi拡散距離よりも短いことを特徴とする。 In addition, an element body including a plurality of piezoelectric bodies and a plurality of internal electrodes that are alternately stacked, and an active portion that is displaced, and an inactive portion that is provided at both ends in the stacking direction of the active portion and is not displaced, wherein the said active portion on the side face of the element body are joined to extend in the inactive portion, wherein the inner electrode is a laminated piezoelectric element comprising a pair of external electrodes connected alternately, the device body The inactive part contains more Si than the active part, the external electrode has a glass containing Si, and the Si diffusion distance from the external electrode to the inactive part is It is shorter than the Si diffusion distance from the external electrode to the active part.

このような積層型圧電素子では、外部電極中のSiが、熱処理時に素子本体の外部電極形成面から内部に拡散していくが、不活性部に活性部よりも多くのSiを含有せしめることにより、活性部と外部電極との接合強度は変わらないものの、外部電極中のガラスフリットのSiが、活性部よりも不活性部に拡散しにくくなり、Siの不活性部内部への拡散距離が短くなり、不活性部と外部電極とのSiの拡散による接合強度向上効果は低下するものの、不活性部側面の脆化を抑制し、これによる接合強度の低下を著しく抑制できることから、結果的に不活性部の側面と外部電極との接合強度が著しく向上することができる。   In such a laminated piezoelectric element, Si in the external electrode diffuses from the external electrode formation surface of the element body to the inside during heat treatment, but by adding more Si to the inactive part than in the active part. Although the bonding strength between the active part and the external electrode does not change, the glass frit Si in the external electrode is less likely to diffuse into the inactive part than the active part, and the diffusion distance of Si into the inactive part is short. However, although the effect of improving the bonding strength due to the diffusion of Si between the inactive portion and the external electrode is reduced, the embrittlement of the side surface of the inactive portion can be suppressed and the decrease in the bonding strength due to this can be remarkably suppressed. The bonding strength between the side surface of the active part and the external electrode can be remarkably improved.

このような積層型圧電素子では、外部電極と不活性部との接合強度を、外部電極と活性部との接合強度よりも大きくすることも可能となり、駆動時の応力による外部電極の不活性部端からの剥離が防止され、耐久性及び信頼性を向上できる。   In such a multilayered piezoelectric element, the bonding strength between the external electrode and the inactive portion can be made larger than the bonding strength between the external electrode and the active portion, and the inactive portion of the external electrode due to driving stress Peeling from the end is prevented, and durability and reliability can be improved.

また、本願発明では、外部電極中に含有せしめるSi量は増加させる必要がないため、活性部、不活性部の外部電極形成面の脆弱化を最小限に抑制できる。   Moreover, in this invention, since it is not necessary to increase the amount of Si contained in an external electrode, weakening of the external electrode formation surface of an active part and an inactive part can be suppressed to the minimum.

外部電極中のSiは、Si拡散による素子本体側面の脆弱化及び接合強度向上の点から最も接合強度が高くなるように定められるが、この場合では素子本体の脆弱化による接合強度低下は免れない。本発明では、Siを不活性部に予め含有させることによりSiの不活性部への拡散を最小限に抑制し、不活性部側面の脆弱化を最小限とし、従来よりも接合強度を向上させることができる。   Si in the external electrode is determined to have the highest bonding strength from the viewpoint of weakening of the side surface of the element body due to Si diffusion and improvement of the bonding strength. . In the present invention, Si is preliminarily contained in the inactive part to minimize the diffusion of Si into the inactive part, minimize the weakening of the side surface of the inactive part, and improve the bonding strength than before. be able to.

本発明の噴射装置は、噴射孔を有する収納容器と、該収納容器内に収容された上記積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなるものである。   An injection device of the present invention includes a storage container having an injection hole, the stacked piezoelectric element stored in the storage container, and a valve for ejecting liquid from the injection hole by driving the stacked piezoelectric element. It is made.

本発明の噴射装置では、積層型圧電素子において不活性部と外部電極との接合強度を向上でき、外部電極の端部からの剥離を抑制できるため、噴射装置として、耐久性及び信頼性を向上できる。   In the injection device of the present invention, since the bonding strength between the inactive portion and the external electrode can be improved in the multilayer piezoelectric element and the peeling from the end of the external electrode can be suppressed, the durability and reliability of the injection device are improved. it can.

以上詳述した通り、本発明の積層型圧電素子では、外部電極と不活性部との接合強度を向上でき、外部電極と活性部との接合強度以上とすることもできる。このため、積層型圧電素子(アクチュエータ)を駆動させた場合においても、活性部と不活性部との境界近傍で発生する応力による外部電極の剥離を防止することができ、信頼性を向上できる。   As described above in detail, in the multilayer piezoelectric element of the present invention, the bonding strength between the external electrode and the inactive portion can be improved, and the bonding strength between the external electrode and the active portion can be made higher than that. For this reason, even when the laminated piezoelectric element (actuator) is driven, it is possible to prevent peeling of the external electrode due to stress generated in the vicinity of the boundary between the active part and the inactive part, and the reliability can be improved.

図1(a)は本発明の積層型圧電アクチュエータからなる積層型圧電素子の一実施例を示す斜視図であり、(b)は(a)のA−A’に沿った縦断面図である。   FIG. 1A is a perspective view showing an embodiment of a multilayer piezoelectric element comprising the multilayer piezoelectric actuator of the present invention, and FIG. 1B is a longitudinal sectional view taken along line AA ′ of FIG. .

本発明の積層型圧電アクチュエータは、図1に示すように複数の圧電体1と複数の内部電極2とを交互に積層してなる活性部8と、該活性部8の積層方向外側に設けられた不活性部9とからなる四角柱状の素子本体3を有している。   As shown in FIG. 1, the multilayer piezoelectric actuator of the present invention is provided on an active portion 8 in which a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2 are alternately stacked, and on the outer side of the active portion 8 in the stacking direction. Further, the element main body 3 having a quadrangular prism shape composed of the inactive portion 9 is provided.

内部電極2は、その端部が素子本体3の対向する側面(外部電極形成面)に一層おきに露出しており、この内部電極2の露出部分にそれぞれ導電部4aが形成され、これらの導電部4aに金属板4bが接合され、外部電極4が構成されている。   The end portions of the internal electrodes 2 are exposed on the opposite side surfaces (external electrode forming surfaces) of the element body 3, and conductive portions 4a are formed on the exposed portions of the internal electrodes 2, respectively. The metal plate 4b is joined to the part 4a, and the external electrode 4 is configured.

これにより、それぞれの外部電極4に、内部電極2が一層おきに電気的に接続されており、一方、外部電極4と接続されていない内部電極2の端部は絶縁体10で被覆されている。さらに、外部電極4にはリード線16が半田等で接続固定されている。   Thereby, the internal electrodes 2 are electrically connected to the respective external electrodes 4 every other layer, while the end portions of the internal electrodes 2 not connected to the external electrodes 4 are covered with the insulator 10. . Furthermore, a lead wire 16 is connected and fixed to the external electrode 4 with solder or the like.

圧電体1は、例えば、チタン酸ジルコン酸鉛Pb(Zr,Ti)O(以下PZTと略す)或いは、チタン酸バリウムBaTiOを主成分とする圧電セラミック材料などが使用されるが、これらに限定されるものではなく、圧電性を有するセラミックスであれば何れでも良い。なお、この圧電体材料としては、圧電歪み定数d33が高いものが望ましい。 As the piezoelectric body 1, for example, lead zirconate titanate Pb (Zr, Ti) O 3 (hereinafter abbreviated as PZT) or a piezoelectric ceramic material mainly composed of barium titanate BaTiO 3 is used. It is not limited, and any ceramics having piezoelectricity may be used. As the piezoelectric material, as the piezoelectric strain constant d 33 is high it is preferable.

また、圧電体1の厚み、つまり内部電極2間の距離は、小型化及び高い電界を印加するという点から0.05〜0.25mmであることが望ましい。これは、積層型圧電素子は電圧を印加してより大きな変位量を得るために、積層数を増加させる方法がとられるが、積層数を増加させた場合に活性部8中の圧電体1の厚みが厚すぎるとアクチュエータの小型化、低背化ができなくなり、一方、活性部8中の圧電体1の厚みが薄すぎると絶縁破壊しやすいからである。   The thickness of the piezoelectric body 1, that is, the distance between the internal electrodes 2, is preferably 0.05 to 0.25 mm from the viewpoint of downsizing and applying a high electric field. In order to obtain a larger amount of displacement by applying a voltage to the stacked piezoelectric element, a method of increasing the number of stacked layers is used, but when the number of stacked layers is increased, the piezoelectric body 1 in the active portion 8 is increased. This is because if the thickness is too large, the actuator cannot be reduced in size and height, and if the thickness of the piezoelectric body 1 in the active portion 8 is too thin, dielectric breakdown tends to occur.

また、素子本体3における活性部8側面の外部電極4形成面には、一層おきに深さ50〜500μm積層方向の幅30〜200μmの溝が形成されており、この溝内にガラス、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーンゴム等が充填されて絶縁体10が形成されている。このように内部電極2の端部は一層おきに互い違いに溝内に充填された絶縁体10によって絶縁され、内部電極2の絶縁されていない他方の端部は導電部4aを介して金属板と接続されている。   In addition, a groove having a depth of 50 to 500 μm and a width of 30 to 200 μm in the stacking direction is formed on the surface of the element body 3 on the side of the active portion 8 where the external electrode 4 is formed. Insulator 10 is formed by being filled with polyimide resin, polyamideimide resin, silicone rubber, or the like. In this way, the end portions of the internal electrode 2 are insulated by the insulators 10 alternately filled in the groove every other layer, and the other end portion of the internal electrode 2 that is not insulated is connected to the metal plate via the conductive portion 4a. It is connected.

なお、導電部4aは内部電極2との拡散接合による接合のため銀、若しくは銀が主成分の合金と、圧電体1との拡散接合による接合のためガラス成分とを含有する必要がある。また、外部電極4としての導電性を備えるため、銀、若しくは銀が主成分の合金が外部電極4全量中の40〜90体積%であることが望ましい。   The conductive portion 4 a needs to contain silver or an alloy containing silver as a main component for bonding by diffusion bonding with the internal electrode 2 and a glass component for bonding by diffusion bonding with the piezoelectric body 1. In order to provide conductivity as the external electrode 4, it is desirable that silver or an alloy containing silver as a main component is 40 to 90% by volume in the total amount of the external electrode 4.

なお、外部電極4を構成する金属板4bの厚みtは、アクチュエータの伸縮に追従し、金属板4bと導電部4aの間、若しくは導電部4aと内部電極2の間で断線を生じないという点から、50μm以下であることが望ましい。   The thickness t of the metal plate 4b constituting the external electrode 4 follows the expansion and contraction of the actuator, and no disconnection occurs between the metal plate 4b and the conductive portion 4a or between the conductive portion 4a and the internal electrode 2. Therefore, it is desirable that it is 50 μm or less.

また、板状の金属板4bは、銀、ニッケル、銅、金、アルミニウム等の導電性を備えた金属及びそれらの合金からなり、このうち、導電部4aとの接合強度が強く、ヤング率が低いという点から、銀、若しくは銀が主成分の合金が望ましい。   The plate-like metal plate 4b is made of a metal having conductivity such as silver, nickel, copper, gold, and aluminum, and an alloy thereof. Among these, the bonding strength with the conductive portion 4a is strong, and the Young's modulus is high. From the viewpoint of low, silver or an alloy containing silver as a main component is desirable.

なお、絶縁体10は、素子本体3との接合を強固とするために、素子本体3の変位に対して追従する弾性率が低い材料、具体的にはシリコーンゴム等からなることが好適である。   The insulator 10 is preferably made of a material having a low elastic modulus that follows the displacement of the element body 3, specifically, silicone rubber or the like in order to strengthen the bonding with the element body 3. .

素子本体3の少なくとも1つの側面にはそれぞれ金属板4bが導電部4aを介して接続固定されており、該外部電極4には、積層されている内部電極2が一層おきに電気的に接続されている。この金属板4bは、接続されている活性部8中の各内部電極2に圧電体1を逆圧電効果により変位させるに必要な電圧を共通に供給する作用をなす。   A metal plate 4b is connected and fixed to at least one side surface of the element body 3 via a conductive portion 4a, and the stacked internal electrodes 2 are electrically connected to the external electrode 4 every other layer. ing. The metal plate 4b serves to supply in common a voltage necessary for displacing the piezoelectric body 1 by the inverse piezoelectric effect to each internal electrode 2 in the active portion 8 connected thereto.

さらに、外部電極4にはリード線16が半田により接続固定されているが、このリード線16は外部電極4を外部の電圧供給部に接続する作用をなす。   Further, the lead wire 16 is connected and fixed to the external electrode 4 by soldering. The lead wire 16 serves to connect the external electrode 4 to an external voltage supply unit.

そして、本発明では、不活性部9に活性部8より多くのSiを含有しており、これにより、外部電極4中のSiの不活性部9への拡散の濃度勾配の距離を低下させ、Siの過剰な拡散による不活性部9の圧電体の脆化による接合強度の低下を防止させ、外部電極4と不活性部9との接合強度を向上することができる。この結果、外部電極4と不活性部9との接合強度を、外部電極4と活性部8との接合強度以上とすることもでき、駆動時の活性部8と不活性部9との境界近傍で発生する応力による、外部電極4端部からの剥離を防止することが可能となり、高い信頼性を得ることができる。   In the present invention, the inactive portion 9 contains more Si than the active portion 8, thereby reducing the distance of the concentration gradient of diffusion of Si in the external electrode 4 to the inactive portion 9, It is possible to prevent a decrease in bonding strength due to embrittlement of the piezoelectric body of the inactive portion 9 due to excessive diffusion of Si, and improve the bonding strength between the external electrode 4 and the inactive portion 9. As a result, the bonding strength between the external electrode 4 and the inactive portion 9 can be made higher than the bonding strength between the external electrode 4 and the active portion 8, and in the vicinity of the boundary between the active portion 8 and the inactive portion 9 during driving. It is possible to prevent peeling from the end portion of the external electrode 4 due to the stress generated in step 1, and high reliability can be obtained.

なお、不活性部9へのSiの含有量はSiの拡散による圧電体1の強度の低下を防ぐという点から、SiO換算で、不活性部9を構成する圧電磁器の0.1〜3重量%が望ましい。特に、Si拡散距離を小さくし、接合強度を向上するという点から0.1〜1重量%であることが望ましい。 The content of Si in the inactive part 9 is 0.1 to 3 of the piezoelectric ceramic constituting the inactive part 9 in terms of SiO 2 in terms of preventing a decrease in strength of the piezoelectric body 1 due to diffusion of Si. % By weight is desirable. In particular, it is preferably 0.1 to 1% by weight from the viewpoint of reducing the Si diffusion distance and improving the bonding strength.

以上のように構成された積層型圧電素子は、以下のプロセスにより製造される。先ず、チタン酸ジルコン酸鉛Pb(Zr,Ti)Oなどの圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダーと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み50〜250μmのセラミックグリーンシートを作製する。 The multi-layer piezoelectric element configured as described above is manufactured by the following process. First, a slurry is prepared by mixing a calcined powder of a piezoelectric ceramic such as lead zirconate titanate Pb (Zr, Ti) O 3 , a binder made of an organic polymer, and a plasticizer, and by slip casting method, A ceramic green sheet having a thickness of 50 to 250 μm is prepared.

このグリーンシートの片面に内部電極2となる銀−パラジウムを主成分とする導電性ペーストをスクリーン印刷法により1〜10μmの厚みに印刷する。   A conductive paste mainly composed of silver-palladium serving as the internal electrode 2 is printed on one side of the green sheet to a thickness of 1 to 10 μm by screen printing.

この導電性ペーストを乾燥させた後、導電性ペーストが塗布された複数のグリーンシートを所定の枚数だけ積層し、活性部8の活性部成形体を形成する。   After the conductive paste is dried, a predetermined number of green sheets coated with the conductive paste are stacked to form an active part molded body of the active part 8.

これとは別に、所定量のSiOと、チタン酸ジルコン酸鉛Pb(Zr,Ti)Oなどの圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダーと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み50〜250μmのセラミックグリーンシートを作製する。 Separately, a predetermined amount of SiO 2 , a calcined powder of piezoelectric ceramic such as lead zirconate titanate Pb (Zr, Ti) O 3 , a binder made of an organic polymer, and a plasticizer were mixed. A slurry is prepared, and a ceramic green sheet having a thickness of 50 to 250 μm is prepared by a slip casting method.

このグリーンシートを、活性部成形体の積層方向の両端部に、所定の枚数だけ積層し、不活性部成形体を積層する。   A predetermined number of the green sheets are laminated at both ends in the lamination direction of the active part molded body, and the inactive part molded body is laminated.

次に、この積層体を50〜200℃で加熱を行いながら加圧を行い、積層体を一体化する。一体化された積層体は所定の大きさに切断された後、400〜800℃で5〜40時間、脱バインダが行われ、900〜1200℃で2〜5時間で本焼成が行われ、素子本体3となる積層焼結体を得る。この素子本体3の側面には、内部電極2の端部が露出している。   Next, pressure is applied while heating the laminated body at 50 to 200 ° C. to integrate the laminated body. After the integrated laminate is cut to a predetermined size, the binder is removed at 400 to 800 ° C. for 5 to 40 hours, and main firing is performed at 900 to 1200 ° C. for 2 to 5 hours. A laminated sintered body to be the main body 3 is obtained. The end of the internal electrode 2 is exposed on the side surface of the element body 3.

その後、素子本体3の外部電極4形成側面に、ダイシング装置等により一層おきに凹溝を形成する。この凹溝が形成された素子本体3の外部電極4形成側面と、金属板4bとの間に、銀粉末と、Pb−Si系、若しくはB−Si系のガラス粉末からなる銀ガラスペーストを介在させ、金属板4bと素子本体3を2〜80kPaの圧力で圧接した状態で500〜900℃で熱処理することにより、銀ガラスペースト中のSiが活性部8の圧電体1及び不活性部9へ拡散し、また、前記銀ガラスペースト中の銀が内部電極2へ拡散し、素子本体3の側面に導電部4aが形成されるとともに、この導電部4aに、板状導電部材からなる金属板4bが接合される。   Thereafter, a groove is formed in every other layer on the side surface of the element body 3 where the external electrode 4 is formed by a dicing apparatus or the like. A silver glass paste made of silver powder and Pb-Si-based or B-Si-based glass powder is interposed between the side surface of the element body 3 in which the concave grooves are formed and the metal plate 4b. Then, Si in the silver glass paste is transferred to the piezoelectric body 1 and the inactive portion 9 of the active portion 8 by heat-treating the metal plate 4b and the element main body 3 at a pressure of 2 to 80 kPa at 500 to 900 ° C. In addition, the silver in the silver glass paste diffuses to the internal electrode 2, and a conductive portion 4a is formed on the side surface of the element body 3, and a metal plate 4b made of a plate-like conductive member is formed on the conductive portion 4a. Are joined.

この後、外部電極4にリード線16を接続し、素子の外周面に真空脱泡によるディッピング等の方法により、外装樹脂を被覆した後、0.1〜3kVの分極電圧を印加し、素子全体を分極処理することで、最終的な積層型圧電素子を得る。   Thereafter, the lead wire 16 is connected to the external electrode 4 and the outer peripheral surface of the element is coated with an exterior resin by a method such as dipping by vacuum defoaming, and then a polarization voltage of 0.1 to 3 kV is applied to the entire element. Is subjected to polarization treatment to obtain a final laminated piezoelectric element.

以上のように構成された積層型圧電アクチュエータは、外部電極4と不活性部9との接合強度が大きくなり、アクチュエータを駆動させた場合においても、活性部8と不活性部9との境界近傍で発生する応力による外部電極4の不活性部端からの剥離を防止することができ、高信頼性を備えたアクチュエータを提供することができる。   In the multilayer piezoelectric actuator configured as described above, the bonding strength between the external electrode 4 and the inactive portion 9 increases, and even when the actuator is driven, the vicinity of the boundary between the active portion 8 and the inactive portion 9 The external electrode 4 can be prevented from being peeled off from the end of the inactive portion due to the stress generated in the above, and an actuator having high reliability can be provided.

なお、本発明の積層型圧電素子は、四角柱、六角柱、円柱等、どのような柱体であっても構わないが、切断の容易性から四角柱状が望ましい。   The multilayer piezoelectric element of the present invention may be any column body such as a quadrangular column, a hexagonal column, or a cylinder, but a quadrangular column shape is desirable for ease of cutting.

また、外部電極4として金属板4bを用いたが、ペーストによってのみ形成しても同様の効果を得ることができる。   Moreover, although the metal plate 4b is used as the external electrode 4, the same effect can be obtained even if it is formed only by a paste.

図2は、本発明の噴射装置を示すもので、図において符号31は収納容器を示している。この収納容器31の一端には噴射孔33が設けられ、また収納容器31内には、噴射孔33を開閉することができるニードルバルブ35が収容されている。   FIG. 2 shows an injection device according to the present invention. In the figure, reference numeral 31 denotes a storage container. An injection hole 33 is provided at one end of the storage container 31, and a needle valve 35 that can open and close the injection hole 33 is stored in the storage container 31.

噴射孔33には燃料通路37が連通可能に設けられ、この燃料通路37は外部の燃料供給源に連結され、燃料通路37に常時一定の高圧で燃料が供給されている。従って、ニードルバルブ35が噴射孔33を開放すると、燃料通路37に供給されていた燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されている。   A fuel passage 37 is provided in the injection hole 33 so as to be able to communicate. The fuel passage 37 is connected to an external fuel supply source, and fuel is always supplied to the fuel passage 37 at a constant high pressure. Therefore, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is formed to be injected into a fuel chamber (not shown) of the internal combustion engine at a constant high pressure.

また、ニードルバルブ35の上端部は直径が大きくなっており、収納容器31に形成されたシリンダ39と摺動可能なピストン41となっている。そして、収納容器31内には、上記した圧電アクチュエータ43が収納されている。   Further, the upper end portion of the needle valve 35 has a large diameter, and serves as a piston 41 slidable with a cylinder 39 formed in the storage container 31. In the storage container 31, the piezoelectric actuator 43 described above is stored.

このような噴射装置では、圧電アクチュエータ43が電圧を印加されて伸長すると、ピストン41が押圧され、ニードルバルブ35が噴射孔33を閉塞し、燃料の供給が停止される。また、電圧の印加が停止されると圧電アクチュエータ43が収縮し、皿バネ45がピストン41を押し返し、噴射孔33が燃料通路37と連通して燃料の噴射が行われるようになっている。   In such an injection device, when the piezoelectric actuator 43 is extended by applying a voltage, the piston 41 is pressed, the needle valve 35 closes the injection hole 33, and the supply of fuel is stopped. When the application of voltage is stopped, the piezoelectric actuator 43 contracts, the disc spring 45 pushes back the piston 41, and the injection hole 33 communicates with the fuel passage 37 so that fuel is injected.

チタン酸ジルコン酸鉛Pb(Zr,Ti)Oなどの圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダーと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み150μmのセラミックグリーンシートを作製した。 A slurry is prepared by mixing a calcined powder of piezoelectric ceramics such as lead zirconate titanate Pb (Zr, Ti) O 3 , a binder made of an organic polymer, and a plasticizer, and a thickness of 150 μm is obtained by a slip casting method. A ceramic green sheet was prepared.

このグリーンシートの片面に内部電極となる銀−パラジウムを主成分とする導電性ペーストをスクリーン印刷法により5μmの厚みに印刷し、導電性ペーストを乾燥させた後、導電性ペーストが塗布された複数のグリーンシートを100枚積層し、活性部成形体を作製した。   A conductive paste mainly composed of silver-palladium serving as an internal electrode is printed on one side of the green sheet to a thickness of 5 μm by a screen printing method, and the conductive paste is dried. 100 green sheets were laminated to produce an active part molded body.

一方、前記スラリー中にSiOを所定量添加し、スリップキャスティング法によりセラミックグリーンシートを作製し、このセラミックグリーンシートを活性部成形体の積層方向の両端部に10枚ずつ積層し、活性体成形体の両端面に不活性部成形体を形成し、素子本体成形体を作製した。 On the other hand, a predetermined amount of SiO 2 is added to the slurry, ceramic green sheets are produced by a slip casting method, 10 ceramic green sheets are laminated at both ends in the laminating direction of the active part molded body, and active body molding is performed. An inactive part molded body was formed on both end faces of the body to prepare a device body molded body.

次に、この素子本体成形体を100℃で加熱を行いながら加圧を行い一体化し、10mm×10mmの大きさに切断した後、800℃で10時間の脱バインダを行い、1130℃で2時間で本焼成を行ない、素子本体となる積層焼結体を得た。   Next, the element body molded body was pressed and integrated while being heated at 100 ° C., cut into a size of 10 mm × 10 mm, debindered at 800 ° C. for 10 hours, and then at 1130 ° C. for 2 hours. Was fired to obtain a laminated sintered body to be the element body.

その後、活性部の外部電極形成側面に、ダイシング装置により一層おきに幅50μm深さ200μmの凹溝を形成した。そして、この凹溝が形成された素子本体の外部電極形成側面と、銀を主成分とする金属板との間に、銀粉末とB−Si系のガラス粉末からなる銀ガラスペーストを介在させ、外部電極を30kPaの圧力で圧接した状態で熱処理することにより、素子本体の側面に導電部を形成するとともに、該導電部を金属板に接合し、外部電極を素子本体に接合した。この後、シリコーンゴムを凹溝内に充填し、絶縁体10を形成した。   Thereafter, concave grooves having a width of 50 μm and a depth of 200 μm were formed on the side surface of the active part where the external electrodes were formed by a dicing apparatus. And, between the external electrode forming side surface of the element body in which this concave groove is formed and the metal plate mainly composed of silver, a silver glass paste made of silver powder and B-Si glass powder is interposed, By heat-treating the external electrode in a pressure contact state at a pressure of 30 kPa, a conductive portion was formed on the side surface of the element body, the conductive portion was bonded to a metal plate, and the external electrode was bonded to the element body. Thereafter, silicone rubber was filled into the concave groove to form the insulator 10.

得られたサンプルの素子本体へのSiの拡散距離を電子線プローブ微小分析(EPMA)にて測定した。この結果を図3に示す。また、得られた積層型圧電素子の外部電極の接合強度を測定するために、外部電極の不活性部との接合部分と、活性部との接合部分との部分を切断して分離し、各々にエポキシ樹脂により金属板を接着し、この板を引張ることで強度を測定した。活性部と不活性部との引張り強度比の結果を図3に示す。   The diffusion distance of Si into the element body of the obtained sample was measured by electron probe microanalysis (EPMA). The result is shown in FIG. In addition, in order to measure the bonding strength of the external electrode of the obtained multilayer piezoelectric element, the bonded portion of the external electrode with the inactive portion and the bonded portion with the active portion are cut and separated, A metal plate was bonded to the plate with an epoxy resin, and the strength was measured by pulling the plate. The result of the tensile strength ratio between the active part and the inactive part is shown in FIG.

図3より、不活性部中のSiO量の増加に伴い、Siの拡散距離が低下することがわかる。これによりSiの不活性部への過剰な拡散が抑制され不活性部の圧電体表面の脆弱化を防止することが可能となり、外部電極と不活性部との接合強度が向上していることがわかる。 FIG. 3 shows that the Si diffusion distance decreases as the amount of SiO 2 in the inactive portion increases. As a result, excessive diffusion of Si into the inactive part is suppressed, and it becomes possible to prevent weakening of the surface of the piezoelectric body of the inactive part, and the bonding strength between the external electrode and the inactive part is improved. Recognize.

また、不活性部中のSiO量を0.1〜3重量%とすると、拡散距離が短くなり、大きな接合強度比が得られ、特に、不活性部のSiO量を0.1〜1.0重量%とすることが望ましいことが判る。 Further, when the amount of SiO 2 in the inactive part is 0.1 to 3% by weight, the diffusion distance is shortened and a large bonding strength ratio is obtained. In particular, the amount of SiO 2 in the inactive part is 0.1 to 1%. It turns out that it is desirable to set it as 0.0 weight%.

不活性部へSiOを全量中2重量%添加したグリーンシートを用いて、実施例1と同様に作製した積層型圧電素子にリード線を接続し、素子の外周面にデイッピング等の方法によりシリコーン樹脂を被覆し、1kVの分極電圧を印加し、素子全体を分極処理して本発明の積層型圧電素子を得た。 Using a green sheet in which 2% by weight of SiO 2 is added to the inert part, lead wires are connected to the laminated piezoelectric element manufactured in the same manner as in Example 1, and silicone is formed on the outer peripheral surface of the element by a method such as dipping. The laminated piezoelectric element of the present invention was obtained by coating the resin, applying a polarization voltage of 1 kV, and polarizing the entire element.

また、比較として不活性部も活性部と同様のグリーンシートを用いた以外は同様のサンプルも作製した。   For comparison, a similar sample was prepared for the inactive part except that the same green sheet as that for the active part was used.

得られた積層型圧電アクチュエータに200Vの直流電圧を印加した結果、各アクチュエータとも10μmの変位が得られた。   As a result of applying a DC voltage of 200 V to the obtained multilayer piezoelectric actuator, a displacement of 10 μm was obtained for each actuator.

得られたアクチュエータの耐久性を比較するために、室温で200Vの直流電界を5×10サイクルまで駆動耐久試験を行った。駆動試験はアクチュエータを駆動させ、変位を測定し、初期の変位からの変動を調べた。尚、変位量の測定は、試料を防振台上に固定し、試料上面にアルミニウム箔を張り付けて、レーザー変位計により、素子の中心部及び周囲部の3箇所で測定した値の平均値で評価した。この結果を表1に示す。

Figure 0004299807
In order to compare the durability of the obtained actuator, a driving durability test was performed up to 5 × 10 8 cycles of a DC electric field of 200 V at room temperature. In the driving test, the actuator was driven, the displacement was measured, and the variation from the initial displacement was examined. The displacement is measured with the average value of the values measured at the center part and the peripheral part of the element with a laser displacement meter by fixing the sample on the vibration isolation table, attaching an aluminum foil to the upper surface of the sample, and using a laser displacement meter. evaluated. The results are shown in Table 1.
Figure 0004299807

この表1から、不活性部にSiを含有せしめていない従来品は、外部電極と不活性部との接合強度が弱く、駆動試験においても活性部と不活性部との境界近傍から外部電極が剥離し内部電極に電圧が供給されず、所定のサイクル数未満で変位特性が低下した。一方、本発明品は駆動試験後も変位の低下はみられなかった。   From Table 1, the conventional product in which Si is not contained in the inactive part has a weak bonding strength between the external electrode and the inactive part, and the external electrode is also seen from the vicinity of the boundary between the active part and the inactive part in the driving test. The voltage was not supplied to the internal electrode after peeling, and the displacement characteristics deteriorated when the number of cycles was less than a predetermined number. On the other hand, the displacement of the product of the present invention was not observed after the driving test.

本発明の積層型圧電素子を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図である。The laminated piezoelectric element of this invention is shown, (a) is a perspective view, (b) is a longitudinal cross-sectional view along the A-A 'line of (a). 本発明の噴射装置を示す説明図である。It is explanatory drawing which shows the injection apparatus of this invention. 不活性部中のSiO量とSiの拡散距離、接合強度比を示すグラフである。Diffusion length of SiO 2 amount and Si in the inactive portion, which is a graph showing the bonding strength ratio.

符号の説明Explanation of symbols

1・・・圧電体
2・・・内部電極
3・・・素子本体
4・・・外部電極
8・・・活性部
9・・・不活性部
10・・・外装樹脂
16・・・リード線
31・・・収納容器
33・・・噴射孔
35・・・バルブ
43・・・圧電アクチュエータ(積層型圧電素子)
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric body 2 ... Internal electrode 3 ... Element main body 4 ... External electrode 8 ... Active part 9 ... Inactive part 10 ... Exterior resin 16 ... Lead wire 31 ... Storage container 33 ... Injection hole 35 ... Valve 43 ... Piezoelectric actuator (multilayer piezoelectric element)

Claims (4)

複数の圧電体と複数の内部電極とを交互に積層してなり、変位する活性部と、該活性部の積層方向両端に設けられた、変位しない不活性部とからなる素子本体と、該素子本体の側面に前記活性部から前記不活性部に延在して接合され、前記内部電極が交互に接続された一対の外部電極とを具備する積層型圧電素子であって、前記外部電極が、Siを含有するガラスを有するとともに、前記不活性部のSi含有量が前記活性部よりも多いことを特徴とする積層型圧電素子。 An element body comprising a plurality of piezoelectric bodies and a plurality of internal electrodes which are alternately stacked and displaceable active parts, and non-displaceable inactive parts provided at both ends of the active parts in the stacking direction, and the element A laminated piezoelectric element comprising a pair of external electrodes that are joined to the side surface of the main body by extending from the active portion to the inactive portion, and wherein the internal electrodes are alternately connected, wherein the external electrodes are: A laminated piezoelectric element having glass containing Si and having an Si content in the inactive part larger than that in the active part. 複数の圧電体と複数の内部電極とを交互に積層してなり、変位する活性部と、該活性部の積層方向両端に設けられた、変位しない不活性部とからなる素子本体と、該素子本体の側面に前記活性部から前記不活性部に延在して接合され、前記内部電極が交互に接続された一対の外部電極とを具備する積層型圧電素子であって、前記素子本体が前記不活性部に前記活性部よりも多くのSiを含有しており、前記外部電極が、Siを含有するガラスを有するとともに、前記外部電極から前記不活性部へのSi拡散距離が、前記外部電極から前記活性部へのSi拡散距離よりも短いことを特徴とする積層型圧電素子。 An element body comprising a plurality of piezoelectric bodies and a plurality of internal electrodes which are alternately stacked and displaceable active parts, and non-displaceable inactive parts provided at both ends of the active parts in the stacking direction, and the element joined from the active portion to the side surface of the main body extends in the inactive portion, wherein the inner electrode is a laminated piezoelectric element comprising a pair of external electrodes connected alternately, the element body wherein The inactive part contains more Si than the active part, and the external electrode has glass containing Si, and the Si diffusion distance from the external electrode to the inactive part is A laminated piezoelectric element characterized by being shorter than the Si diffusion distance from the active part to the active part. 前記不活性部のSi含有量が前記活性部よりもSiO換算で0.1〜3重量%多いことを特徴とする請求項1又は2記載の積層型圧電素子。 Laminated piezoelectric element according to claim 1 or 2, wherein the Si content of the inert portion is characterized in that 0.1 to 3 wt% more in terms of SiO 2 than the active part. 噴射孔を有する収納容器と、該収納容器内に収容された請求項1乃至3のうちいずれかに記載の積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなることを特徴とする噴射装置。 A storage container having an injection hole, the multilayer piezoelectric element according to any one of claims 1 to 3 accommodated in the storage container, and liquid is ejected from the injection hole by driving the multilayer piezoelectric element. An injection device comprising a valve.
JP2005142146A 2005-05-16 2005-05-16 Multilayer piezoelectric element and injection device Expired - Fee Related JP4299807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142146A JP4299807B2 (en) 2005-05-16 2005-05-16 Multilayer piezoelectric element and injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142146A JP4299807B2 (en) 2005-05-16 2005-05-16 Multilayer piezoelectric element and injection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001393083A Division JP3860746B2 (en) 2001-12-26 2001-12-26 Multilayer piezoelectric element and injection device

Publications (2)

Publication Number Publication Date
JP2005268820A JP2005268820A (en) 2005-09-29
JP4299807B2 true JP4299807B2 (en) 2009-07-22

Family

ID=35092955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142146A Expired - Fee Related JP4299807B2 (en) 2005-05-16 2005-05-16 Multilayer piezoelectric element and injection device

Country Status (1)

Country Link
JP (1) JP4299807B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274777A (en) * 2006-03-30 2007-10-18 Fujinon Corp Piezoelectric element and drive unit
CN103098251B (en) * 2010-10-28 2015-04-01 京瓷株式会社 Laminated piezoelectric element, injection device using same, and fuel injection system

Also Published As

Publication number Publication date
JP2005268820A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4925825B2 (en) Multilayer electronic component and injection device using the same
JP3860746B2 (en) Multilayer piezoelectric element and injection device
JP4808915B2 (en) Multilayer piezoelectric element and injection device
JP2003017768A (en) Stacked piezoelectric element and jet device
EP1686633B1 (en) Multilayer piezoelectric device
JP3730893B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP4803956B2 (en) Piezoelectric ceramics, laminated piezoelectric element using the same, and jetting apparatus
JP4299807B2 (en) Multilayer piezoelectric element and injection device
JP2002289932A (en) Laminated piezoelectric element, manufacturing method therefor, and jetting device
JP4373643B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP3667289B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP2001244514A (en) Laminated piezoelectric actuator and injector using the same
JP3598057B2 (en) Multilayer piezoelectric element and injection device
JP4737799B2 (en) Multilayer piezoelectric actuator and injection device
JP4498300B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP4593911B2 (en) Multilayer piezoelectric element and injection device
JP2004207633A (en) Ceramic electronic component and jetting device
JP4022062B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP2005129871A (en) Stacked piezoelectric element and injector device using the same
JP2003282984A (en) Laminate type piezoelectric element, its manufacturing method and jetting device using the element
JP4841046B2 (en) Multilayer piezoelectric element and injection device
JP4290947B2 (en) Multilayer piezoelectric element and injection device
JP3894861B2 (en) Multilayer piezoelectric element and injection device
JP4868707B2 (en) Multilayer piezoelectric element and injection device
JP3909275B2 (en) Multilayer piezoelectric element and injection device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent or registration of utility model

Ref document number: 4299807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees