JP4022062B2 - Multilayer piezoelectric element and jetting apparatus using the same - Google Patents

Multilayer piezoelectric element and jetting apparatus using the same Download PDF

Info

Publication number
JP4022062B2
JP4022062B2 JP2001388438A JP2001388438A JP4022062B2 JP 4022062 B2 JP4022062 B2 JP 4022062B2 JP 2001388438 A JP2001388438 A JP 2001388438A JP 2001388438 A JP2001388438 A JP 2001388438A JP 4022062 B2 JP4022062 B2 JP 4022062B2
Authority
JP
Japan
Prior art keywords
piezoelectric
external electrode
piezoelectric element
electrode
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001388438A
Other languages
Japanese (ja)
Other versions
JP2003188430A (en
Inventor
隆己 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001388438A priority Critical patent/JP4022062B2/en
Publication of JP2003188430A publication Critical patent/JP2003188430A/en
Application granted granted Critical
Publication of JP4022062B2 publication Critical patent/JP4022062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用燃料噴射弁、光学装置等の精密位置決め装置や振動防止用の駆動素子等に用いられる積層型圧電素子および噴射装置に関する。
【0002】
【従来の技術】
従来より、電歪効果を利用して大きな変位量を得るために、圧電体と内部電極層を交互に積層した積層型圧電素子が提案されている。積層型圧電素子には、同時焼成タイプと圧電磁器と内部電極板を交互に積層したスタックタイプの2種類に分類されており、低電圧化、製造コスト低減の面から考慮すると、同時焼成タイプの積層型圧電素子が薄層化に対して有利であるために、その優位性を示しつつある。
【0003】
図5は、従来の積層型圧電素子を示すもので、この積層型圧電素子では、圧電体51と内部電極52が交互に積層されて柱状積層体53が形成され、その積層方向における両端面には不活性層55が積層されている。内部電極52は、その一方の端部が左右交互にガラスからなる絶縁層61で被覆され、その上から帯状外部電極70が内部電極52と左右各々一層おきに導通するように形成されている。帯状外部電極70上には、さらにリード線76が半田77により固定されている。
【0004】
また同時焼成タイプの積層型圧電素子として、例えば、特公平4−51992号公報に記載されているように、「電歪効果を示す圧電体と内部電極とが交互に積層され、一体に焼成された積層焼結体からなる積層型圧電素子本体であって、各内部電極の形状が圧電体の積層方向に垂直な断面形状のうち、その外周部を含む一部分が除去された形状であり、また、各内部電極はその除去された部分が積層方向に対して、互いに隣り合う内部電極の間では重ならず、一層おきの内部電極の間では重なるように積層されており、積層型圧電素子本体の側面上の前記除去された部分に対応する位置には、各内部電極を一層おきに接続する外部電極がそれぞれ形成された積層型圧電素子」が開示されている。
【0005】
また、特開平4−237172号公報には、「積層型素子本体の側面に露出した内部電極の端部に一層おきにガラスからなる絶縁層を被覆し、外部電極には、絶縁層と同じピッチで、かつ絶縁層の断面よりやや大きい凹部を形成し、この凹部内に絶縁層を収容するようにして、かつ、凹部間の凸部に、絶縁層が形成されていない内部電極の端部を導電性接着剤で接着することにより、外部電極と一方の内部電極との電気的接続を確保し、他方の内部電極との絶縁性を確保した積層型圧電素子」が開示されている。
【0006】
また、特開2000−349357号公報には、「多層積層型圧電アクチュエータであって、積層される圧電体膜間の電極形成層に、電極膜と非端子部とを有する多層積層型圧電アクチュエータ」が開示されている。
【0007】
ところで、近年においては、小型の圧電アクチュエータで大きな圧力下において大きな変位量を確保するため、より高い電界を印加し、長期間連続駆動させることが行われている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記した圧電アクチュエータでは、高電界、高圧力下で長期間連続駆動させた場合、圧電体51間に形成された内部電極52と、正極、負極用の外部電極70との間で剥離が発生したり、ガラスからなる絶縁層61に割れが生じ、この割れを介して内部電極52と外部電極70との間でショートが発生したりすることによって、一部の圧電体51に電圧が供給されなくなり、駆動中に変位特性が変化するという問題があった。
【0009】
即ち、柱状積層体は、圧電体51と内部電極52の積層方向に伸縮するため、内部電極52の端部およびその近傍の圧電体51に設けられた高ヤング率のガラスからなる絶縁層61が、長期間連続駆動による伸縮動作に耐えきれずに破壊され、この破壊部分を介して内部電極52と外部電極70との間でショートが発生し易いという問題があった。
【0010】
また、内部電極の一部を磁器内部に埋設することで外部電極との絶縁を確保し、交互に外部電極と内部電極との接続を確保する、いわゆる部分電極構造の積層型圧電素子においては、対抗する内部電極間の圧電体は逆圧電効果により変位するが、外部電極との絶縁のために内部電極が一部磁器内部に埋設された部分には電界が充分かからず、変位しない。そのため、変位する部分と変位しない部分とが一枚の圧電体中に存在することになり、この部分に応力が集中しやすい。このため、外部電極と内部電極との電気的接続の為に用いられる導電性物質中のガラス成分が圧電体磁器表面から応力の集中する部分まで拡散すると、磁器の強度が極端に低下し、磁器の破壊が発生しやすいという問題があった。
【0011】
本発明の積層型圧電素子は、上記問題点を解決するものであり、ガラス成分の拡散による磁器強度の低下を最小限におさえ、内部電極と外部電極との電気的接続を確保し、かつ磁器の破壊を防止できることが可能で、耐久性に優れ、信頼性の高い積層型圧電体素子及び噴射装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
複数の圧電体と複数の内部電極とを交互に積層してなる活性層と、該活性層の積層方向両端に設けられた不活性層とからなる素子本体と、該素子本体の側面に設けられ、前記内部電極が交互に接続された外部電極とを具備し、前記外部電極と前記内部電極との電気的接続の為にガラス成分を含有する導電性物質を備えてなる積層型圧電素子において、前記内部電極と外部電極との間に存在する圧電体の外部電極側は前記導電性物質と接触しており、前記導電性物質はSiを含有しており、該Siが圧電体磁器表面から5〜100μmの範囲に拡散し、かつ外部電極と接続されていない内部電極端部と圧電体に拡散した前記導電性物質中のSiとの距離を300μm以上としたことを特徴とする。
【0013】
また、本発明は、前記導電性物質の上部に融点240℃以上の半田を前記外部電極として用いたことを特徴とする。
【0014】
また本発明の噴射装置は、前記積層型圧電素子を噴射孔を有する収納容器内に収納すると共に、該収納容器が積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブを具備してなることを特徴とする。
【0015】
【作用】
このような積層型圧電素子では、電界がかかることによって駆動する部分と駆動しない部分の境界に発生する応力集中部に、導電性物質中のSiが充分な距離をもって存在するため、応力集中部での磁器強度の低下がおこらず、磁器破壊によるアクチュエータの信頼性低下を防ぐことが出来る。
【0016】
また、積層型圧電素子を大きな圧力下において大きな変位量を確保するため、より高い電界を印加し、長期間連続駆動させると圧電素子の自己発熱により、温度が上昇する。自動車用の燃料噴射ノズル等に用いられる圧電アクチュエータではアクチュエータの雰囲気温度が最高160℃程度となり、圧電アクチュエータの自己発熱を加えると、圧電アクチュエータの温度は200℃以上となる。このため、外部電極として融点240度以上の半田を用いると、耐久性が大幅に向上する。
【0017】
このような噴射装置では、積層型圧電素子において外部電極と内部電極との断線および、磁器の破壊を低減でき、耐久性を大幅に向上できるため、噴射装置の耐久性をも向上できる。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
【0019】
図1(a)は本発明の積層型圧電アクチュエータからなる積層型圧電素子1aの一実施例を示す斜視図であり、(b)はそのA−A’断面図、図2はその一部の拡大断面図である。
【0020】
本発明の積層型圧電アクチュエータは、図1に示すように複数の圧電体1と複数の内部電極2とを交互に積層してなる活性層8と、該活性層の積層方向両端に設けられた不活性層9とからなる四角柱状の素子本体3からなる。
【0021】
内部電極2は、その端部が素子本体3の外部電極4形成面に一層おきに露出しており、この露出部分にそれぞれガラス成分を含有する導電性物質4aが形成され、これらの導電性物質4a上に半田からなる外部電極4が接合されており、左右それぞれの外部電極4に、内部電極2が一層おきに電気的に接続されている。一方、外部電極4と接続されていない内部電極2の端部は圧電体1で被覆されている。このように内部電極2の端部は一層おきに互い違いに圧電体1によって絶縁され、内部電極2の絶縁されていない他方の端部は導電性物質4aを介して板状の外部電極4と接続されている。さらに、外部電極4にはリード線6が接続固定されている。
【0022】
圧電体1は、例えば、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3(以下PZTと略す)或いは、チタン酸バリウムBaTiO3を主成分とする圧電セラミック材料などが使用されるが、これらに限定されるものではなく、圧電性を有するセラミックスであれば何れでも良い。なお、この圧電体材料としては、圧電歪み定数d33が高いものが望ましい。また、圧電体1の厚みt、つまり内部電極2間の距離は、小型化および高い電界を印加するという点から0.05〜0.25mmであることが望ましい。これは、積層型圧電素子は電圧を印加して、より大きな変位量を得るために、積層数を増加させる方法がとられるが、積層数を増加させた場合に活性層8中の圧電体1の厚みが厚すぎるとアクチュエータの小型化、低背化ができなくなり、一方、活性層8中の圧電体1の厚みが薄すぎると絶縁破壊しやすいからである。
【0023】
そして、本発明では、内部電極2と外部電極4とを電気的に接続するために用いている導電性物質4a中のSiが、圧電体1の表面に拡散しており、図2に示すようにその拡散距離aを5〜100μm以下としている。即ち、導電性物質4a中のSiを、圧電体1の表面から5〜100μmの範囲に拡散させることにより、内部電極2と外部電極4との電気的接続を確保することが可能となり、またガラス成分の拡散による圧電体1の磁器強度の極端な低下、および圧電体1の駆動時応力による破壊を防止し、信頼性の高い素子本体3を提供することができる。Siの拡散距離aが5μm未満だと、導電性物質4aと圧電体1との接合強度が弱くなり、内部電極2と導電性物質4aが剥離しやすくなり、耐久性が悪くなる。100μmを越えると、圧電体1の磁器強度が弱くなり、磁器が破壊しやすくなり、耐久性が劣化する。
【0024】
さらに本発明では、外部電極4と接続されていない内部電極2の端部と圧電体1に拡散した前記導電性物質4a中のSiとの距離bが300μm以上としてある。これによって、導電性物質4a中のSiが、電界がかかることによって駆動する部分と駆動しない部分の境界に発生する応力集中部まで拡散していないため、応力集中部における圧電体1の磁器強度の低下がおこらず、磁器破壊による信頼性の低下を防ぐことができる。
【0025】
なお、導電物質4aの材質については、Au、Ag、Pt族金属等の耐酸化性金属と、これらの結合材として硼珪酸ガラス、アルミノ硼珪酸ガラス等を含むものを使用することができる。
【0026】
さらに本発明では、外部電極4に融点が240℃以上の半田を用いている。自動車用燃料噴射ノズルなどの用途のように素子本体3に大きな圧力下において大きな変位量を確保するため、より高い電界を印加し、長期間連続駆動させると素子本体3の自己発熱により、温度が上昇する。自動車用の燃料噴射ノズル等に用いられる圧電アクチュエータではアクチュエータの雰囲気温度が最高160℃程度となり、圧電アクチュエータの自己発熱を加えると、圧電アクチュエータの温度は200℃以上となる。このため、外部電極4として融点240度以上の半田を用いると、耐久性が大幅に向上する。
【0027】
以上のように構成された素子本体3は、以下のプロセスにより製造される。
【0028】
先ず、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3などの圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み50〜250μmのセラミックグリーンシートを作製する。
【0029】
このグリーンシートの片面に内部電極2となる銀−パラジウムを主成分とする導電性ペーストをスクリーン印刷法により1〜10μmの厚みに印刷する。この時、内部電極2を交互に取り出すために、一部分だけ内部電極2を印刷しない面を設け、この部分に絶縁層として圧電体セラミックスのペーストを印刷する。この後、この導電性ペーストおよび圧電体セラミックスペーストを乾燥させた後、導電性ペーストおよび絶縁層としての圧電体セラミックスペーストが塗布された複数のグリーンシートを所定の枚数だけ積層し、活性層8を積層する。
【0030】
これとは別に、内部電極2となる導電性ペーストを塗布しないグリーンシートを、活性層8の積層方向の両端部に、所定の枚数だけ積層し、不活性層9を積層する。
【0031】
次に、この積層体を50〜200℃で加熱を行いながら加圧を行い、積層体を一体化する。一体化された積層体は内部電極2が一層おきに交互に側面に露出するように、所定の大きさに切断された後、400〜800℃で5〜40時間、脱バインダが行われ、900〜1200℃で2〜5時間で本焼成が行われ、素子本体3となる積層焼結体を得る。この素子本体3本体の側面には、内部電極2の端部が一層おきに交互に露出している。
【0032】
その後、図3に示すように素子本体3となる焼結体の側面を側面A、Bを平面研削盤にて加工し、次に内部電極2の先端から側面Cおよび側面Dまでの距離hが400μm以上になるように、側面Cおよび側面Dを加工する。
【0033】
次に素子本体3の外部電極4形成側面に、銀粉末とガラス粉末からなる銀ガラスペーストをスクリーン印刷にて塗布し、そのガラス粉末の融点近傍の温度で熱処理することにより外部電極4aを形成する。融点近傍で熱処理することにより、前記銀ガラスペースト中のガラスが溶融し、溶融したガラス中に存在する銀成分が、内部電極2の端部に集合し、電気的接続を形成するとともに、ガラス成分が磁器本体中に拡散し、銀粉末を強固に磁器に固定する。
【0034】
ここで、導電性物質4a中のSiが磁器中へ拡散する距離が5μm以上、100μm以下でありかつ外部電極と接続されていない内部電極端部と圧電体に拡散した前記導電性物質中のSiとの距離を300μm以上であることが重要である。ガラスの融点と熱処理温度、熱処理時間をコントロールすることにより、これらの拡散距離をコントロールする。
【0035】
この後、融点240℃以上の半田ペーストを外部電極4a上にスクリーン印刷にて塗布し、その融点以上の温度にて真空中で熱処理することにより、外部電極4を形成する。
【0036】
この後、外部電極4にリード線6を接続し、素子本体3の外周面に真空脱泡によるディッピング等の方法により、外装樹脂を被覆した後、0.1〜3kVの分極電圧を印加し、素子本体3全体を分極処理することで、最終的な素子本体3を得る。
【0037】
なお、本発明の素子本体3は、四角柱、六角柱、円柱等、どのような柱体であっても構わないが、切断の容易性から四角柱状が望ましい。
【0038】
以上のように構成された素子本体3は、ガラス成分中のSiの圧電体1への拡散が5μm以上、100μm以下であり、素子本体3を長時間駆動させた場合でも、外部電極4aが内部電極2および圧電体1の表面から剥離せず、また、部分電極先端部に発生する駆動、非駆動に起因する応力集中が発生しても、ガラス拡散による圧電体1の磁器強度の極端な低下が起こらず、圧電体1の破壊を引き起こさない。このため高信頼性を備えた素子本体3を提供することができる。
【0039】
図4は、本発明の噴射装置を示すもので、図4において31は収納容器を示している。この収納容器31の一端には噴射孔33が設けられ、また収納容器31内には、噴射孔33を開閉することができるニードルバルブ35が収容されている。
【0040】
噴射孔33には燃料通路37が連通可能に設けられ、この燃料通路37は外部の燃料供給源に連結され、燃料通路37に常時一定の高圧で燃料が供給されている。従って、ニードルバルブ35が噴射孔33を開放すると、燃料通路37に供給されていた燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されている。
【0041】
また、ニードルバルブ35の上端部は直径が大きくなっており、収納容器31に形成されたシリンダ39と摺動可能なピストン41となっている。そして、収納容器31内には、上記した素子本体3が収納されている。
【0042】
このような噴射装置では、素子本体3が電圧を印加されて伸長すると、ピストン41が押圧され、ニードルバルブ35が噴射孔33を閉塞し、燃料の供給が停止される。また、電圧の印加が停止されると素子本体3が収縮し、皿バネ45がピストン41を押し返し、噴射孔33が燃料通路37と連通して燃料の噴射が行われるようになっている。
【0043】
【実施例】
実施例1
チタン酸ジルコン酸鉛Pb(Zr,Ti)O3などの圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み150μmのセラミックグリーンシートを作製した。
【0044】
このグリーンシートの片面に内部電極2となる銀−パラジウムを主成分とする導電性ペーストを所定のパターンになるようにスクリーン印刷法を用いて5μmの厚みに印刷する。導電性ペーストを乾燥させた後、導電性ペーストが塗布された複数のグリーンシートを100枚積層する。この積層体の積層方向の両端部に、導電性ペーストが塗布されていないグリーンシートを10枚積層した。
【0045】
次に、この積層体を100℃で加熱を行いながら加圧を行い、積層体を一体化し、10mm×10mmの大きさに切断した後、800℃で10時間の脱バインダを行い、1130℃で2時間の本焼成を行って素子本体3本体となる積層焼結体を得た。
【0046】
その後、積層焼結体の側面を図2に示すように側面A、Bを平面研削盤にて加工し、次に内部電極先端から側面Cおよび側面Dまでの距離を表1に示す距離になるように、側面Cおよび側面Dを加工する。その後、端面を加工し7mm×7mm×10mmの素子本体となる素子本体3を作製した。その後、表1に示すような作業点を持つ硼珪酸系のガラス▲1▼、▲2▼にAg粒子を分散させたペーストをスクリーン印刷法にて厚み50〜100μmに印刷して導電性物質4aを形成した。次に、表1に示す種々の温度、保持時間にて熱処理を行い、Ag粒子を圧電体1の表面および内部電極2に焼き付けた。その後、295℃の融点を持つ半田ペーストをスクリーン印刷法にて塗布し、真空中で熱処理を行い、外部電極4を形成した。この後、外部電極4にリード線6を接続し、積層型圧電素子の外周面にディッピング等の方法によりシリコーン樹脂を被覆し、1kVの分極電圧を印加し、積層型圧電素子全体を分極処理して本発明の積層型圧電素子を得た。
【0047】
得られた積層型圧電素子に200Vの直流電圧を印加した結果、各積層型圧電素子ともに約15μm程度の変位が得られた。
【0048】
得られた素子本体3の耐久性を比較するために、雰囲気温度160℃の恒温槽中で駆動電圧200V、周波数200Hzの直流電界を5×108サイクルまで駆動耐久試験を行った。駆動試験は素子本体3を駆動させ、変位を測定し、初期の変位からの変動を調べた。尚、変位量の測定は、試料を防振台上に固定し、試料端面にアルミニウム箔を張り付けて、レーザー変位計により、素子本体3の中心部及び周囲部の3箇所で測定した値の平均値で評価した。また、駆動試験終了後すべての素子本体3を外部電極4に対し垂直な面で切断し、その切断面に対し図2に示すように圧電体1の磁器表面からのSiの拡散距離aおよび内部電極2の先端からSi拡散部までの距離bを波長分散型EPMAにて面分析、マッピングを行い、その最大距離を求めた。分析条件は加速電圧15kV、プローブ電流1.00E−07Aデュエル時間30msecで分析し、カウント数が5カウント以上あるところをSiが拡散していると判断した。この結果を表1に示す。
【0049】
【表1】

Figure 0004022062
【0050】
表1から明らかなように、圧電体1の磁器表面からのSiの拡散距離aが本発明の範囲外である試料No.1、2、5、6、10、11、12、13、17、19は耐久サイクル数が5億サイクル以下で破損し、十分な耐久性を示さなかった。破壊源は試料No.10、11、17、19の試料は内部電極2先端部の応力集中部分近傍の圧電体1内部から破壊していた。一方、本発明の範囲内である3,4、7〜9、14〜16、18の各試料は駆動耐久試験5億サイクルに耐えることが出来、駆動耐久試験後も変位の低下は見られなかった。
【0051】
実施例2
実施例1と同様な手法を用い、表2に示す試料を作製した。圧電体1の磁器表面と内部電極2先端との距離は400μmになるように加工した。実施例2では種々の融点をもつ半田イ〜ニを用い、実施例1と同様な駆動耐久試験を実施した。この結果を表2に示す。
【0052】
【表2】
Figure 0004022062
【0053】
表2から明らかなように、融点240℃以上のハンダを用いた試料は5億サイクル以上の耐久性を示した。また駆動耐久試験後も変位の劣化はみられなかった。
【0054】
【発明の効果】
以上詳述した通り、本発明の積層型圧電素子では、外部電極と内部電極との電気的接続の為に導電性物質を分散させたガラス成分を用いて電気的接続を保持している積層型圧電素子において、前記内部電極と外部電極との間に存在する圧電体の外部電極側は前記導電性物質と接触しており、前記導電性物質はSiを含有しており、該Siが圧電体磁器表面から5〜100μmの範囲に拡散し、かつ外部電極と接続されていない内部電極端部と圧電体に拡散した前記導電性物質中のSiとの距離を300μm以上としたこによって、ガラス成分の拡散による磁器強度の低下、および磁器の破壊を防止でき、かつ内部電極と外部電極との電気的接続を確保することが可能になり、信頼性の高い積層型圧電素子を提供することができる。
【図面の簡単な説明】
【図1】(a)は本発明の積層型圧電素子の一実施例を示す斜視図であり、(b)はそのA−A’断面図である。
【図2】図1に示した積層型圧電素子の一部の拡大断面図である。
【図3】(a)は本発明の積層型圧電素子の加工方法の一例を示すための斜視図であり、(b)はその横断面図である。
【図4】本発明の積層型圧電素子を用いた噴射装置の概略図である。
【図5】従来の積層型圧電素子を示す概略図である。
【符号の説明】
1:圧電体
2:内部電極
3:素子本体
4:外部電極
6:リード線
8:活性層
9:不活性層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated piezoelectric element and an injection device used for a precision positioning device such as a fuel injection valve for an automobile and an optical device, a drive element for vibration prevention, and the like.
[0002]
[Prior art]
Conventionally, in order to obtain a large amount of displacement using the electrostrictive effect, multilayer piezoelectric elements in which piezoelectric bodies and internal electrode layers are alternately stacked have been proposed. Multilayer piezoelectric elements are classified into two types: simultaneous firing type and stack type in which piezoelectric ceramics and internal electrode plates are alternately laminated. Since the multilayer piezoelectric element is advantageous for thinning, its superiority is being shown.
[0003]
FIG. 5 shows a conventional laminated piezoelectric element. In this laminated piezoelectric element, piezoelectric bodies 51 and internal electrodes 52 are alternately laminated to form columnar laminated bodies 53 on both end surfaces in the laminating direction. The inactive layer 55 is laminated. The internal electrode 52 has one end covered with an insulating layer 61 made of glass alternately on the left and right sides, and a strip-like external electrode 70 is formed so as to be electrically connected to the internal electrode 52 every other left and right layers. On the strip-shaped external electrode 70, a lead wire 76 is further fixed with solder 77.
[0004]
Further, as a simultaneous firing type multilayer piezoelectric element, for example, as described in Japanese Patent Publication No. 4-51992, “piezoelectric bodies and internal electrodes exhibiting an electrostrictive effect are alternately laminated and fired integrally. A laminated piezoelectric element body comprising a laminated sintered body, wherein the shape of each internal electrode is a shape in which a part including the outer peripheral portion is removed from a cross-sectional shape perpendicular to the lamination direction of the piezoelectric body, and Each of the internal electrodes is laminated such that the removed portion does not overlap between adjacent internal electrodes in the stacking direction, but overlaps between every other internal electrode. In other words, there is disclosed a laminated piezoelectric element in which external electrodes for connecting the internal electrodes every other layer are formed at positions corresponding to the removed portions on the side surfaces of the substrate.
[0005]
Japanese Patent Laid-Open No. 4-237172 discloses that “an insulating layer made of glass is coated on every other end of the internal electrode exposed on the side surface of the multilayer element body, and the external electrode has the same pitch as the insulating layer. In addition, a recess that is slightly larger than the cross section of the insulating layer is formed, the insulating layer is accommodated in the recess, and the end of the internal electrode on which the insulating layer is not formed is formed on the protrusion between the recesses. There is disclosed a “stacked piezoelectric element” in which electrical connection between an external electrode and one internal electrode is ensured by bonding with a conductive adhesive, and insulation between the other internal electrode is ensured.
[0006]
Japanese Patent Application Laid-Open No. 2000-349357 discloses a “multilayer laminated piezoelectric actuator having an electrode film and a non-terminal portion in an electrode forming layer between laminated piezoelectric films”. Is disclosed.
[0007]
By the way, in recent years, in order to ensure a large amount of displacement under a large pressure with a small piezoelectric actuator, a higher electric field is applied to continuously drive for a long time.
[0008]
[Problems to be solved by the invention]
However, in the above-described piezoelectric actuator, when continuously driven for a long time under a high electric field and high pressure, peeling occurs between the internal electrode 52 formed between the piezoelectric bodies 51 and the external electrode 70 for the positive electrode and the negative electrode. Or a crack occurs in the insulating layer 61 made of glass, and a short circuit occurs between the internal electrode 52 and the external electrode 70 through the crack, whereby a voltage is supplied to some of the piezoelectric bodies 51. There is a problem that the displacement characteristics change during driving.
[0009]
That is, since the columnar laminate expands and contracts in the stacking direction of the piezoelectric body 51 and the internal electrode 52, the insulating layer 61 made of high Young's modulus glass provided on the end portion of the internal electrode 52 and the piezoelectric body 51 in the vicinity thereof is provided. There is a problem that the expansion / contraction operation due to continuous driving for a long period of time is broken, and the internal electrode 52 and the external electrode 70 are easily short-circuited through the broken portion.
[0010]
In addition, in a laminated piezoelectric element having a so-called partial electrode structure that secures insulation from the external electrode by embedding a part of the internal electrode inside the porcelain, and alternately secures the connection between the external electrode and the internal electrode. The piezoelectric body between the opposing internal electrodes is displaced by the reverse piezoelectric effect, but the electric field is not sufficiently applied to the portion where the internal electrodes are partially embedded in the porcelain for insulation from the external electrodes, so that they are not displaced. For this reason, a portion that is displaced and a portion that is not displaced are present in one piezoelectric body, and stress is likely to concentrate on this portion. For this reason, if the glass component in the conductive material used for electrical connection between the external electrode and the internal electrode diffuses from the surface of the piezoelectric ceramic to the portion where stress is concentrated, the strength of the ceramic is extremely reduced, There was a problem that the destruction of the glass was easy to occur.
[0011]
The multilayer piezoelectric element of the present invention solves the above problems, minimizes the decrease in the strength of the porcelain due to the diffusion of the glass component, ensures the electrical connection between the internal electrode and the external electrode, and is a porcelain. An object of the present invention is to provide a multilayer piezoelectric element and an injection device that can prevent the destruction of the piezoelectric element, have excellent durability, and high reliability.
[0012]
[Means for Solving the Problems]
An element body comprising an active layer formed by alternately laminating a plurality of piezoelectric bodies and a plurality of internal electrodes, an inactive layer provided at both ends in the stacking direction of the active layer, and provided on a side surface of the element body In the laminated piezoelectric element comprising an external electrode in which the internal electrodes are alternately connected, and a conductive material containing a glass component for electrical connection between the external electrode and the internal electrode. The external electrode side of the piezoelectric body existing between the internal electrode and the external electrode is in contact with the conductive material , the conductive material contains Si, and the Si is 5 from the surface of the piezoelectric ceramic. The distance between the end of the internal electrode diffused in the range of ˜100 μm and not connected to the external electrode and the Si in the conductive material diffused in the piezoelectric body is 300 μm or more.
[0013]
The present invention is characterized in that solder having a melting point of 240 ° C. or higher is used as the external electrode on the conductive material.
[0014]
According to another aspect of the present invention, there is provided an injection device including a valve that stores the stacked piezoelectric element in a storage container having an injection hole, and the storage container ejects liquid from the injection hole by driving the stacked piezoelectric element. It is characterized by becoming.
[0015]
[Action]
In such a multilayer piezoelectric element, since Si in the conductive material is present at a sufficient distance at the stress concentration portion generated at the boundary between the driven portion and the non-driven portion when an electric field is applied, the stress concentration portion The magnetic strength of the actuator does not decrease, and the reliability of the actuator can be prevented from decreasing due to the destruction of the ceramic.
[0016]
Further, in order to secure a large amount of displacement of the stacked piezoelectric element under a large pressure, when a higher electric field is applied and continuously driven for a long period of time, the temperature rises due to self-heating of the piezoelectric element. In a piezoelectric actuator used for an automobile fuel injection nozzle or the like, the ambient temperature of the actuator reaches a maximum of about 160 ° C. When the self-heating of the piezoelectric actuator is applied, the temperature of the piezoelectric actuator becomes 200 ° C. or higher. For this reason, when solder having a melting point of 240 ° C. or more is used as the external electrode, the durability is greatly improved.
[0017]
In such an injection device, the disconnection between the external electrode and the internal electrode and the destruction of the porcelain can be reduced in the multilayer piezoelectric element, and the durability can be greatly improved, so that the durability of the injection device can also be improved.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0019]
FIG. 1A is a perspective view showing an embodiment of a laminated piezoelectric element 1a composed of a laminated piezoelectric actuator of the present invention, FIG. 1B is a sectional view taken along line AA ′, and FIG. It is an expanded sectional view.
[0020]
As shown in FIG. 1, the multilayer piezoelectric actuator of the present invention is provided with an active layer 8 in which a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2 are alternately stacked, and at both ends of the active layer in the stacking direction. It consists of a square columnar element body 3 made of an inactive layer 9.
[0021]
End portions of the internal electrodes 2 are exposed on the surface of the element body 3 where the external electrodes 4 are formed, and conductive materials 4a containing glass components are formed on the exposed portions, respectively. External electrodes 4 made of solder are joined on 4a, and the internal electrodes 2 are electrically connected to the left and right external electrodes 4 every other layer. On the other hand, the end of the internal electrode 2 that is not connected to the external electrode 4 is covered with the piezoelectric body 1. In this way, the end portions of the internal electrode 2 are alternately insulated by the piezoelectric bodies 1 every other layer, and the other non-insulated end portion of the internal electrode 2 is connected to the plate-like external electrode 4 through the conductive material 4a. Has been. Further, a lead wire 6 is connected and fixed to the external electrode 4.
[0022]
As the piezoelectric body 1, for example, lead zirconate titanate Pb (Zr, Ti) O 3 (hereinafter abbreviated as PZT) or a piezoelectric ceramic material mainly composed of barium titanate BaTiO 3 is used. It is not limited, and any ceramics having piezoelectricity may be used. As the piezoelectric material, as the piezoelectric strain constant d 33 it is high is preferable. The thickness t of the piezoelectric body 1, that is, the distance between the internal electrodes 2, is preferably 0.05 to 0.25 mm from the viewpoint of downsizing and applying a high electric field. In order to obtain a larger displacement amount by applying a voltage to the stacked piezoelectric element, a method of increasing the number of stacked layers is used. However, when the number of stacked layers is increased, the piezoelectric body 1 in the active layer 8 is used. This is because if the thickness of the piezoelectric element 1 in the active layer 8 is too thin, dielectric breakdown is likely to occur.
[0023]
In the present invention, Si in the conductive material 4a used to electrically connect the internal electrode 2 and the external electrode 4 is diffused on the surface of the piezoelectric body 1, as shown in FIG. The diffusion distance a is 5 to 100 μm or less. That is, it is possible to ensure electrical connection between the internal electrode 2 and the external electrode 4 by diffusing Si in the conductive material 4a in the range of 5 to 100 μm from the surface of the piezoelectric body 1, and glass. It is possible to provide an element body 3 with high reliability by preventing an extreme decrease in the porcelain strength of the piezoelectric body 1 due to the diffusion of components and the destruction of the piezoelectric body 1 due to stress during driving. When the Si diffusion distance a is less than 5 μm, the bonding strength between the conductive material 4a and the piezoelectric body 1 becomes weak, the internal electrode 2 and the conductive material 4a are easily peeled off, and the durability is deteriorated. If it exceeds 100 μm, the ceramic strength of the piezoelectric body 1 becomes weak, the ceramic is easily broken, and the durability is deteriorated.
[0024]
Further, in the present invention, the distance b between the end portion of the internal electrode 2 not connected to the external electrode 4 and Si in the conductive material 4a diffused in the piezoelectric body 1 is set to 300 μm or more. Thereby, since Si in the conductive material 4a is not diffused to the stress concentration portion generated at the boundary between the portion to be driven and the portion not to be driven by the application of an electric field, the ceramic strength of the piezoelectric body 1 in the stress concentration portion is reduced. A drop does not occur, and a drop in reliability due to porcelain destruction can be prevented.
[0025]
As the material of the conductive material 4a, a material containing an oxidation resistant metal such as Au, Ag, or a Pt group metal and a borosilicate glass, aluminoborosilicate glass, or the like as a binding material thereof can be used.
[0026]
Further, in the present invention, solder having a melting point of 240 ° C. or higher is used for the external electrode 4. In order to ensure a large amount of displacement of the element body 3 under a large pressure, such as in a fuel injection nozzle for automobiles, when a higher electric field is applied and the element body 3 is continuously driven for a long time, the temperature of the element body 3 is increased due to self-heating. To rise. In a piezoelectric actuator used for an automobile fuel injection nozzle or the like, the ambient temperature of the actuator reaches a maximum of about 160 ° C. When the self-heating of the piezoelectric actuator is applied, the temperature of the piezoelectric actuator becomes 200 ° C. or higher. For this reason, when solder having a melting point of 240 ° C. or more is used as the external electrode 4, the durability is greatly improved.
[0027]
The element body 3 configured as described above is manufactured by the following process.
[0028]
First, a slurry is prepared by mixing a calcined powder of a piezoelectric ceramic such as lead zirconate titanate Pb (Zr, Ti) O 3 , a binder made of an organic polymer, and a plasticizer, and by slip casting method, A ceramic green sheet having a thickness of 50 to 250 μm is prepared.
[0029]
A conductive paste mainly composed of silver-palladium serving as the internal electrode 2 is printed on one side of the green sheet to a thickness of 1 to 10 μm by screen printing. At this time, in order to alternately take out the internal electrodes 2, only a part of the surface on which the internal electrodes 2 are not printed is provided, and a piezoelectric ceramic paste is printed on this part as an insulating layer. Thereafter, the conductive paste and the piezoelectric ceramic paste are dried, and a predetermined number of green sheets coated with the conductive paste and the piezoelectric ceramic paste as the insulating layer are laminated, and the active layer 8 is formed. Laminate.
[0030]
Separately, a predetermined number of green sheets to which the conductive paste to be the internal electrode 2 is not applied are laminated at both ends in the laminating direction of the active layer 8, and the inactive layer 9 is laminated.
[0031]
Next, pressure is applied while heating the laminated body at 50 to 200 ° C. to integrate the laminated body. The integrated laminate is cut into a predetermined size so that the internal electrodes 2 are alternately exposed on the side surfaces every other layer, and then the binder is removed at 400 to 800 ° C. for 5 to 40 hours. The main firing is performed at ˜1200 ° C. for 2 to 5 hours to obtain a laminated sintered body that becomes the element body 3. The end portions of the internal electrodes 2 are alternately exposed on the side surfaces of the element body 3.
[0032]
Thereafter, as shown in FIG. 3, side surfaces A and B of the sintered body to be the element body 3 are processed with a surface grinder, and then the distance h from the tip of the internal electrode 2 to the side surface C and the side surface D is Side C and side D are processed so that it may be 400 micrometers or more.
[0033]
Next, a silver glass paste made of silver powder and glass powder is applied to the side surface of the element body 3 where the external electrode 4 is formed by screen printing, and heat treatment is performed at a temperature near the melting point of the glass powder to form the external electrode 4a. . By heat treatment in the vicinity of the melting point, the glass in the silver glass paste is melted, and the silver component present in the molten glass is gathered at the end of the internal electrode 2 to form an electrical connection, and the glass component Diffuses into the porcelain body and firmly fixes the silver powder to the porcelain.
[0034]
Here, the distance in which the Si in the conductive material 4a diffuses into the porcelain is 5 μm or more and 100 μm or less, and the Si in the conductive material diffused into the end portion of the internal electrode not connected to the external electrode and the piezoelectric body. It is important that the distance to be 300 μm or more. These diffusion distances are controlled by controlling the melting point, heat treatment temperature and heat treatment time of the glass.
[0035]
Thereafter, a solder paste having a melting point of 240 ° C. or higher is applied onto the external electrode 4a by screen printing, and heat treatment is performed in a vacuum at a temperature equal to or higher than the melting point, whereby the external electrode 4 is formed.
[0036]
Thereafter, the lead wire 6 is connected to the external electrode 4, and the outer peripheral surface of the element body 3 is coated with an exterior resin by a method such as dipping by vacuum defoaming, and then a polarization voltage of 0.1 to 3 kV is applied, The final element body 3 is obtained by subjecting the entire element body 3 to polarization treatment.
[0037]
The element body 3 of the present invention may be any column body such as a quadrangular column, a hexagonal column, or a cylinder, but a quadrangular column shape is desirable for ease of cutting.
[0038]
In the element body 3 configured as described above, the diffusion of Si in the glass component into the piezoelectric body 1 is 5 μm or more and 100 μm or less, and even when the element body 3 is driven for a long time, the external electrode 4a remains inside. Even if stress concentration due to driving or non-driving generated at the tip of the partial electrode does not peel off from the surfaces of the electrode 2 and the piezoelectric body 1, the ceramic strength of the piezoelectric body 1 is extremely reduced due to glass diffusion. Does not occur, and the piezoelectric body 1 is not destroyed. For this reason, the element main body 3 provided with high reliability can be provided.
[0039]
FIG. 4 shows an injection apparatus according to the present invention. In FIG. 4, reference numeral 31 denotes a storage container. An injection hole 33 is provided at one end of the storage container 31, and a needle valve 35 that can open and close the injection hole 33 is stored in the storage container 31.
[0040]
A fuel passage 37 is provided in the injection hole 33 so as to be able to communicate. The fuel passage 37 is connected to an external fuel supply source, and fuel is always supplied to the fuel passage 37 at a constant high pressure. Therefore, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is formed to be injected into a fuel chamber (not shown) of the internal combustion engine at a constant high pressure.
[0041]
Further, the upper end portion of the needle valve 35 has a large diameter, and serves as a piston 41 slidable with a cylinder 39 formed in the storage container 31. In the storage container 31, the element body 3 described above is stored.
[0042]
In such an injection device, when the element body 3 is extended by applying a voltage, the piston 41 is pressed, the needle valve 35 closes the injection hole 33, and the supply of fuel is stopped. When the application of voltage is stopped, the element body 3 contracts, the disc spring 45 pushes back the piston 41, and the injection hole 33 communicates with the fuel passage 37 so that fuel is injected.
[0043]
【Example】
Example 1
A slurry in which a calcined powder of piezoelectric ceramics such as lead zirconate titanate Pb (Zr, Ti) O 3 , a binder made of an organic polymer, and a plasticizer is mixed is prepared, and a thickness of 150 μm is obtained by a slip casting method. A ceramic green sheet was prepared.
[0044]
A conductive paste mainly composed of silver-palladium serving as the internal electrode 2 is printed on one side of the green sheet to a thickness of 5 μm using a screen printing method so as to form a predetermined pattern. After the conductive paste is dried, 100 green sheets coated with the conductive paste are stacked. Ten green sheets to which no conductive paste was applied were laminated at both ends in the lamination direction of this laminate.
[0045]
Next, the laminated body is pressurized while being heated at 100 ° C., and the laminated body is integrated and cut into a size of 10 mm × 10 mm, followed by removing the binder at 800 ° C. for 10 hours, and at 1130 ° C. The main calcination for 2 hours was performed to obtain a laminated sintered body to be the element main body 3 main body.
[0046]
Thereafter, side surfaces A and B of the laminated sintered body are processed with a surface grinder as shown in FIG. 2, and the distances from the tip of the internal electrode to the side surfaces C and D are the distances shown in Table 1. Thus, the side surface C and the side surface D are processed. Then, the end surface was processed and the element main body 3 used as an element main body of 7 mm x 7 mm x 10 mm was produced. Thereafter, a paste in which Ag particles are dispersed in borosilicate glass (1) and (2) having working points as shown in Table 1 is printed to a thickness of 50 to 100 μm by a screen printing method to form a conductive material 4a. Formed. Next, heat treatment was performed at various temperatures and holding times shown in Table 1, and Ag particles were baked on the surface of the piezoelectric body 1 and the internal electrode 2. Thereafter, a solder paste having a melting point of 295 ° C. was applied by screen printing, and heat treatment was performed in a vacuum to form the external electrode 4. Thereafter, the lead wire 6 is connected to the external electrode 4, the outer peripheral surface of the multilayer piezoelectric element is coated with a silicone resin by a method such as dipping, and a polarization voltage of 1 kV is applied to polarize the entire multilayer piezoelectric element. Thus, a laminated piezoelectric element of the present invention was obtained.
[0047]
As a result of applying a DC voltage of 200 V to the obtained multilayer piezoelectric element, a displacement of about 15 μm was obtained for each multilayer piezoelectric element.
[0048]
In order to compare the durability of the obtained element body 3, a driving durability test was conducted in a constant temperature bath at an atmospheric temperature of 160 ° C. with a driving voltage of 200 V and a frequency of 200 Hz up to 5 × 10 8 cycles. In the driving test, the element body 3 was driven, the displacement was measured, and the variation from the initial displacement was examined. The displacement amount is measured by fixing the sample on the vibration isolation table, attaching an aluminum foil to the end surface of the sample, and measuring the average value of the values measured at the central part and the peripheral part of the element body 3 with a laser displacement meter. Evaluated by value. Further, after the driving test is completed, all element bodies 3 are cut along a plane perpendicular to the external electrode 4, and the Si diffusion distance a from the ceramic surface of the piezoelectric body 1 and the internal portion are cut as shown in FIG. The distance b from the tip of the electrode 2 to the Si diffusion portion was subjected to surface analysis and mapping using wavelength dispersion type EPMA, and the maximum distance was obtained. The analysis conditions were an acceleration voltage of 15 kV and a probe current of 1.00E-07A duel time of 30 msec, and it was determined that Si was diffused where the count number was 5 counts or more. The results are shown in Table 1.
[0049]
[Table 1]
Figure 0004022062
[0050]
As can be seen from Table 1, the sample No. 1 in which the Si diffusion distance a from the ceramic surface of the piezoelectric body 1 is outside the scope of the present invention. 1, 2, 5, 6, 10, 11, 12, 13, 17, and 19 were damaged when the number of durability cycles was 500 million cycles or less, and did not show sufficient durability. The destruction source is Sample No. The samples 10, 11, 17, and 19 were broken from the inside of the piezoelectric body 1 near the stress concentration portion at the tip of the internal electrode 2. On the other hand, each of the samples 3, 4, 7-9, 14-16, and 18 within the scope of the present invention can withstand 500 million cycles of driving durability test, and no decrease in displacement is observed after the driving durability test. It was.
[0051]
Example 2
Samples shown in Table 2 were prepared using the same method as in Example 1. The distance between the ceramic surface of the piezoelectric body 1 and the tip of the internal electrode 2 was processed to be 400 μm. In Example 2, the same driving durability test as that in Example 1 was performed using solders i to ni having various melting points. The results are shown in Table 2.
[0052]
[Table 2]
Figure 0004022062
[0053]
As is apparent from Table 2, the sample using solder having a melting point of 240 ° C. or higher showed durability of 500 million cycles or more. Also, no deterioration of displacement was observed after the driving durability test.
[0054]
【The invention's effect】
As described above in detail, in the multilayer piezoelectric element of the present invention, a multilayer type in which electrical connection is maintained using a glass component in which a conductive material is dispersed for electrical connection between the external electrode and the internal electrode. In the piezoelectric element, the external electrode side of the piezoelectric body existing between the internal electrode and the external electrode is in contact with the conductive material, and the conductive material contains Si, and the Si is a piezoelectric body. By setting the distance between the end of the internal electrode that is diffused in the range of 5 to 100 μm from the surface of the porcelain and that is not connected to the external electrode and Si in the conductive material diffused to the piezoelectric body to 300 μm or more, the glass component Decrease in porcelain strength due to diffusion of porcelain and destruction of porcelain can be prevented, and electrical connection between the internal electrode and the external electrode can be ensured, and a highly reliable stacked piezoelectric element can be provided. .
[Brief description of the drawings]
FIG. 1A is a perspective view showing an embodiment of a multilayer piezoelectric element of the present invention, and FIG. 1B is a cross-sectional view taken along line AA ′.
FIG. 2 is an enlarged cross-sectional view of a part of the multilayer piezoelectric element shown in FIG.
FIG. 3A is a perspective view for illustrating an example of a method for processing a laminated piezoelectric element of the present invention, and FIG. 3B is a cross-sectional view thereof.
FIG. 4 is a schematic view of an ejection device using the multilayer piezoelectric element of the present invention.
FIG. 5 is a schematic view showing a conventional multilayer piezoelectric element.
[Explanation of symbols]
1: Piezoelectric body 2: Internal electrode 3: Element body 4: External electrode 6: Lead wire 8: Active layer 9: Inactive layer

Claims (3)

複数の圧電体と複数の内部電極とを交互に積層してなる活性層と、該活性層の積層方向両端に設けられた不活性層とからなる素子本体と、該素子本体の側面に設けられ、前記内部電極が交互に接続された外部電極とを具備し、前記外部電極と前記内部電極との電気的接続の為にガラス成分を含有する導電性物質を備えてなる積層型圧電素子において、
前記内部電極と外部電極との間に存在する圧電体の外部電極側は前記導電性物質と接触しており、前記導電性物質はSiを含有しており、該Siが圧電体磁器表面から5〜100μmの範囲に拡散し、かつ外部電極と接続されていない内部電極端部と圧電体に拡散した前記導電性物質中のSiとの距離を300μm以上としたことを特徴とした積層型圧電素子。
An element body comprising an active layer formed by alternately laminating a plurality of piezoelectric bodies and a plurality of internal electrodes, an inactive layer provided at both ends in the stacking direction of the active layer, and provided on a side surface of the element body In the laminated piezoelectric element comprising an external electrode in which the internal electrodes are alternately connected, and a conductive material containing a glass component for electrical connection between the external electrode and the internal electrode.
The external electrode side of the piezoelectric body existing between the internal electrode and the external electrode is in contact with the conductive material , the conductive material contains Si, and the Si is 5 from the surface of the piezoelectric ceramic. A laminated piezoelectric element characterized in that the distance between the end portion of the internal electrode that diffuses in the range of 100 μm and is not connected to the external electrode and Si in the conductive material diffused to the piezoelectric body is 300 μm or more .
融点240℃以上の半田を前記外部電極として用いたことを特徴とする請求項1に記載の積層型圧電素子。  The multilayer piezoelectric element according to claim 1, wherein solder having a melting point of 240 ° C or higher is used as the external electrode. 請求項1乃至2に記載の積層型圧電素子を噴射孔を有する収納容器内に収納すると共に、該収納容器が積層型圧電素子の駆動により前記噴射孔から液体を噴射させるバルブを具備してなることを特徴とする噴射装置。  The multilayer piezoelectric element according to claim 1 is accommodated in a storage container having an injection hole, and the storage container includes a valve that ejects liquid from the injection hole by driving the multilayer piezoelectric element. An injection device characterized by that.
JP2001388438A 2001-12-20 2001-12-20 Multilayer piezoelectric element and jetting apparatus using the same Expired - Fee Related JP4022062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001388438A JP4022062B2 (en) 2001-12-20 2001-12-20 Multilayer piezoelectric element and jetting apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001388438A JP4022062B2 (en) 2001-12-20 2001-12-20 Multilayer piezoelectric element and jetting apparatus using the same

Publications (2)

Publication Number Publication Date
JP2003188430A JP2003188430A (en) 2003-07-04
JP4022062B2 true JP4022062B2 (en) 2007-12-12

Family

ID=27596957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001388438A Expired - Fee Related JP4022062B2 (en) 2001-12-20 2001-12-20 Multilayer piezoelectric element and jetting apparatus using the same

Country Status (1)

Country Link
JP (1) JP4022062B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009024870A1 (en) 2008-06-10 2009-12-31 Carl Zeiss Smt Ag Optical device with adjustable force acting on an optical module
JP5594557B2 (en) * 2008-10-15 2014-09-24 株式会社リコー Piezoelectric actuator, droplet discharge head, and image forming apparatus

Also Published As

Publication number Publication date
JP2003188430A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP4931334B2 (en) Injection device
JP2003017768A (en) Stacked piezoelectric element and jet device
EP1686633B1 (en) Multilayer piezoelectric device
JP3860746B2 (en) Multilayer piezoelectric element and injection device
JP3668072B2 (en) Multilayer piezoelectric actuator
JP3730893B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP4771649B2 (en) Manufacturing method of multilayer electronic component
JP2001244514A (en) Laminated piezoelectric actuator and injector using the same
JP3667289B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP4022062B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP3598057B2 (en) Multilayer piezoelectric element and injection device
JP4737799B2 (en) Multilayer piezoelectric actuator and injection device
JP2002289932A (en) Laminated piezoelectric element, manufacturing method therefor, and jetting device
JP4299807B2 (en) Multilayer piezoelectric element and injection device
JP4498300B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP4593911B2 (en) Multilayer piezoelectric element and injection device
JP2000340849A (en) Stacked piezoelectric actuator
JP2004207633A (en) Ceramic electronic component and jetting device
JP3894861B2 (en) Multilayer piezoelectric element and injection device
JP2002261340A (en) Laminated piezoelectric element and injection device
JP4841046B2 (en) Multilayer piezoelectric element and injection device
JP4290947B2 (en) Multilayer piezoelectric element and injection device
JP3872349B2 (en) Manufacturing method of multilayer piezoelectric element
JP3909276B2 (en) Multilayer piezoelectric element and injection device
JP3909275B2 (en) Multilayer piezoelectric element and injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4022062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees