JP3860746B2 - Multilayer piezoelectric element and injection device - Google Patents

Multilayer piezoelectric element and injection device Download PDF

Info

Publication number
JP3860746B2
JP3860746B2 JP2001393083A JP2001393083A JP3860746B2 JP 3860746 B2 JP3860746 B2 JP 3860746B2 JP 2001393083 A JP2001393083 A JP 2001393083A JP 2001393083 A JP2001393083 A JP 2001393083A JP 3860746 B2 JP3860746 B2 JP 3860746B2
Authority
JP
Japan
Prior art keywords
external electrode
inactive
piezoelectric element
active
bonding strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001393083A
Other languages
Japanese (ja)
Other versions
JP2003197991A (en
Inventor
進 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001393083A priority Critical patent/JP3860746B2/en
Publication of JP2003197991A publication Critical patent/JP2003197991A/en
Application granted granted Critical
Publication of JP3860746B2 publication Critical patent/JP3860746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用燃料噴射弁、光学装置等の精密位置決め装置や振動防止用の駆動素子等に用いられる積層型圧電素子及び噴射装置に関する。
【0002】
【従来技術】
従来より、電歪効果を利用して大きな変位量を得るために、圧電体と内部電極を交互に積層した積層型圧電素子が提案されている。積層型圧電素子には、同時焼成タイプと圧電磁器と内部電極板を交互に積層したスタックタイプの2種類に分類されており、低電圧化、製造コスト低減の面から考慮すると、同時焼成タイプの積層型圧電素子が薄層化に対して有利であるために、その優位性を示しつつある。
【0003】
同時焼成タイプの積層型圧電素子は、従来、先ず、圧電材料を含有するグリーンシートと内部電極材料を含有する内部電極パターンが交互に積層された活性部成形体の上下面に、上記グリーンシートを複数積層して形成された不活性部成形体が積層された素子本体成形体を作製する。この素子本体成形体の側面に露出した内部電極パターンの端部部分に、交互に凹溝を形成し、素子本体成形体の対向する側面に内部電極パターンの端部が交互に露出するように、前記凹溝内に絶縁体を充填し、焼成し、素子本体を作製する。
【0004】
この後、素子本体の内部電極が交互に露出した側面及び不活性部の側面に、金属粉末とガラスフリットを含有するペーストを塗布して焼き付け、内部電極と交互に接続される外部電極が素子本体の側面(活性部及び不活性部の側面)に接合されていた。
【0005】
この外部電極は、外部電極を構成する金属粉末と内部電極材料が拡散して接合するとともに、外部電極を構成するガラスフリット中のSiが活性部の圧電体、及び不活性部に拡散することにより、素子本体に接合されていた。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の積層型圧電素子においては、不活性部には内部電極が存在しないため、不活性部と外部電極との接合は、外部電極を構成するガラスフリット中のSiが不活性部に拡散することによってのみ行われており、外部電極と活性部との接合強度に比べて、外部電極と不活性部との接合強度が弱く、駆動中に外部電極の不活性部側端から剥離が発生し易いという問題があった。
【0007】
即ち、積層型圧電素子を駆動させると、活性部は逆圧電効果により変位するが、不活性部では逆圧電効果による変位が生じないため、活性部と不活性部との境界部近傍に応力が集中し、接合強度の弱い外部電極の端部、即ち外部電極の不活性部側端から剥離が発生し、これを起点とし活性部と外部電極とが剥離していき、内部電極との電気的接続が切断され、特性を低下させるという問題があった。
【0008】
また、外部電極中のガラスフリット中のSiを増加させ、外部電極中のSiを活性部や不活性部に多量に拡散させることも考えられ、Siの過剰な拡散は活性部や不活性部の外部電極が接合される圧電体表面を脆化させ、却って外部電極の接合強度を低下させるという問題があった。特に、内部電極が存在しない不活性部と外部電極との接合強度低下が著しくなるという問題があった。
【0009】
本発明の積層型圧電素子は、上記問題点を解決するものであり、外部電極の不活性部側端部からの剥離を防止することができ、耐久性に優れ、信頼性の高い積層型圧電体素子及び噴射装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の積層型圧電素子は、複数の圧電体と複数の内部電極とを交互に積層してなり、変位する活性部と、該活性部の積層方向両端に設けられた、変位しない不活性部とからなる素子本体と、該素子本体の側面に接合され、前記内部電極が交互に接続された一対の外部電極とを具備する積層型圧電素子であって、前記外部電極と前記不活性部との接合強度が、前記外部電極と前記活性部との接合強度よりも大きく、かつ前記外部電極が、Siを含有するガラスを有するとともに、前記不活性部のSi含有量が前記活性部のSi含有量よりも多いことを特徴とする。
【0011】
このような積層型圧電素子では、外部電極と不活性部との接合強度が、外部電極と活性部との接合強度よりも大きいため、駆動時の応力による外部電極の不活性部端からの剥離が防止され、耐久性及び信頼性を向上できる。
【0012】
また、本願発明では、外部電極が、Siを含有するガラスを有するとともに、不活性部のSi含有量が活性部のSi含有量よりも多いものである。外部電極中のSiは、熱処理時に素子本体の外部電極形成面から内部に拡散していくが、不活性部に活性部よりも多くのSiを含有せしめることにより、活性部と外部電極との接合強度は変わらないものの、外部電極中のガラスフリットのSiが、活性部よりも不活性部に拡散しにくくなり、Siの不活性部内部への拡散距離が短くなり、不活性部と外部電極とのSiの拡散による接合強度向上効果は低下するものの、不活性部側面の脆化を抑制し、これによる接合強度の低下を著しく抑制できることから、結果的に不活性部の側面と外部電極との接合強度が著しく向上し、活性部と外部電極との接合強度よりも大きくできる。
【0013】
一方、外部電極中に含有せしめるSi量は増加させる必要がないため、活性部、不活性部の外部電極形成面の脆弱化を最小限に抑制できる。
【0014】
外部電極中のSiは、Si拡散による素子本体側面の脆弱化及び接合強度向上の点から最も接合強度が高くなるように定められるが、この場合では素子本体の脆弱化による接合強度低下は免れない。本発明では、Siを不活性部に予め含有させることによりSiの不活性部への拡散を最小限に抑制し、不活性部側面の脆弱化を最小限とし、従来よりも接合強度を向上させることができる。一方、圧電体にSiを予め含有させると圧電特性が低下するため好ましくない。
【0015】
本発明の噴射装置は、噴射孔を有する収納容器と、該収納容器内に収容された上記積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなるものである。
【0016】
本発明の噴射装置では、積層型圧電素子において外部電極の端部からの剥離を抑制できるため、噴射装置として、耐久性及び信頼性を向上できる。
【0017】
【発明の実施の形態】
図1(a)は本発明の積層型圧電アクチュエータからなる積層型圧電素子の一実施例を示す斜視図であり、(b)は(a)のA−A’に沿った縦断面図である。
【0018】
本発明の積層型圧電アクチュエータは、図1に示すように複数の圧電体1と複数の内部電極2とを交互に積層してなる活性部8と、該活性部8の積層方向外側に設けられた不活性部9とからなる四角柱状の素子本体3を有している。
【0019】
内部電極2は、その端部が素子本体3の対向する側面(外部電極形成面)に一層おきに露出しており、この内部電極2の露出部分にそれぞれ導電部4aが形成され、これらの導電部4aに金属板4bが接合され、外部電極4が構成されている。
【0020】
これにより、それぞれの外部電極4に、内部電極2が一層おきに電気的に接続されており、一方、外部電極4と接続されていない内部電極2の端部は絶縁体10で被覆されている。さらに、外部電極4にはリード線16が半田等で接続固定されている。
【0021】
圧電体1は、例えば、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3(以下PZTと略す)或いは、チタン酸バリウムBaTiO3を主成分とする圧電セラミック材料などが使用されるが、これらに限定されるものではなく、圧電性を有するセラミックスであれば何れでも良い。なお、この圧電体材料としては、圧電歪み定数d33が高いものが望ましい。
【0022】
また、圧電体1の厚み、つまり内部電極2間の距離は、小型化及び高い電界を印加するという点から0.05〜0.25mmであることが望ましい。これは、積層型圧電素子は電圧を印加してより大きな変位量を得るために、積層数を増加させる方法がとられるが、積層数を増加させた場合に活性部8中の圧電体1の厚みが厚すぎるとアクチュエータの小型化、低背化ができなくなり、一方、活性部8中の圧電体1の厚みが薄すぎると絶縁破壊しやすいからである。
【0023】
また、素子本体3における活性部8側面の外部電極4形成面には、一層おきに深さ50〜500μm積層方向の幅30〜200μmの溝が形成されており、この溝内にガラス、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーンゴム等が充填されて絶縁体10が形成されている。このように内部電極2の端部は一層おきに互い違いに溝内に充填された絶縁体10によって絶縁され、内部電極2の絶縁されていない他方の端部は導電部4aを介して金属板と接続されている。
【0024】
なお、導電部4aは内部電極2との拡散接合による接合のため銀、若しくは銀が主成分の合金と、圧電体1との拡散接合による接合のためガラス成分とを含有する必要がある。また、外部電極4としての導電性を備えるため、銀、若しくは銀が主成分の合金が外部電極4全量中の40〜90体積%であることが望ましい。
【0025】
なお、外部電極4を構成する金属板4bの厚みtは、アクチュエータの伸縮に追従し、金属板4bと導電部4aの間、若しくは導電部4aと内部電極2の間で断線を生じないという点から、50μm以下であることが望ましい。
【0026】
また、板状の金属板4bは、銀、ニッケル、銅、金、アルミニウム等の導電性を備えた金属及びそれらの合金からなり、このうち、導電部4aとの接合強度が強く、ヤング率が低いという点から、銀、若しくは銀が主成分の合金が望ましい。
【0027】
なお、絶縁体10は、素子本体3との接合を強固とするために、素子本体3の変位に対して追従する弾性率が低い材料、具体的にはシリコーンゴム等からなることが好適である。
【0028】
素子本体3の少なくとも1つの側面にはそれぞれ金属板4bが導電部4aを介して接続固定されており、該外部電極4には、積層されている内部電極2が一層おきに電気的に接続されている。この金属板4bは、接続されている活性部8中の各内部電極2に圧電体1を逆圧電効果により変位させるに必要な電圧を共通に供給する作用をなす。
【0029】
さらに、外部電極4にはリード線16が半田により接続固定されているが、このリード線16は外部電極4を外部の電圧供給部に接続する作用をなす。
【0030】
そして、本発明では、外部電極4と不活性部9との接合強度が、外部電極4と活性部8との接合強度以上である。即ち、外部電極4と不活性部9との接合強度を、外部電極4と活性部8との接合強度以上とすることにより、駆動時の活性部8と不活性部9との境界近傍で発生する応力による、外部電極4端部からの剥離を防止することが可能となり、高い信頼性を得ることができる。
【0031】
また、本発明では、不活性部9に活性部8より多くのSiを含有することが望ましい。これは、不活性部9に活性部8より多くのSiを含有することで、外部電極4中のSiの不活性部9への拡散の濃度勾配の距離を低下させ、Siの過剰な拡散による不活性部9の圧電体の脆化による接合強度の低下を防止させ、外部電極4と不活性部9との接合強度が向上するためである。なお、不活性部9へのSiの含有量はSiの拡散による圧電体1の強度の低下を防ぐという点から、SiO2換算で、不活性部9を構成する圧電磁器の0.1〜3重量%が望ましい。特に、Si拡散距離を小さくし、接合強度を向上するという点から0.1〜1重量%であることが望ましい。
【0032】
以上のように構成された積層型圧電素子は、以下のプロセスにより製造される。先ず、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3などの圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダーと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み50〜250μmのセラミックグリーンシートを作製する。
【0033】
このグリーンシートの片面に内部電極2となる銀−パラジウムを主成分とする導電性ペーストをスクリーン印刷法により1〜10μmの厚みに印刷する。この導電性ペーストを乾燥させた後、導電性ペーストが塗布された複数のグリーンシートを所定の枚数だけ積層し、活性部8の活性部成形体を形成する。
【0034】
これとは別に、所定量のSiO2と、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3などの圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダーと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み50〜250μmのセラミックグリーンシートを作製する。
【0035】
このグリーンシートを、活性部成形体の積層方向の両端部に、所定の枚数だけ積層し、不活性部成形体を積層する。
【0036】
次に、この積層体を50〜200℃で加熱を行いながら加圧を行い、積層体を一体化する。一体化された積層体は所定の大きさに切断された後、400〜800℃で5〜40時間、脱バインダが行われ、900〜1200℃で2〜5時間で本焼成が行われ、素子本体3となる積層焼結体を得る。この素子本体3の側面には、内部電極2の端部が露出している。
【0037】
その後、素子本体3の外部電極4形成側面に、ダイシング装置等により一層おきに凹溝を形成する。この凹溝が形成された素子本体3の外部電極4形成側面と、金属板4bとの間に、銀粉末と、Pb−Si系、若しくはB−Si系のガラス粉末からなる銀ガラスペーストを介在させ、金属板4bと素子本体3を2〜80kPaの圧力で圧接した状態で500〜900℃で熱処理することにより、銀ガラスペースト中のSiが活性部8の圧電体1及び不活性部9へ拡散し、また、前記銀ガラスペースト中の銀が内部電極2へ拡散し、素子本体3の側面に導電部4aが形成されるとともに、この導電部4aに、板状導電部材からなる金属板4bが接合される。
【0038】
この後、外部電極4にリード線16を接続し、素子の外周面に真空脱泡によるディッピング等の方法により、外装樹脂を被覆した後、0.1〜3kVの分極電圧を印加し、素子全体を分極処理することで、最終的な積層型圧電素子を得る。
【0039】
以上のように構成された積層型圧電アクチュエータは、外部電極4と活性部8との接合強度よりも、外部電極4と不活性部9との接合強度が大くなり、アクチュエータを駆動させた場合においても、活性部8と不活性部9との境界近傍で発生する応力による外部電極4の不活性部端からの剥離を防止することができ、高信頼性を備えたアクチュエータを提供することができる。
【0040】
なお、本発明の積層型圧電素子は、四角柱、六角柱、円柱等、どのような柱体であっても構わないが、切断の容易性から四角柱状が望ましい。
【0041】
また、外部電極4として金属板4bを用いたが、ペーストによってのみ形成しても同様の効果を得ることができる。
【0042】
図2は、本発明の噴射装置を示すもので、図において符号31は収納容器を示している。この収納容器31の一端には噴射孔33が設けられ、また収納容器31内には、噴射孔33を開閉することができるニードルバルブ35が収容されている。
【0043】
噴射孔33には燃料通路37が連通可能に設けられ、この燃料通路37は外部の燃料供給源に連結され、燃料通路37に常時一定の高圧で燃料が供給されている。従って、ニードルバルブ35が噴射孔33を開放すると、燃料通路37に供給されていた燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されている。
【0044】
また、ニードルバルブ35の上端部は直径が大きくなっており、収納容器31に形成されたシリンダ39と摺動可能なピストン41となっている。そして、収納容器31内には、上記した圧電アクチュエータ43が収納されている。
【0045】
このような噴射装置では、圧電アクチュエータ43が電圧を印加されて伸長すると、ピストン41が押圧され、ニードルバルブ35が噴射孔33を閉塞し、燃料の供給が停止される。また、電圧の印加が停止されると圧電アクチュエータ43が収縮し、皿バネ45がピストン41を押し返し、噴射孔33が燃料通路37と連通して燃料の噴射が行われるようになっている。
【0046】
【実施例】
実施例1
チタン酸ジルコン酸鉛Pb(Zr,Ti)O3などの圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダーと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み150μmのセラミックグリーンシートを作製した。
【0047】
このグリーンシートの片面に内部電極となる銀−パラジウムを主成分とする導電性ペーストをスクリーン印刷法により5μmの厚みに印刷し、導電性ペーストを乾燥させた後、導電性ペーストが塗布された複数のグリーンシートを100枚積層し、活性部成形体を作製した。
【0048】
一方、前記スラリー中にSiO2を所定量添加し、スリップキャスティング法によりセラミックグリーンシートを作製し、このセラミックグリーンシートを活性部成形体の積層方向の両端部に10枚ずつ積層し、活性体成形体の両端面に不活性部成形体を形成し、素子本体成形体を作製した。
【0049】
次に、この素子本体成形体を100℃で加熱を行いながら加圧を行い一体化し、10mm×10mmの大きさに切断した後、800℃で10時間の脱バインダを行い、1130℃で2時間で本焼成を行ない、素子本体となる積層焼結体を得た。
【0050】
その後、活性部の外部電極形成側面に、ダイシング装置より一層おきに幅50μm深さ200μmの凹溝を形成した。そして、この凹溝が形成された素子本体の外部電極形成側面と、銀を主成分とする金属板との間に、銀粉末とB−Si系のガラス粉末からなる銀ガラスペーストを介在させ、外部電極を30kPaの圧力で圧接した状態で熱処理することにより、素子本体の側面に導電部を形成するとともに、該導電部を金属板に接合し、外部電極を素子本体に接合した。この後、シリコーンゴムを凹溝内に充填し、絶縁体10を形成した。
【0051】
得られたサンプルの素子本体へのSiの拡散距離を電子線プローブ微小分析(EPMA)にて測定した。この結果を図3に示す。また、得られた積層型圧電素子の外部電極の接合強度を測定するために、外部電極の不活性部との接合部分と、活性部との接合部分との部分を切断して分離し、各々にエポキシ樹脂により金属板を接着し、この板を引張ることで強度を測定した。活性部と不活性部との引張り強度比の結果を図3に示す。
【0052】
図3より、不活性部中のSiO2量の増加に伴い、Siの拡散距離が低下することがわかる。これによりSiの不活性部への過剰な拡散が抑制され不活性部の圧電体表面の脆弱化を防止することが可能となり、外部電極と不活性部との接合強度が向上していることがわかる。
【0053】
また、不活性部中のSiO2量を0.1〜3重量%とすると、拡散距離が短くなり、大きな接合強度比が得られ、特に、不活性部のSiO2量を0.1〜1.0重量%とすることが望ましいことが判る。
実施例2
不活性部へSiO2を全量中2重量%添加したグリーンシートを用いて、実施例1と同様に作製した積層型圧電素子にリード線を接続し、素子の外周面にデイッピング等の方法によりシリコーン樹脂を被覆し、1kVの分極電圧を印加し、素子全体を分極処理して本発明の積層型圧電素子を得た。
【0054】
また、比較として不活性部も活性部と同様のグリーンシートを用いた以外は同様のサンプルも作製した。
【0055】
得られた積層型圧電アクチュエータに200Vの直流電圧を印加した結果、各アクチュエータとも10μmの変位が得られた。
【0056】
得られたアクチュエータの耐久性を比較するために、室温で200Vの直流電界を5×108サイクルまで駆動耐久試験を行った。駆動試験はアクチュエータを駆動させ、変位を測定し、初期の変位からの変動を調べた。尚、変位量の測定は、試料を防振台上に固定し、試料上面にアルミニウム箔を張り付けて、レーザー変位計により、素子の中心部及び周囲部の3箇所で測定した値の平均値で評価した。この結果を表1に示す。
【0057】
【表1】

Figure 0003860746
【0058】
この表1から、不活性部にSiを含有せしめていない従来品は、外部電極と不活性部との接合強度が弱く、駆動試験においても活性部と不活性部との境界近傍から外部電極が剥離し内部電極に電圧が供給されず、所定のサイクル数未満で変位特性が低下した。一方、本発明品は駆動試験後も変位の低下はみられなかった。
【0059】
【発明の効果】
以上詳述した通り、本発明の積層型圧電素子では、外部電極と不活性部との接合強度が、外部電極と活性部との接合強度以上であるため、アクチュエータを駆動させた場合においても、活性部と不活性部との境界近傍で発生する応力による外部電極の剥離を防止することができ、高信頼性を備えたアクチュエータを提供することができる。
【図面の簡単な説明】
【図1】本発明の積層型圧電素子を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図である。
【図2】本発明の噴射装置を示す説明図である。
【図3】不活性部中のSiO2量とSiの拡散距離、接合強度比を示すグラフである。
【符号の説明】
1・・・圧電体
2・・・内部電極
3・・・素子本体
4・・・外部電極
8・・・活性部
9・・・不活性部
10・・・外装樹脂
16・・・リード線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated piezoelectric element and an injection device used for a precision positioning device such as a fuel injection valve for an automobile and an optical device, a drive element for vibration prevention, and the like.
[0002]
[Prior art]
Conventionally, in order to obtain a large amount of displacement using the electrostrictive effect, multilayer piezoelectric elements in which piezoelectric bodies and internal electrodes are alternately stacked have been proposed. Multilayer piezoelectric elements are classified into two types: simultaneous firing type and stack type in which piezoelectric ceramics and internal electrode plates are alternately laminated. Since the multilayer piezoelectric element is advantageous for thinning, its superiority is being shown.
[0003]
Conventionally, the co-fired multilayer piezoelectric element has conventionally been made by first placing the green sheet on the upper and lower surfaces of an active part molded body in which green sheets containing piezoelectric materials and internal electrode patterns containing internal electrode materials are alternately laminated. An element body molded body in which a plurality of inactive part molded bodies formed by laminating is laminated is manufactured. In the end portion of the internal electrode pattern exposed on the side surface of the element body molded body, the concave grooves are alternately formed, and the end portions of the internal electrode pattern are alternately exposed on the opposite side surface of the element body molded body, An insulator is filled in the concave groove and baked to produce an element body.
[0004]
Thereafter, a paste containing metal powder and glass frit is applied and baked on the side surface of the element body where the internal electrodes are alternately exposed and on the side surface of the inactive portion, and the external electrodes alternately connected to the internal electrodes are connected to the element body. To the side surfaces (side surfaces of the active portion and the inactive portion).
[0005]
This external electrode is formed by diffusing and joining the metal powder constituting the external electrode and the internal electrode material, and diffusing Si in the glass frit constituting the external electrode into the active part piezoelectric body and the inactive part. It was joined to the element body.
[0006]
[Problems to be solved by the invention]
However, in the conventional multilayer piezoelectric element, since there is no internal electrode in the inactive part, Si in the glass frit constituting the external electrode diffuses into the inactive part when joining the inactive part to the external electrode. The bonding strength between the external electrode and the inactive portion is weaker than the bonding strength between the external electrode and the active portion, and peeling occurs from the inactive portion side end of the external electrode during driving. There was a problem that it was easy to do.
[0007]
That is, when the stacked piezoelectric element is driven, the active portion is displaced by the reverse piezoelectric effect, but the inactive portion is not displaced by the reverse piezoelectric effect, so that stress is applied in the vicinity of the boundary between the active portion and the inactive portion. Separation occurs from the edge of the external electrode, which is concentrated and weak in bonding strength, that is, the inactive part side end of the external electrode, and the active part and the external electrode are separated from this as the starting point. There was a problem that the connection was cut and the characteristics deteriorated.
[0008]
In addition, it is conceivable that Si in the glass frit in the external electrode is increased, and Si in the external electrode is diffused in a large amount in the active part or the inactive part. There has been a problem that the surface of the piezoelectric body to which the external electrode is bonded is embrittled and the bonding strength of the external electrode is decreased. In particular, there is a problem that the bonding strength between the inactive portion where no internal electrode is present and the external electrode is significantly reduced.
[0009]
The multilayer piezoelectric element of the present invention solves the above-mentioned problems, can prevent peeling of the external electrode from the end portion on the inactive portion side, has excellent durability and high reliability. It aims at providing a body element and an injection device.
[0010]
[Means for Solving the Problems]
The multilayer piezoelectric element of the present invention includes a plurality of piezoelectric bodies and a plurality of internal electrodes that are alternately stacked , an active portion that is displaced, and an inactive portion that is provided at both ends of the active portion in the stacking direction and is not displaced. A laminated piezoelectric element comprising: an element body comprising: a pair of external electrodes joined to side surfaces of the element body; and the internal electrodes are alternately connected to each other, wherein the external electrode, the inactive portion, Si bonding strength is, the much larger than the bonding strength between the external electrode and the active portion, and the external electrodes, and having a glass containing Si, Si content of the inert portion of the active portion than the content, wherein the multi Ikoto.
[0011]
In such a multilayered piezoelectric element, the bonding strength between the external electrode and the inactive portion is greater than the bonding strength between the external electrode and the active portion, and therefore the external electrode is peeled off from the inactive portion end due to stress during driving. Can be prevented and durability and reliability can be improved.
[0012]
Further, in the present invention, the external electrodes, and having a glass containing Si, the Si content of the inert portion is of larger than Si content of active part. Si in the external electrode diffuses from the external electrode forming surface of the element body to the inside during the heat treatment, but by adding more Si to the inactive part than in the active part, the active part and the external electrode are joined. Although the strength does not change, the glass frit Si in the external electrode is less likely to diffuse into the inactive part than the active part, the diffusion distance of Si into the inactive part becomes shorter, and the inactive part and the external electrode Although the effect of improving the bonding strength due to the diffusion of Si decreases, the embrittlement of the side surface of the inactive portion can be suppressed, and the decrease in the bonding strength due to this can be remarkably suppressed. The bonding strength is significantly improved and can be made larger than the bonding strength between the active portion and the external electrode.
[0013]
On the other hand, since it is not necessary to increase the amount of Si contained in the external electrode, it is possible to minimize weakening of the active electrode forming surface of the active part and the inactive part.
[0014]
Si in the external electrode is determined to have the highest bonding strength from the viewpoint of weakening of the side surface of the element body due to Si diffusion and improvement of the bonding strength. In this case, however, a decrease in bonding strength due to weakening of the element body is inevitable. . In the present invention, Si is preliminarily contained in the inactive part to minimize the diffusion of Si into the inactive part, minimize the weakening of the side surface of the inactive part, and improve the bonding strength than before. be able to. On the other hand, if Si is contained in advance in the piezoelectric body, the piezoelectric characteristics are deteriorated, which is not preferable.
[0015]
An injection device of the present invention includes a storage container having an injection hole, the stacked piezoelectric element stored in the storage container, and a valve for ejecting liquid from the injection hole by driving the stacked piezoelectric element. It is made.
[0016]
In the injection device of the present invention, since peeling from the end portion of the external electrode in the multilayer piezoelectric element can be suppressed, durability and reliability can be improved as the injection device.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1A is a perspective view showing an embodiment of a multilayer piezoelectric element comprising the multilayer piezoelectric actuator of the present invention, and FIG. 1B is a longitudinal sectional view taken along line AA ′ of FIG. .
[0018]
As shown in FIG. 1, the multilayer piezoelectric actuator of the present invention is provided on an active portion 8 in which a plurality of piezoelectric bodies 1 and a plurality of internal electrodes 2 are alternately stacked, and on the outer side of the active portion 8 in the stacking direction. Further, the element main body 3 having a quadrangular prism shape composed of the inactive portion 9 is provided.
[0019]
The end portions of the internal electrodes 2 are exposed on the opposite side surfaces (external electrode forming surfaces) of the element body 3, and conductive portions 4a are formed on the exposed portions of the internal electrodes 2, respectively. The metal plate 4b is joined to the part 4a, and the external electrode 4 is configured.
[0020]
Thereby, the internal electrodes 2 are electrically connected to the respective external electrodes 4 every other layer, while the ends of the internal electrodes 2 not connected to the external electrodes 4 are covered with the insulator 10. . Furthermore, a lead wire 16 is connected and fixed to the external electrode 4 with solder or the like.
[0021]
As the piezoelectric body 1, for example, lead zirconate titanate Pb (Zr, Ti) O 3 (hereinafter abbreviated as PZT) or a piezoelectric ceramic material mainly composed of barium titanate BaTiO 3 is used. It is not limited, and any ceramics having piezoelectricity may be used. As the piezoelectric material, as the piezoelectric strain constant d 33 it is high is preferable.
[0022]
The thickness of the piezoelectric body 1, that is, the distance between the internal electrodes 2, is preferably 0.05 to 0.25 mm from the viewpoint of downsizing and applying a high electric field. In order to obtain a larger amount of displacement by applying a voltage to the stacked piezoelectric element, a method of increasing the number of stacked layers is used, but when the number of stacked layers is increased, the piezoelectric body 1 in the active portion 8 is increased. This is because if the thickness is too large, the actuator cannot be reduced in size and height, and if the thickness of the piezoelectric body 1 in the active portion 8 is too thin, dielectric breakdown tends to occur.
[0023]
In addition, a groove having a depth of 50 to 500 μm and a width of 30 to 200 μm in the stacking direction is formed on the surface of the element body 3 on the side of the active portion 8 where the external electrode 4 is formed. The insulator 10 is formed by being filled with polyimide resin, polyamideimide resin, silicone rubber, or the like. In this way, the end portions of the internal electrode 2 are insulated by the insulators 10 alternately filled in the groove every other layer, and the other end portion of the internal electrode 2 that is not insulated is connected to the metal plate via the conductive portion 4a. It is connected.
[0024]
The conductive portion 4 a needs to contain silver or an alloy containing silver as a main component for bonding by diffusion bonding with the internal electrode 2 and a glass component for bonding by diffusion bonding with the piezoelectric body 1. In order to provide conductivity as the external electrode 4, it is desirable that silver or an alloy containing silver as a main component is 40 to 90% by volume in the total amount of the external electrode 4.
[0025]
The thickness t of the metal plate 4b constituting the external electrode 4 follows the expansion and contraction of the actuator, and no disconnection occurs between the metal plate 4b and the conductive portion 4a or between the conductive portion 4a and the internal electrode 2. Therefore, it is desirable that it is 50 μm or less.
[0026]
The plate-like metal plate 4b is made of a metal having conductivity such as silver, nickel, copper, gold, and aluminum, and an alloy thereof. Among these, the bonding strength with the conductive portion 4a is strong, and the Young's modulus is high. From the viewpoint of low, silver or an alloy containing silver as a main component is desirable.
[0027]
The insulator 10 is preferably made of a material having a low elastic modulus that follows the displacement of the element body 3, specifically, silicone rubber or the like in order to strengthen the bonding with the element body 3. .
[0028]
A metal plate 4b is connected and fixed to at least one side surface of the element body 3 via a conductive portion 4a, and the stacked internal electrodes 2 are electrically connected to the external electrode 4 every other layer. ing. The metal plate 4b serves to supply in common a voltage necessary for displacing the piezoelectric body 1 by the inverse piezoelectric effect to each internal electrode 2 in the active portion 8 connected thereto.
[0029]
Further, the lead wire 16 is connected and fixed to the external electrode 4 by soldering. The lead wire 16 serves to connect the external electrode 4 to an external voltage supply unit.
[0030]
In the present invention, the bonding strength between the external electrode 4 and the inactive portion 9 is equal to or higher than the bonding strength between the external electrode 4 and the active portion 8. That is, when the bonding strength between the external electrode 4 and the inactive portion 9 is set to be equal to or higher than the bonding strength between the external electrode 4 and the active portion 8, it occurs near the boundary between the active portion 8 and the inactive portion 9 during driving. It is possible to prevent the peeling from the end portion of the external electrode 4 due to the stress to be applied, and high reliability can be obtained.
[0031]
In the present invention, it is desirable that the inactive portion 9 contains more Si than the active portion 8. This is because the inactive portion 9 contains more Si than the active portion 8, thereby reducing the distance of the concentration gradient of diffusion of the Si into the inactive portion 9 in the external electrode 4, due to excessive diffusion of Si. This is because a decrease in the bonding strength due to embrittlement of the piezoelectric body of the inactive portion 9 is prevented, and the bonding strength between the external electrode 4 and the inactive portion 9 is improved. Note that the Si content in the inactive portion 9 prevents the decrease in strength of the piezoelectric body 1 due to the diffusion of Si, and is 0.1-3 of the piezoelectric ceramic constituting the inactive portion 9 in terms of SiO 2. % By weight is desirable. In particular, it is preferably 0.1 to 1% by weight from the viewpoint of reducing the Si diffusion distance and improving the bonding strength.
[0032]
The multi-layer piezoelectric element configured as described above is manufactured by the following process. First, a slurry is prepared by mixing a calcined powder of a piezoelectric ceramic such as lead zirconate titanate Pb (Zr, Ti) O 3 , a binder made of an organic polymer, and a plasticizer, and by a slip casting method, A ceramic green sheet having a thickness of 50 to 250 μm is prepared.
[0033]
A conductive paste mainly composed of silver-palladium serving as the internal electrode 2 is printed on one side of the green sheet to a thickness of 1 to 10 μm by screen printing. After the conductive paste is dried, a predetermined number of green sheets coated with the conductive paste are stacked to form an active part molded body of the active part 8.
[0034]
Separately, a predetermined amount of SiO 2 , calcined powder of piezoelectric ceramics such as lead zirconate titanate Pb (Zr, Ti) O 3 , a binder made of an organic polymer, and a plasticizer were mixed. A slurry is prepared, and a ceramic green sheet having a thickness of 50 to 250 μm is prepared by a slip casting method.
[0035]
A predetermined number of the green sheets are laminated at both ends in the lamination direction of the active part molded body, and the inactive part molded body is laminated.
[0036]
Next, pressure is applied while heating the laminated body at 50 to 200 ° C. to integrate the laminated body. After the integrated laminate is cut to a predetermined size, the binder is removed at 400 to 800 ° C. for 5 to 40 hours, and main firing is performed at 900 to 1200 ° C. for 2 to 5 hours. A laminated sintered body to be the main body 3 is obtained. The end of the internal electrode 2 is exposed on the side surface of the element body 3.
[0037]
Thereafter, a groove is formed in every other layer on the side surface of the element body 3 where the external electrode 4 is formed by a dicing apparatus or the like. A silver glass paste made of silver powder and Pb-Si-based or B-Si-based glass powder is interposed between the side surface of the element body 3 in which the concave grooves are formed and the metal plate 4b. Then, Si in the silver glass paste is transferred to the piezoelectric body 1 and the inactive portion 9 of the active portion 8 by heat-treating the metal plate 4b and the element main body 3 at a pressure of 2 to 80 kPa at 500 to 900 ° C. In addition, the silver in the silver glass paste diffuses to the internal electrode 2, and a conductive portion 4a is formed on the side surface of the element body 3, and a metal plate 4b made of a plate-like conductive member is formed on the conductive portion 4a. Are joined.
[0038]
Thereafter, the lead wire 16 is connected to the external electrode 4 and the outer peripheral surface of the element is coated with an exterior resin by a method such as dipping by vacuum defoaming, and then a polarization voltage of 0.1 to 3 kV is applied to the entire element. Is subjected to polarization treatment to obtain a final laminated piezoelectric element.
[0039]
In the multilayer piezoelectric actuator configured as described above, the bonding strength between the external electrode 4 and the inactive portion 9 is greater than the bonding strength between the external electrode 4 and the active portion 8, and the actuator is driven. In this case, it is possible to prevent peeling of the external electrode 4 from the end of the inactive part due to stress generated near the boundary between the active part 8 and the inactive part 9, and to provide a highly reliable actuator. it can.
[0040]
The multilayer piezoelectric element of the present invention may be any column body such as a quadrangular column, a hexagonal column, or a cylinder, but a quadrangular column shape is desirable for ease of cutting.
[0041]
Moreover, although the metal plate 4b is used as the external electrode 4, the same effect can be obtained even if it is formed only by a paste.
[0042]
FIG. 2 shows an injection device according to the present invention. In the figure, reference numeral 31 denotes a storage container. An injection hole 33 is provided at one end of the storage container 31, and a needle valve 35 that can open and close the injection hole 33 is stored in the storage container 31.
[0043]
A fuel passage 37 is provided in the injection hole 33 so as to be able to communicate. The fuel passage 37 is connected to an external fuel supply source, and fuel is always supplied to the fuel passage 37 at a constant high pressure. Therefore, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is formed to be injected into a fuel chamber (not shown) of the internal combustion engine at a constant high pressure.
[0044]
Further, the upper end portion of the needle valve 35 has a large diameter, and serves as a piston 41 slidable with a cylinder 39 formed in the storage container 31. In the storage container 31, the piezoelectric actuator 43 described above is stored.
[0045]
In such an injection device, when the piezoelectric actuator 43 is extended by applying a voltage, the piston 41 is pressed, the needle valve 35 closes the injection hole 33, and the supply of fuel is stopped. When the application of voltage is stopped, the piezoelectric actuator 43 contracts, the disc spring 45 pushes back the piston 41, and the injection hole 33 communicates with the fuel passage 37 so that fuel is injected.
[0046]
【Example】
Example 1
A slurry is prepared by mixing a calcined powder of piezoelectric ceramic such as lead zirconate titanate Pb (Zr, Ti) O 3 , a binder made of an organic polymer, and a plasticizer, and a thickness of 150 μm is obtained by a slip casting method. A ceramic green sheet was prepared.
[0047]
A conductive paste mainly composed of silver-palladium serving as an internal electrode is printed on one side of the green sheet to a thickness of 5 μm by a screen printing method, and the conductive paste is dried. 100 green sheets were laminated to produce an active part molded body.
[0048]
On the other hand, a predetermined amount of SiO 2 is added to the slurry, ceramic green sheets are produced by a slip casting method, 10 ceramic green sheets are laminated at both ends in the laminating direction of the active part molded body, and active body molding is performed. An inactive part molded body was formed on both end faces of the body to prepare a device body molded body.
[0049]
Next, the element body molded body was pressed and integrated while being heated at 100 ° C., cut into a size of 10 mm × 10 mm, debindered at 800 ° C. for 10 hours, and then at 1130 ° C. for 2 hours. Was fired to obtain a laminated sintered body to be the element body.
[0050]
Thereafter, concave grooves having a width of 50 μm and a depth of 200 μm were formed on the side surface of the active part where the external electrodes were formed, every other layer than the dicing apparatus. And, between the external electrode forming side surface of the element body in which this concave groove is formed and the metal plate mainly composed of silver, a silver glass paste made of silver powder and B-Si glass powder is interposed, By heat-treating the external electrode in a pressure contact state at a pressure of 30 kPa, a conductive portion was formed on the side surface of the element body, the conductive portion was bonded to a metal plate, and the external electrode was bonded to the element body. Thereafter, silicone rubber was filled into the concave groove to form the insulator 10.
[0051]
The diffusion distance of Si into the element body of the obtained sample was measured by electron probe microanalysis (EPMA). The result is shown in FIG. In addition, in order to measure the bonding strength of the external electrode of the obtained multilayer piezoelectric element, the bonded portion of the external electrode with the inactive portion and the bonded portion with the active portion are cut and separated, A metal plate was bonded to the plate with an epoxy resin, and the strength was measured by pulling the plate. The result of the tensile strength ratio between the active part and the inactive part is shown in FIG.
[0052]
FIG. 3 shows that the Si diffusion distance decreases as the amount of SiO 2 in the inactive portion increases. As a result, excessive diffusion of Si into the inactive part is suppressed, and it becomes possible to prevent weakening of the surface of the piezoelectric body of the inactive part, and the bonding strength between the external electrode and the inactive part is improved. Recognize.
[0053]
Further, when the amount of SiO 2 in the inactive part is 0.1 to 3% by weight, the diffusion distance is shortened and a large bonding strength ratio is obtained. In particular, the amount of SiO 2 in the inactive part is 0.1 to 1%. It turns out that it is desirable to set it as 0.0 weight%.
Example 2
Using a green sheet in which 2% by weight of SiO 2 is added to the inert part, lead wires are connected to the laminated piezoelectric element manufactured in the same manner as in Example 1, and silicone is formed on the outer peripheral surface of the element by dipping or the like. The laminated piezoelectric element of the present invention was obtained by coating the resin, applying a polarization voltage of 1 kV, and polarizing the entire element.
[0054]
For comparison, a similar sample was prepared for the inactive part except that the same green sheet as that for the active part was used.
[0055]
As a result of applying a DC voltage of 200 V to the obtained multilayer piezoelectric actuator, a displacement of 10 μm was obtained for each actuator.
[0056]
In order to compare the durability of the obtained actuator, a driving durability test was performed at room temperature with a DC electric field of 200 V up to 5 × 10 8 cycles. In the driving test, the actuator was driven, the displacement was measured, and the variation from the initial displacement was examined. The displacement is measured with the average value of the values measured at the center part and the peripheral part of the element with a laser displacement meter by fixing the sample on the vibration isolation table, attaching an aluminum foil to the upper surface of the sample, and using a laser displacement meter. evaluated. The results are shown in Table 1.
[0057]
[Table 1]
Figure 0003860746
[0058]
From Table 1, the conventional product in which Si is not contained in the inactive part has a weak joint strength between the external electrode and the inactive part, and the external electrode is also seen from the vicinity of the boundary between the active part and the inactive part in the driving test. The voltage was not supplied to the internal electrode after peeling, and the displacement characteristics deteriorated when the number of cycles was less than a predetermined number. On the other hand, the displacement of the product of the present invention was not observed after the driving test.
[0059]
【The invention's effect】
As described above in detail, in the multilayer piezoelectric element of the present invention, the bonding strength between the external electrode and the inactive portion is equal to or higher than the bonding strength between the external electrode and the active portion, so even when the actuator is driven, It is possible to prevent peeling of the external electrode due to stress generated near the boundary between the active part and the inactive part, and to provide an actuator with high reliability.
[Brief description of the drawings]
1A and 1B show a multilayer piezoelectric element according to the present invention, in which FIG. 1A is a perspective view and FIG. 1B is a longitudinal sectional view taken along line AA ′ of FIG.
FIG. 2 is an explanatory view showing an injection device of the present invention.
FIG. 3 is a graph showing the amount of SiO 2 in the inactive part, the diffusion distance of Si, and the bonding strength ratio.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric body 2 ... Internal electrode 3 ... Element main body 4 ... External electrode 8 ... Active part 9 ... Inactive part 10 ... Exterior resin 16 ... Lead wire

Claims (3)

複数の圧電体と複数の内部電極とを交互に積層してなり、変位する活性部と、該活性部の積層方向両端に設けられた、変位しない不活性部とからなる素子本体と、該素子本体の側面に接合され、前記内部電極が交互に接続された一対の外部電極とを具備する積層型圧電素子であって、前記外部電極と前記不活性部との接合強度が、前記外部電極と前記活性部との接合強度よりも大きく、かつ前記外部電極が、Siを含有するガラスを有するとともに、前記不活性部のSi含有量が前記活性部のSi含有量よりも多いことを特徴とする積層型圧電素子。 Formed by laminating a plurality of piezoelectric bodies and a plurality of internal electrodes alternately, the active portion of the displacement, provided at opposite ends in the stacking direction of the active portion, and the device body of the inactive portion is not displaced, the element A laminated piezoelectric element having a pair of external electrodes bonded to side surfaces of the main body and alternately connected to the internal electrodes, wherein the bonding strength between the external electrodes and the inactive portion is wherein much larger than the bonding strength between the active portion, and the external electrodes, and having a glass containing Si, the multi Ikoto than the Si content of the Si content of said inert portion said active portion A laminated piezoelectric element. 不活性部のSi含有量が活性部よりもSiO換算で0.1〜3重量%多いことを特徴とする請求項記載の積層型圧電素子。Laminated piezoelectric element according to claim 1, wherein the Si content of the inert portion is characterized in that 0.1 to 3 wt% more in terms of SiO 2 than the active section. 噴射孔を有する収納容器と、該収納容器内に収容された請求項1又は2記載の積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなることを特徴とする噴射装置。 3. A storage container having an injection hole, the multilayer piezoelectric element accommodated in the storage container, and a valve for ejecting liquid from the injection hole by driving the multilayer piezoelectric element. An injection device characterized by comprising.
JP2001393083A 2001-12-26 2001-12-26 Multilayer piezoelectric element and injection device Expired - Fee Related JP3860746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393083A JP3860746B2 (en) 2001-12-26 2001-12-26 Multilayer piezoelectric element and injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393083A JP3860746B2 (en) 2001-12-26 2001-12-26 Multilayer piezoelectric element and injection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005142146A Division JP4299807B2 (en) 2005-05-16 2005-05-16 Multilayer piezoelectric element and injection device

Publications (2)

Publication Number Publication Date
JP2003197991A JP2003197991A (en) 2003-07-11
JP3860746B2 true JP3860746B2 (en) 2006-12-20

Family

ID=27600156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393083A Expired - Fee Related JP3860746B2 (en) 2001-12-26 2001-12-26 Multilayer piezoelectric element and injection device

Country Status (1)

Country Link
JP (1) JP3860746B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633210B2 (en) 2003-07-28 2009-12-15 Kyocera Corporation Multi-layer electronic component and method for manufacturing the same, multi-layer piezoelectric element
JP4771649B2 (en) * 2003-07-28 2011-09-14 京セラ株式会社 Manufacturing method of multilayer electronic component
JP4868707B2 (en) * 2004-01-19 2012-02-01 京セラ株式会社 Multilayer piezoelectric element and injection device
US7633214B2 (en) 2003-09-24 2009-12-15 Kyocera Corporation Multi-layer piezoelectric element
WO2005029602A1 (en) 2003-09-24 2005-03-31 Kyocera Corporation Multilayer piezoelectric device
EP1677369B1 (en) 2003-09-25 2009-11-11 Kyocera Corporation Multilayer piezoelectric device
JP4593909B2 (en) * 2003-12-17 2010-12-08 京セラ株式会社 Multilayer piezoelectric element and injection device
JP4803956B2 (en) * 2003-09-25 2011-10-26 京セラ株式会社 Piezoelectric ceramics, laminated piezoelectric element using the same, and jetting apparatus
DE10345500B4 (en) 2003-09-30 2015-02-12 Epcos Ag Ceramic multilayer component
JP2005191046A (en) * 2003-12-24 2005-07-14 Kyocera Corp Laminated piezoelectric element, manufacturing method thereof, and ejector
CN102113142B (en) 2008-07-29 2013-07-17 京瓷株式会社 Laminated piezoelectric element, and jet device and fuel jet system using laminated piezoelectric element
JP5328750B2 (en) * 2010-11-09 2013-10-30 京セラ株式会社 Multilayer piezoelectric element and jetting apparatus using the same

Also Published As

Publication number Publication date
JP2003197991A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
JP3860746B2 (en) Multilayer piezoelectric element and injection device
JP2012099827A (en) Laminated electronic component and injector using it
JP4808915B2 (en) Multilayer piezoelectric element and injection device
JP2003017768A (en) Stacked piezoelectric element and jet device
EP1686633B1 (en) Multilayer piezoelectric device
JP3730893B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP2001102647A (en) Laminated piezoelectric actuator
JP4299807B2 (en) Multilayer piezoelectric element and injection device
JP3667289B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP2001244514A (en) Laminated piezoelectric actuator and injector using the same
JP2002289932A (en) Laminated piezoelectric element, manufacturing method therefor, and jetting device
JP4373643B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP3598057B2 (en) Multilayer piezoelectric element and injection device
JP4737799B2 (en) Multilayer piezoelectric actuator and injection device
JP2005101274A (en) Piezoelectric ceramics, and lamination piezoelectric element and fuel injection system using the same
JP4498300B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP4593911B2 (en) Multilayer piezoelectric element and injection device
JP4022062B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP2003282984A (en) Laminate type piezoelectric element, its manufacturing method and jetting device using the element
JP4841046B2 (en) Multilayer piezoelectric element and injection device
JP4290947B2 (en) Multilayer piezoelectric element and injection device
JP2005129871A (en) Stacked piezoelectric element and injector device using the same
JP3909275B2 (en) Multilayer piezoelectric element and injection device
JP3872349B2 (en) Manufacturing method of multilayer piezoelectric element
JP3894861B2 (en) Multilayer piezoelectric element and injection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050608

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060922

R150 Certificate of patent or registration of utility model

Ref document number: 3860746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees