JPS6318352B2 - - Google Patents
Info
- Publication number
- JPS6318352B2 JPS6318352B2 JP19490283A JP19490283A JPS6318352B2 JP S6318352 B2 JPS6318352 B2 JP S6318352B2 JP 19490283 A JP19490283 A JP 19490283A JP 19490283 A JP19490283 A JP 19490283A JP S6318352 B2 JPS6318352 B2 JP S6318352B2
- Authority
- JP
- Japan
- Prior art keywords
- glass powder
- electrostrictive
- laminate
- internal electrodes
- electrostrictive material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 33
- 239000011521 glass Substances 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 29
- 239000000725 suspension Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 230000005684 electric field Effects 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 238000004062 sedimentation Methods 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 238000001962 electrophoresis Methods 0.000 description 8
- 239000012212 insulator Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 5
- 238000000576 coating method Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000003985 ceramic capacitor Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- FKSZLDCMQZJMFN-UHFFFAOYSA-N [Mg].[Pb] Chemical compound [Mg].[Pb] FKSZLDCMQZJMFN-UHFFFAOYSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- DHEIAYDROZXXGS-UHFFFAOYSA-N ethanol;iodine Chemical compound [I].CCO DHEIAYDROZXXGS-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- ZFZQOKHLXAVJIF-UHFFFAOYSA-N zinc;boric acid;dihydroxy(dioxido)silane Chemical compound [Zn+2].OB(O)O.O[Si](O)([O-])[O-] ZFZQOKHLXAVJIF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【発明の詳細な説明】
本発明は縦効果を利用した電歪効果素子の製造
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an electrostrictive element using longitudinal effect.
縦効果を利用した電歪効果素子の構造において
は電歪材料全体に電界を発生させることにより歪
発生時の応力集中を防ぐため素子の断面全体と同
じ大きさの内部電極を持つことが必要である。ま
た低電圧で高い電界を発生させ大きな歪を得るた
めには内部電極相互の間隔を100ミクロン程度に
することが必要である。以上2つの理由で素子断
面と同じ面積の内部電極を有する電歪効果素子を
電気的に接続するのは大きな困難が伴う。 In the structure of an electrostrictive element that utilizes the longitudinal effect, it is necessary to have internal electrodes that are the same size as the entire cross section of the element in order to prevent stress concentration when strain occurs by generating an electric field throughout the electrostrictive material. be. Furthermore, in order to generate a high electric field at a low voltage and obtain a large strain, it is necessary to set the distance between the internal electrodes to about 100 microns. For the above two reasons, it is very difficult to electrically connect an electrostrictive element having an internal electrode having the same area as the cross section of the element.
そこで本発明者等は先に電気泳動法により、電
歪材料積層体の端面に露出した内部電極層とその
近傍のセラミツク上に一層おきに絶縁物を形成す
ることを特徴とする電気的接続方法を提案した。
第1図はその方法により接続した電歪効果素子の
外観図である。端面に露出した内部電極層および
その近傍のセラミツク上に電気泳動法により一層
おきに絶縁物7が形成されている。裏側の端面に
は一層だけずらした内部電極上に同じく絶縁物8
が形成されている。この絶縁物および露出したま
まの内部電極4を横断して帯状の外部電極11を
形成する。裏側にも同様に内部電極3に対して外
部電極を形成することにより多数の内部電極は一
層おきにプラス側端子13又はマイナス側端子1
2にそれぞれ接続される。これらの外部端子間に
直流電圧を印加することにより保護膜部1を除く
電歪材料2全体に均一な電界が発生し積層方向と
平行に素子が伸長する。応力集中がないため繰り
返し電圧を印加しても素子は破壊せず、また内部
電極間距離が短かいため100V以下の低電圧で駆
動することができる。 Therefore, the present inventors first developed an electrical connection method characterized by forming an insulator every other layer on the internal electrode layer exposed on the end face of the electrostrictive material laminate and the ceramic in the vicinity thereof by electrophoresis. proposed.
FIG. 1 is an external view of an electrostrictive effect element connected by this method. An insulator 7 is formed every other layer by electrophoresis on the internal electrode layer exposed on the end face and on the ceramic in the vicinity thereof. On the end face of the back side, an insulator 8 is also placed on the inner electrode which is shifted by one layer.
is formed. A band-shaped external electrode 11 is formed across this insulator and the exposed internal electrode 4. By similarly forming external electrodes for the internal electrodes 3 on the back side, a large number of internal electrodes are connected to the positive terminal 13 or the negative terminal 1 every other layer.
2, respectively. By applying a DC voltage between these external terminals, a uniform electric field is generated throughout the electrostrictive material 2 except for the protective film portion 1, and the element is expanded in parallel to the stacking direction. Since there is no stress concentration, the element will not be destroyed even if voltage is applied repeatedly, and the distance between internal electrodes is short, so it can be driven at a low voltage of 100V or less.
この素子の製造方法について簡単に説明する。
まず第2図に示すような内部電極3,4と電歪材
料1,2とを交互に積層した積層体を積層セラミ
ツクコンデンサの製造技術を応用して作製する。
多数の内部電極3,4は表側と裏側の端面に露出
しており、また側面に形成した2つの仮設外部電
極5,6に一層おきに交互に接続している。懸濁
液中にこの積層体と対向電極用金属板とを設置
し、直流電圧をこの対向電極板から、前記仮設外
部電極5に向けて印加すると懸濁液中のプラスに
帯電したガラス粉末は電気泳動によつて内部電極
3とその近傍の電歪材料上に付着する。第3図は
表側の端面にガラス粉末を付着させた積層体の外
観図である。図中番号1は保護膜の働きをする電
歪材料、2は電界が発生して歪を生ずる部分の電
歪材料を示す。4は露出している内部電極を示
し、それらの間に存在する内部電極はガラス粉末
7によつて被われている。 A method for manufacturing this element will be briefly explained.
First, a laminate in which internal electrodes 3, 4 and electrostrictive materials 1, 2 are alternately laminated as shown in FIG. 2 is fabricated by applying the manufacturing technology for laminated ceramic capacitors.
A large number of internal electrodes 3, 4 are exposed on the front and back end surfaces, and are alternately connected to two temporary external electrodes 5, 6 formed on the side surfaces at every other layer. When this laminate and a metal plate for a counter electrode are placed in a suspension and a DC voltage is applied from the counter electrode plate toward the temporary external electrode 5, the positively charged glass powder in the suspension is It is deposited on the internal electrode 3 and the electrostrictive material in its vicinity by electrophoresis. FIG. 3 is an external view of a laminate with glass powder adhered to the front end face. In the figure, numeral 1 indicates an electrostrictive material that functions as a protective film, and numeral 2 indicates an electrostrictive material in a portion where an electric field is generated to cause distortion. 4 indicates exposed internal electrodes, and the internal electrodes existing between them are covered with glass powder 7.
該ガラス粉末を焼成固着させた後、裏側の端面
についても同様な方法でガラス粉末を付着し、焼
成固着させる。この絶縁物を形成した積層体は第
4図に破線で示すような位置で切断され両端の小
片9を除いた数個の小片10に外部電極11を形
成すると第1図に示す電歪効果素子が得られる。 After the glass powder is baked and fixed, the glass powder is applied to the back end face in the same manner and fixed by baking. The laminated body formed with this insulator is cut at the positions shown by broken lines in FIG. 4, and external electrodes 11 are formed on several pieces 10 excluding the pieces 9 at both ends, resulting in the electrostrictive effect element shown in FIG. 1. is obtained.
この方法の問題点は付着によつて形成された帯
状の絶縁物に切れやくびれが生じやすいことであ
る。原因としては懸濁液内の対流によつて局部的
に電界の弱い部分が発生し、その部分への付着が
起らないためと考えられる。焼成固着後その上か
ら外部電極を形成すると切れの部分ではシヨート
になり、くびれの部分では絶縁耐圧が大きく低下
し実用にならない。 The problem with this method is that the band-shaped insulator formed by the adhesion tends to be cut or constricted. The reason is thought to be that convection within the suspension generates locally weak electric field areas, and no adhesion occurs in those areas. If an external electrode is formed on top of it after firing and fixing, it will become short at the cut part and the withstand voltage will drop significantly at the constriction part, making it impractical.
本発明はこの問題を解決することを目的として
おり、まず第2図に示すような電歪材料と内部電
極との積層体を帯電したガラス粉末を含む懸濁液
中に沈め、内部電極の露出した端面全面にガラス
粉末を堆積させる。次に同じ懸濁液内に対向電極
板を設置し、仮設外部電極6とこの対向電極板と
の間に直流電圧を印加する。仮設外部電極6に接
続している内部電極4とその近傍に堆積している
ガラス粉末は堆積後もプラスに帯電しているた
め、直流電界の方向に静電力を受けて積層体表面
から除去される。得られた絶縁物のパターン形状
は通常の電気泳動法、すなわち対向電極板から仮
設外部電極5に向けて直流電圧を印加した場合と
全く同じである。しかしながら堆積によつてあら
かじめ形成するガラス粉末層は欠陥のない完全な
ものであり、また堆積後の電圧印加によつて絶縁
膜を形成させる部分すなわち内部電極3とその近
傍のセラミツク上のガラス粉末層が破壊されるこ
とは全くない。 The present invention aims to solve this problem. First, a laminate of an electrostrictive material and an internal electrode as shown in FIG. 2 is submerged in a suspension containing charged glass powder, and the internal electrode is exposed. Glass powder is deposited on the entire edge surface. Next, a counter electrode plate is placed in the same suspension, and a DC voltage is applied between the temporary external electrode 6 and this counter electrode plate. The internal electrode 4 connected to the temporary external electrode 6 and the glass powder deposited near it are positively charged even after deposition, so they are removed from the surface of the laminate by electrostatic force in the direction of the DC electric field. Ru. The pattern shape of the obtained insulator is exactly the same as that of the usual electrophoresis method, that is, when a DC voltage is applied from the counter electrode plate toward the temporary external electrode 5. However, the glass powder layer formed in advance by deposition is perfect with no defects, and the glass powder layer on the portion where the insulating film is to be formed, that is, the internal electrode 3 and the ceramic in the vicinity, is formed by applying a voltage after deposition. is never destroyed.
本発明の特徴は一度、全面に堆積させた後不必
要な部分のみを除去することにある。この方法に
よれば不必要な部分に一部ガラス粉末が残留する
ことはあつても、絶縁すべき場所へのガラス粉末
の付着状態は完全であり、焼成固着により切れや
くびれの全くない良好な帯状絶縁被膜が形成され
る。 The feature of the present invention is that once the entire surface is deposited, only unnecessary portions are removed. According to this method, although some glass powder may remain in unnecessary areas, the adhesion of the glass powder to the areas that should be insulated is perfect, and the firing fixes the glass powder to a good condition with no cuts or constrictions. A band-shaped insulating coating is formed.
以下実施例に従い本発明の詳細な説明を行な
う。 The present invention will be explained in detail below according to Examples.
まず第2図に示すような構造の多数の内部電極
と1組の仮設外部電極とを有する電歪材料積層体
をして以下の方法により作製する。 First, an electrostrictive material laminate having a structure as shown in FIG. 2 and having a large number of internal electrodes and a set of temporary external electrodes is manufactured by the following method.
マグネシウムニオブ酸鉛(Pb(Mg1/3Nb2/
3)O3)およびチタン酸鉛(PbTiO3)を主成分
とする電歪材料予焼粉末に微量の有機バインダー
を添加し、これを有機溶媒中に分散させたスラリ
ーを準備した。通常の積層セラミツクコンデンサ
の製造に使用されるキヤステイング製膜装置によ
りこのスラリーをマイラーフイルム上に数百ミク
ロンの厚さに塗布し乾燥させた。これをフイルム
から剥離し、電歪材料グリーンシートを得た。一
部のグリーンシートには更に内部電極として白金
ペーストをスクリーン印刷した。これらのグリー
ンシートを数10枚重ね、熱プレスにより圧着一体
化した後1250℃で焼成し、電歪材料積層体を得
た。これを内部電極が一層おきに表面に露出する
ような位置で切断し仮設外部電極を塗布焼付けし
更に側面を切断して第2図に示すような内部電極
が露出している積層体を得た。このようにして得
られた電歪材料積層体に電気泳動法を適用する。
第2図において1は保護膜部分の電歪材料、2は
歪を生じる電歪材料をそれぞれ示す。内部電極
3,4はそれぞれ5と6で示す仮設外部電極に接
続しており、他の内部電極は一層おきに交互に2
つの仮設外部電極に接続されている。 Magnesium lead niobate (Pb (Mg1/3Nb2/
3 ) A slurry was prepared by adding a small amount of an organic binder to an electrostrictive material pre-fired powder containing lead titanate (PbTiO 3 ) and lead titanate (PbTiO 3 ) as main components, and dispersing this in an organic solvent. This slurry was coated onto a Mylar film to a thickness of several hundred microns using a casting film forming apparatus used in the manufacture of ordinary multilayer ceramic capacitors and dried. This was peeled off from the film to obtain an electrostrictive material green sheet. Some of the green sheets were further screen-printed with platinum paste as internal electrodes. Several ten of these green sheets were stacked, pressed together by heat press, and then fired at 1250°C to obtain an electrostrictive material laminate. This was cut at a position where the internal electrodes were exposed on the surface every other layer, temporary external electrodes were applied and baked, and the sides were cut to obtain a laminate with exposed internal electrodes as shown in Figure 2. . Electrophoresis is applied to the electrostrictive material laminate thus obtained.
In FIG. 2, reference numeral 1 indicates the electrostrictive material of the protective film portion, and reference numeral 2 indicates the electrostrictive material that causes strain. The internal electrodes 3 and 4 are connected to temporary external electrodes indicated by 5 and 6, respectively, and the other internal electrodes are connected to the temporary external electrodes indicated by 2 alternately every other layer.
connected to two temporary external electrodes.
次に付着物であるガラス粉末を含む懸濁液を以
下の方法で作製する。ホウケイ酸亜鉛系結晶化ガ
ラス粉末30g、エタノール290ml、5%ヨウ素エ
タノール溶液10mlを高速ホモジナイザーで混合す
る。ヨウ素が電解質の役割を果たし、ガラス粉末
はプラスに帯電している。30分間超音波をかけた
後、30分間静置して沈澱物を除去し残りの懸濁液
を使用する。 Next, a suspension containing glass powder as deposits is prepared by the following method. Mix 30 g of zinc borosilicate crystallized glass powder, 290 ml of ethanol, and 10 ml of 5% iodine ethanol solution using a high-speed homogenizer. Iodine acts as an electrolyte, and the glass powder is positively charged. After applying ultrasound for 30 minutes, let stand for 30 minutes to remove the precipitate, and use the remaining suspension.
前記電歪材料積層体の内部電極が露出している
端面の片方を粘着テープで被い懸濁液にぬれるの
を防いだ後、付着させる端面を上向きにして、前
記懸濁液中に沈め、15分間放置し端面全面にガラ
ス粉末を堆積させる。放置する時間を長くするこ
とによつて堆積するガラス粉末の厚みを増加させ
ることができる。また遠心法により強制的に沈降
速度を早め、かつ堆積層の密度を増加させること
もできる。 After covering one end face of the electrostrictive material laminate with an exposed internal electrode with an adhesive tape to prevent it from getting wet with the suspension, submerge it in the suspension with the end face to be attached facing upward; Leave it for 15 minutes to deposit glass powder on the entire end surface. By increasing the standing time, the thickness of the deposited glass powder can be increased. Furthermore, it is also possible to forcibly accelerate the sedimentation rate and increase the density of the deposited layer by centrifugation.
次に懸濁液内に対向電極板を沈め、前記積層体
の上方3cmの位置に設置する。直流電源のプラス
端子に仮設外部電極23を接続しマイナス端子に
対向電極板を接続し、20Vで200秒印加する。こ
の場合、懸濁液の代りにエチルアルコールでも良
い。第5図は設置方法を示す概念図である。図中
番号21は内部電極を有する電歪材料積層体、2
2は絶縁すべき内部電極をまとめた仮設外部電
極、23は露出させるべき内部電極をまとめた仮
設外部電極をそれぞれ示す。24は積層体端面に
堆積したガラス粉末である。25は対向電極板、
26は前記懸濁液又はエチルアルコール、27は
直流電源、28は容器をそれぞれ示す。 Next, a counter electrode plate is submerged in the suspension and placed at a position 3 cm above the laminate. Connect the temporary external electrode 23 to the positive terminal of the DC power supply, connect the counter electrode plate to the negative terminal, and apply 20V for 200 seconds. In this case, ethyl alcohol may be used instead of the suspension. FIG. 5 is a conceptual diagram showing the installation method. In the figure, number 21 is an electrostrictive material laminate having internal electrodes, 2
Reference numeral 2 denotes a temporary external electrode that is a group of internal electrodes to be insulated, and 23 is a temporary external electrode that is a group of internal electrodes that should be exposed. 24 is glass powder deposited on the end face of the laminate. 25 is a counter electrode plate;
26 is the suspension or ethyl alcohol, 27 is a DC power supply, and 28 is a container.
電圧印加後、積層体を懸濁液又はエタノールか
ら引き上げ乾燥させ、710℃空気雰囲気で焼成し
固着させる。反対側の端面にも同様の方法でパタ
ーン形成を行なつた後、第4図に示すような破線
の位置で切断し、絶縁物を形成した2つの面に帯
状の外部電極を形成すると、第1図に示すように
内部電極が素子断面に等しい電歪効果素子を電気
的に接続することができる。 After applying voltage, the laminate is pulled out of the suspension or ethanol, dried, and baked at 710° C. in an air atmosphere to fix it. After forming a pattern on the opposite end surface in the same manner, it is cut at the position of the broken line as shown in Fig. 4, and a band-shaped external electrode is formed on the two surfaces on which the insulator is formed. As shown in FIG. 1, electrostrictive elements whose internal electrodes are equal to the cross section of the element can be electrically connected.
本発明によれば微細な絶縁パターンを高い信頼
度で形成することができるばかりでなく、従来制
御が困難であつた絶縁物の層厚を懸濁液中での放
置時間のコントロールという簡単な方法で実現す
ることが可能であり大量生産に適した製造方法で
ある。 According to the present invention, it is not only possible to form fine insulating patterns with high reliability, but also a simple method of controlling the layer thickness of the insulating material, which has been difficult to control in the past, by controlling the length of time the insulating material is left in the suspension. This manufacturing method is suitable for mass production.
第1図は電気泳動法を用いて電気的に接続され
た、内部電極が素子断面積に等しい電歪効果素子
を示す外観図である。図中番号1は保護膜部の電
歪材料セラミツクス、2は歪を生ずる部分の電歪
材料セラミツクス、3,4は内部電極、7,8は
それらを被う絶縁被膜、11は内部電極を一層お
きに相互に接続する外部電極をそれぞれ示す。1
2,13はマイナス側およびプラス側の外部端子
を示す。
第2図は電気泳動法を適用するための電歪材料
積層体の外観図である。図中番号1は保護膜部の
電歪材料積層体、2は歪を発生する部分の電歪材
料積層体、3,4は端面に露出した内部電極、
5,6はこれらを相互に接続している仮設外部電
極をそれぞれ示す。
第3図は端面の内部電極の露出した部分とその
周辺のセラミツク上にガラス粉末を形成した電歪
材料積層体の外観図である。図中番号1は保護膜
部の電歪材料セラミツク、2は歪を発生する部分
の電歪材料セラミツク、7は付着したガラス粉
末、5,6は内部電極を一層おきに相互に接続す
る仮設外部電極、4は露出している内部電極をそ
れぞれ示す。第4図は絶縁被膜を形成した電歪材
料積層体の切断位置(点線部分)を示す外観図で
ある。図中番号9は両端の使えない部分、10は
外部電極の形成により電歪効果素子として働く部
分をそれぞれ示す。
第5図は本発明の方法による電気泳動装置の接
続方法を示す概略図である。図中番号21は電歪
材料積層体、22はガラス粉を付着させるべき内
部電極をまとめた仮設外部電極、23は付着させ
ない方の内部電極をまとめた仮設外部電極をそれ
ぞれ示す。24は堆積したガラス粉末、25は対
向電極板、26は帯電したガラス粉末を含む懸濁
液又はエタノール、27は直流電源、28は容器
をそれぞれ示す。
FIG. 1 is an external view showing an electrostrictive effect element whose internal electrodes are equal in cross-sectional area to the element, which are electrically connected using electrophoresis. In the figure, number 1 is the electrostrictive material ceramic of the protective film part, 2 is the electrostrictive material ceramic of the part that causes strain, 3 and 4 are the internal electrodes, 7 and 8 are the insulating coatings that cover them, and 11 is the internal electrode layer External electrodes connected to each other are shown at intervals. 1
2 and 13 indicate negative and positive external terminals. FIG. 2 is an external view of an electrostrictive material laminate to which electrophoresis is applied. In the figure, number 1 is the electrostrictive material laminate of the protective film part, 2 is the electrostrictive material laminate of the part where strain is generated, 3 and 4 are internal electrodes exposed on the end surface,
Reference numerals 5 and 6 indicate temporary external electrodes interconnecting these. FIG. 3 is an external view of an electrostrictive material laminate in which glass powder is formed on the exposed portions of the internal electrodes on the end faces and the surrounding ceramics. In the figure, number 1 is the electrostrictive ceramic material of the protective film part, 2 is the electrostrictive material ceramic material of the part where strain is generated, 7 is the attached glass powder, and 5 and 6 are the temporary external parts that interconnect the internal electrodes every other layer. Electrodes 4 indicate exposed internal electrodes, respectively. FIG. 4 is an external view showing the cutting position (dotted line portion) of the electrostrictive material laminate on which the insulating coating is formed. In the figure, numeral 9 indicates an unusable portion at both ends, and numeral 10 indicates a portion that functions as an electrostrictive element by forming external electrodes. FIG. 5 is a schematic diagram showing a method of connecting an electrophoresis device according to the method of the present invention. In the figure, numeral 21 indicates an electrostrictive material laminate, 22 indicates a temporary external electrode that includes internal electrodes to which glass powder is to be attached, and 23 indicates a temporary external electrode that includes internal electrodes to which glass powder is not to be attached. 24 is a deposited glass powder, 25 is a counter electrode plate, 26 is a suspension containing charged glass powder or ethanol, 27 is a DC power source, and 28 is a container.
Claims (1)
歪材料積層体を作製し、該積層体の端面に露出し
た内部電極の一部およびその近傍の電歪材料上に
ガラス粉末を付着させる工程を有する電歪効果素
子の製造方法において、帯電したガラス粉末を含
む懸濁液中に前記積層体を置き、あらかじめ沈降
により前記端面全面にガラス粉末を堆積させてお
き、次にガラス粉末を付着させない内部電極と懸
濁液中に設置した対向電極用金属板との間に電界
をかけることにより前記ガラス粉末を付着させな
い内部電極上に堆積したガラス粉末のみを静電的
力により取り除くことを特徴とする電歪効果素子
の製造方法。1. Producing an electrostrictive material laminate in which electrostrictive materials and internal electrodes are alternately laminated, and attaching glass powder onto a portion of the internal electrodes exposed on the end face of the laminate and the electrostrictive material in the vicinity thereof. In a method for manufacturing an electrostrictive effect element having a step, the laminate is placed in a suspension containing charged glass powder, the glass powder is deposited on the entire surface of the end face by sedimentation in advance, and then the glass powder is attached. By applying an electric field between the internal electrode that does not allow the glass powder to adhere and a metal plate for a counter electrode placed in the suspension, only the glass powder deposited on the internal electrode that does not allow the glass powder to adhere is removed by electrostatic force. A method for manufacturing an electrostrictive element.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58194902A JPS6086882A (en) | 1983-10-18 | 1983-10-18 | Manufacture of electrostrictive-effect element |
DE8383307867T DE3373594D1 (en) | 1982-12-22 | 1983-12-22 | Method of producing electrostrictive effect element |
EP83307867A EP0113999B1 (en) | 1982-12-22 | 1983-12-22 | Method of producing electrostrictive effect element |
US06/940,210 US4681667A (en) | 1982-12-22 | 1986-12-10 | Method of producing electrostrictive effect element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58194902A JPS6086882A (en) | 1983-10-18 | 1983-10-18 | Manufacture of electrostrictive-effect element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6086882A JPS6086882A (en) | 1985-05-16 |
JPS6318352B2 true JPS6318352B2 (en) | 1988-04-18 |
Family
ID=16332229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58194902A Granted JPS6086882A (en) | 1982-12-22 | 1983-10-18 | Manufacture of electrostrictive-effect element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6086882A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5304159B2 (en) * | 2008-10-08 | 2013-10-02 | 株式会社村田製作所 | Manufacturing method of multilayer ceramic capacitor |
JPWO2022270299A1 (en) * | 2021-06-23 | 2022-12-29 |
-
1983
- 1983-10-18 JP JP58194902A patent/JPS6086882A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6086882A (en) | 1985-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4681667A (en) | Method of producing electrostrictive effect element | |
JPS6317355B2 (en) | ||
EP0167392B1 (en) | Method of producing electrostrictive effect element | |
JPS61182284A (en) | Electrostrictive effect element | |
JPH0256826B2 (en) | ||
JPS6318352B2 (en) | ||
JPH0256827B2 (en) | ||
JPS59122200A (en) | Method for connecting electrically internal electrode of electrostrictive element | |
JPS60178678A (en) | Manufacture of electronic component of ceramic lamination | |
JPS6318353B2 (en) | ||
JPH06181343A (en) | Laminated displacement element and manufacture thereof | |
JPH05267743A (en) | Manufacture of laminated piezoelectric actuator | |
JPH0256829B2 (en) | ||
JPH0256828B2 (en) | ||
JPH02137280A (en) | Electrostriction effect element and its manufacture | |
JPS6086881A (en) | Manufacture of electrostrictive-effect element | |
JPH0923030A (en) | Manufacture of laminated piezoelectric element | |
JPH0519313B2 (en) | ||
JPH06112546A (en) | Multilayer piezoelectric element and its manufacture | |
JPH04359577A (en) | Manufacture of laminated piezoelectric actuator element | |
JP2001157471A (en) | Piezoelectric transducer | |
JPS6359275B2 (en) | ||
JPH05291642A (en) | Electrostriction effect element and its fabrication | |
JPS6214483A (en) | Manufacture of electrostrictive effect element | |
JPH07240545A (en) | Laminated piezoelectric element |