JPS6086881A - Manufacture of electrostrictive-effect element - Google Patents

Manufacture of electrostrictive-effect element

Info

Publication number
JPS6086881A
JPS6086881A JP58194901A JP19490183A JPS6086881A JP S6086881 A JPS6086881 A JP S6086881A JP 58194901 A JP58194901 A JP 58194901A JP 19490183 A JP19490183 A JP 19490183A JP S6086881 A JPS6086881 A JP S6086881A
Authority
JP
Japan
Prior art keywords
glass powder
electrostrictive
laminated body
electrodes
internal electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58194901A
Other languages
Japanese (ja)
Other versions
JPS6318351B2 (en
Inventor
Atsushi Ochi
篤 越智
Kazuaki Uchiumi
和明 内海
Masanori Suzuki
正則 鈴木
Mitsuhiro Midorikawa
緑川 光宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58194901A priority Critical patent/JPS6086881A/en
Priority to DE8383307867T priority patent/DE3373594D1/en
Priority to EP83307867A priority patent/EP0113999B1/en
Publication of JPS6086881A publication Critical patent/JPS6086881A/en
Priority to US06/940,210 priority patent/US4681667A/en
Publication of JPS6318351B2 publication Critical patent/JPS6318351B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a dense glass coated film and to enhance the insulating withstand voltage of an electrostrictive-effect element by a method wherein the grain size of glass powder in a suspension, which is made to stick to the exposed parts of internal electrode layers by an electrophoresis method, is set at a value in a specific extent. CONSTITUTION:A laminated body constituted by alternately laminating internal electrodes 3 and 4 and electrostrictive material 1 and 2 is manufactured in such a way that the internal electrodes 3 and 4 are made to expose at the surface and the back surface of the laminated body. The electrodes 3 and 4 are made to alternately connected with temporary electrodes 5 and 6 provided on both sides of the laminated body every one layer. The laminated body is installed in a suspension containing glass powder, the value of the electified BET specific surface area of which is a grain size of 1.0-2.0m<3>/g, along with an opposed electrode plate (not shown in the diagram). At this time, one side of the laminated body is ready for having been covered with an adhesive tape. DC voltage is impressed in between the electrode 5 and the opposed electrode plate, and glass powder 7 is made to stick to the internal electrodes 3 and the electrostrictive material in the vicinites of the internal electrodes 3. When the laminated body obtained in such a way is baked, a dense glass coated film having a high insulating withstand voltage can be formed.

Description

【発明の詳細な説明】 本発明は縦効果を利用した電歪効果素子の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an electrostrictive element using longitudinal effect.

縦効果を利用した電歪効果素子の構造においては電歪材
料全体に電界を発生させることにより歪発生時の応力集
中を防ぐため、素子の断面全体と同じ大きさの内部を極
を持つことが必要である。
In the structure of an electrostrictive effect element that utilizes the longitudinal effect, in order to prevent stress concentration when strain occurs by generating an electric field throughout the electrostrictive material, it is possible to have poles within the same size as the entire cross section of the element. is necessary.

才だ低電圧で高い電界を発生させ大きな歪を得るために
は内部電極相互の間隔を100ミクロン程度にすること
が必要である。以上2つの現出で素子断面と同じ面積の
内部電極を有する。電歪効果素子を電気的に接続するに
は大きな困難が伴う。
In order to generate a high electric field at a very low voltage and obtain a large strain, it is necessary to set the interval between the internal electrodes to about 100 microns. In the above two manifestations, the internal electrode has the same area as the cross section of the element. It is very difficult to electrically connect electrostrictive elements.

そこで本発明者等は先に電気泳動法により、電歪材料積
層体の端面に露出した内部電極層とその近傍のセラミッ
ク上に一層おきに絶縁物を形成することを特徴とする電
気的接続方法を提案した。
Therefore, the present inventors first developed an electrical connection method characterized by forming an insulator every other layer on the internal electrode layer exposed on the end face of the electrostrictive material laminate and the ceramic in its vicinity by electrophoresis. proposed.

第1図はその方法により接続した電歪効果素子の外観図
である。tぬ面瘉こ露出した内it電極層よびその近傍
のセラミック上に電気泳動法により一層おきに絶縁物7
が形成されている。裏側の端面には一層だけずらした内
部電極上に同じく絶縁物8か形成されている。この絶縁
物および露出したままの内部電極4を横断して帯状の外
部電極11を形成する。裏側にも同様に内部11極3に
対して外部おきにプラス側端子13又はマイナス側端子
12にそれぞれ接続される。これらの外部端子間に直流
電圧を印加することにより保護膜部1を除く電歪材料2
全俸に均一な電界が発生し積層方向と平行に素子が伸長
する。応力集中がないため繰り返し電圧を印加しても素
子は破壊せず、また内部を極間距離が100ミクロン程
度と知力)いため100■以下の低電圧で駆動すること
ができる。
FIG. 1 is an external view of an electrostrictive effect element connected by this method. An insulator 7 is deposited every other layer on the exposed inner electrode layer and the ceramic in its vicinity by electrophoresis.
is formed. An insulator 8 is also formed on the inner electrode shifted by one layer on the end face on the back side. A band-shaped external electrode 11 is formed across this insulator and the exposed internal electrode 4. Similarly, on the back side, every other external terminal for the internal 11 poles 3 is connected to a positive terminal 13 or a negative terminal 12, respectively. By applying a DC voltage between these external terminals, the electrostrictive material 2 excluding the protective film portion 1
A uniform electric field is generated over the entire area, and the element is elongated in parallel to the stacking direction. Since there is no stress concentration, the element will not be destroyed even if voltage is repeatedly applied, and since the internal electrode distance is about 100 microns, it can be driven at a low voltage of 100 microns or less.

この素子の製造方法について簡単に説明する。A method for manufacturing this element will be briefly explained.

まず褐2図に示すような内′8を極3.4と′電歪材料
上、2とを交互にvk層した積層体を積層セラミックコ
ンデンサの製造技術を応用して作製する。
First, a laminated body as shown in Fig. 2 is fabricated by applying the manufacturing technology of a multilayer ceramic capacitor, in which the inner layer 3.4 and the layer 2 are alternately layered on an electrostrictive material.

多数の内部電極3.4は表側と裏側の端面に露出してお
り、まに側面に形成した2つの仮設外部電Wi5.6に
一層おきに交互に接続している。懸濁液中にこの積層体
と対向’4′FM用金属板とを設にし、直流電圧をこの
対問!極板から、前記仮設外st極5に向けて印加する
と懸濁液中のプラスに帯電したガラス粉末は電気泳動に
よって内部[413とその近傍の電歪材料上に付着する
。第3図は表側の端面にガラス粉末を付着させた積層体
の外観図である。図中番号1は保護膜の働きをする電歪
材料、2は電界が発生して歪を生ずる部分の電歪材料を
示す。4は露出している内部電極を示し、それらの間に
存在する内部電極はガラス粉末7によって被われている
。該ガラス粉末を焼成固着させた後、裏側の端面につい
ても同様な方法でガラス粉末を付着し、焼成固着させる
。絶縁物を形成した積層体は第4図に破線で示すような
位置で切断され両端の小片9を除いた数個の小片1oに
外部電極11を形成すると第1図1こ示す電歪効果素子
が得られる。
A large number of internal electrodes 3.4 are exposed on the front and back end surfaces, and are alternately connected to two temporary external electrodes Wi 5.6 formed on the side surfaces at every other layer. Place this laminate and an opposing '4' FM metal plate in the suspension, and set the DC voltage to this level! When a voltage is applied from the electrode plate toward the temporary outer st pole 5, the positively charged glass powder in the suspension adheres to the electrostrictive material inside [413 and its vicinity] by electrophoresis. FIG. 3 is an external view of a laminate with glass powder adhered to the front end face. In the figure, numeral 1 indicates an electrostrictive material that functions as a protective film, and numeral 2 indicates an electrostrictive material in a portion where an electric field is generated to cause distortion. 4 indicates exposed internal electrodes, and the internal electrodes existing between them are covered with glass powder 7. After the glass powder is baked and fixed, the glass powder is applied to the back end face in the same manner and fixed by baking. The laminated body formed with the insulator is cut at the positions shown by broken lines in FIG. 4, and external electrodes 11 are formed on several small pieces 1o excluding the small pieces 9 at both ends, resulting in the electrostrictive effect element shown in FIG. 1. is obtained.

この方法の問題点としては付着するガラス粉末の巾およ
び厚さが大きく変動すること、焼成後に時として空孔が
発生しガラス被膜が多孔質となり絶縁耐圧が大きく低下
することがあげられる。付着の巾および厚さは付着の容
易さ亡者えられ、これはガラス粉末の単位量当りの帯電
量に比例し、比表面積の大きな細かいガラス粉末はど短
時間で充分な巾と厚みを持った付着が得られる。二番め
の問題点はガラス粉末の焼成時における脱泡性に関係し
ている。粗いガラス粉末の場合は泡抜けは良好でち密な
ガラス被膜が得られるが、細かいガラス粉末ではカサ密
度が低く多数の泡をとりこんだまま焼結し、多孔質状の
ガラス被膜が得られる。
Problems with this method include that the width and thickness of the deposited glass powder vary greatly, and that pores are sometimes generated after firing, making the glass coating porous and greatly reducing the dielectric strength. The width and thickness of the adhesion are determined by the ease of adhesion, which is proportional to the amount of charge per unit amount of glass powder, and fine glass powder with a large specific surface area can be made to have sufficient width and thickness in a short time. Adhesion is obtained. The second problem is related to the defoaming properties of the glass powder during firing. In the case of coarse glass powder, bubble removal is good and a dense glass coating can be obtained, but in the case of fine glass powder, the bulk density is low and sintering takes place with a large number of bubbles trapped, resulting in a porous glass coating.

この現象は微細な帯状のガラス粉末の場合に特に顕著に
あられれるものと考えられ、る。
This phenomenon is thought to be particularly noticeable in the case of fine band-shaped glass powder.

本発明の目的は充分な巾と厚みを持ち、かつ焼成時に容
易に脱泡してち密なガラス被膜を形成するようなガラス
粉の帯状付着を形成できる電歪効果素子の製造方法を提
供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an electrostrictive effect element that has sufficient width and thickness and can form a band-like adhesion of glass powder that is easily degassed during firing to form a dense glass coating. It is.

本発明の方法は帯電したガラス粉末を含む懸濁液中にお
いて、電歪材料と内部!極との積層体の内部電極層の全
部又は一部を一層の電極とし、対向電極板を他方のti
j4Mとして両電極間に直流電圧を印加し、電気泳動法
によって前記の帯電したガラス粉末を前記積層体表面の
内部!極層の露出部0)lk部又は一部セよryその周
辺θ)電歪材料FLr付着させる電歪効果素子の製造方
法において、前記ガラス粉末としてBFiT比表面積の
値で1.0〜2.0が望ましい範囲である。BET比表
面積が1.Onl’/g以下の粗い原料粉はエタノール
を加えてアルミナボールミルにより所定の時間湿式粉砕
することにより容易に1,5♂/g 程度の粒度に調整
することができる。粉砕による粉末の活性化の効果もあ
るため、粗い原料粉を湿式粉砕した方が良好なガラス被
膜が得られる。
The method of the present invention involves the use of an electrostrictive material in a suspension containing electrically charged glass powder. All or part of the internal electrode layer of the laminated body with the electrode is used as one layer of electrode, and the counter electrode plate is used as the other layer of electrode.
A DC voltage is applied between both electrodes as j4M, and the charged glass powder is transferred to the inside of the surface of the laminate by electrophoresis. In the method for producing an electrostrictive effect element in which the exposed part of the pole layer 0) the part or a part thereof and its surroundings θ) the electrostrictive material FLr is attached, the glass powder has a BFiT specific surface area of 1.0 to 2. 0 is a desirable range. BET specific surface area is 1. Coarse raw material powder having a particle size of less than Onl'/g can be easily adjusted to a particle size of about 1.5♂/g by adding ethanol and wet-pulverizing it for a predetermined period of time in an alumina ball mill. Since pulverization also has the effect of activating the powder, a better glass coating can be obtained by wet-pulverizing coarse raw material powder.

ガラス粉末の電気泳動時の付着性および焼成時の脱泡性
はガラス粉の粒度をパラメータとして互いに逆の相関関
係にあり、粒度を適切な範囲におさめる以外にち密で充
分な巾と厚みを持った絶縁耐圧の大きなガラス被膜を安
定に形成することはできない。
The adhesion properties of glass powder during electrophoresis and the defoaming properties during firing are inversely related to each other using the particle size of the glass powder as a parameter. It is not possible to stably form a glass coating with a high dielectric strength.

以下実施例ti従って本発明の詳細な説明を行なう。The present invention will now be described in detail with reference to Example ti.

まず第2図に示すような構造の多数の内部を極と1組の
仮設外部電極とを有する電歪材料@置体をして以下の万
茫により作製する。
First, a large number of interior parts of the structure shown in FIG. 2 are fabricated using an electrostrictive material having poles and a set of temporary external electrodes as described below.

マグネシウムニオブ酸鉛(Pb(Mg1/3Nb2/3
)08)およびチタン酸鉛(PbTi03 )を主取分
よする箪歪材料子焼粉末に餓量の有機バインダーを添加
し、これを有機溶媒中に分散させたスラリーを準備した
。通常のV4)WrIセラミックコンデンサの製造に使
用されるキャスティング製膜装置によりこのスラリーを
マイラーフィルム上に自ミクロンの厚さに塗布し乾煙さ
せた。これをフィルムから剥離し、電歪材料グリーンシ
ートを得た。一部のグリーンシートには四に内部′電極
として白金ペーストをスクリーン印刷した。これらのグ
リーンシートを数10枚恵ね、熱プレスをこより圧着一
体化した後1250℃で焼成し、箪歪材料漬j−停°を
得た。これを内部°電極が一層おきに表面に露出するよ
うな位置で切断し仮設外部電極を塗布焼付けし更に側面
を切断して第2図に示すような内部it極が露出してい
る積層体を得た。このようにして得られた電歪材料m層
停に電気泳蛸法を適用する。第2図においで1は保護膜
部分の電歪材料、2は歪を生じる電歪材料をそれぞれ示
す。内部電極3.4はそれぞれ5と6で示す仮設外部電
極に接続しており、他の内部電極は一層おきに交互に2
つの仮設外部電極に接続されている。
Magnesium lead niobate (Pb(Mg1/3Nb2/3
)08) and lead titanate (PbTi03) as main components, a small amount of an organic binder was added to a powder of a strained material, and a slurry was prepared by dispersing this in an organic solvent. This slurry was coated onto a Mylar film to a thickness of about microns using a casting film forming apparatus used in the production of conventional V4) WrI ceramic capacitors, and then dried and smoked. This was peeled off from the film to obtain an electrostrictive material green sheet. Some of the green sheets were screen printed with platinum paste as internal electrodes. Several tens of these green sheets were assembled, pressed into one piece using a hot press, and then fired at 1250°C to obtain a compact strained material. This is cut at a position where the internal electrodes are exposed on the surface every other layer, temporary external electrodes are applied and baked, and the side surfaces are cut to form a laminate with the internal IT electrodes exposed as shown in Figure 2. Obtained. Electrophoresis is applied to the m-layer electrostrictive material thus obtained. In FIG. 2, numeral 1 indicates the electrostrictive material of the protective film portion, and numeral 2 indicates the electrostrictive material that causes strain. The inner electrodes 3.4 are connected to temporary outer electrodes denoted 5 and 6, respectively, and the other inner electrodes are connected alternately every other layer.
connected to two temporary external electrodes.

次にホウケイ酸亜鉛系結晶化ガラス粉末の粒度をかえた
ものを5種類準備した。原料粉はBET比表面積0.3
ピ/gであった。この原料粉300gをエタノール60
0m/とともにアルミナ製ボールミルに入れ4時間湿式
粉砕を行ない、BET比表面積Q、 7 n?/gのガ
ラス粉末を得た。同様の方法で8時間、12時間、16
時間、20時間粉砕することlこよりそれぞれ1.0♂
/g、 1.5 dlg 、 2.0 dlg。
Next, five types of zinc borosilicate crystallized glass powders with different particle sizes were prepared. The raw material powder has a BET specific surface area of 0.3
It was pi/g. 300g of this raw material powder is mixed with 60g of ethanol.
0m/ in an alumina ball mill for 4 hours, and the BET specific surface area Q, 7 n? /g of glass powder was obtained. 8 hours, 12 hours, 16 hours in the same way
time, 1.0♂ each from 20 hours of grinding
/g, 1.5 dlg, 2.0 dlg.

2.8♂/gのガラス粉末を得た。A glass powder of 2.8♂/g was obtained.

以上5種類の粒度の異なるガラス粉末について前記電歪
材料積層体を用いて以下に述べる方法で電気泳動法の付
着と焼成実験を行ない付着性および焼結性について調べ
た。
The adhesion and sinterability of the five types of glass powders having different particle sizes were investigated by electrophoretic adhesion and sintering experiments using the electrostrictive material laminate using the method described below.

湿式粉砕を行なったホウケイ酸亜鉛系結晶ガラス粉末3
0g、エタノール290mA! 、 5%ヨウ素エタノ
ール溶液10m1を高速ホセジナイザーで混合する。ヨ
ウ素が電解質の役割を果たし、ガラス粉末はプラスに帯
電している。(9)分間超音波をかけた後、30分間靜
装して沈澱物を除去し残りの懸濁液を使用する。
Wet-milled zinc borosilicate crystal glass powder 3
0g, ethanol 290mA! , 10 ml of 5% iodine ethanol solution are mixed in a high speed hosegenizer. Iodine acts as an electrolyte, and the glass powder is positively charged. (9) After applying ultrasonic waves for one minute, leave to stand for 30 minutes to remove the precipitate, and use the remaining suspension.

第5図に電気泳動装置の接続方法を示す。FIG. 5 shows how to connect the electrophoresis device.

前記電歪材料積層体21の内部電極が露出している片面
を粘着テープで被い懸濁液にぬれるのを防いだ後前記懸
濁液を満たした容器22に沈める。付着させたい面の前
号1cIILの距離のところに円筒状のステンレス製対
向電極詔を沈める。対向電極を直流電源のプラス端子部
に接続し、仮設外部電極をマイナス端子部に接続し、加
■の直流電圧を印加する。終了後乾燥させる。裏面の粘
着テープを取り除いた後、705 t:で保持すること
により焼成しガラス被膜を形成させる。内周刃切断様で
ガラス被膜上を切断し、断面を観察して内部の空孔の有
無について調べた。
One side of the electrostrictive material laminate 21 where the internal electrodes are exposed is covered with adhesive tape to prevent it from getting wet with the suspension, and then submerged in the container 22 filled with the suspension. A cylindrical stainless steel counter electrode is submerged at a distance of 1cIIL from the surface to which it is to be attached. The counter electrode is connected to the positive terminal of a DC power supply, the temporary external electrode is connected to the negative terminal, and a DC voltage of (2) is applied. Dry after finishing. After removing the adhesive tape on the back side, it is held at 705 t: and fired to form a glass film. The glass coating was cut using an internal blade cutting method, and the cross section was observed to check for the presence of internal pores.

表はこのような方法で行なった付着、焼成実験の結果を
まとめたものである。付着時間の項は充分な巾を得るた
めに必要な時間であり短時間で良い場合を0とした。粗
いガラス粉では実験中にガラス粉末が容器内で沈降し支
障があったためX印とした。非常に細かいガラス粉では
軟化点で長時間保持しても脱泡は不可能であるがO印で
示したガラス粉については軟化点600℃付近で4時程
度度保持することにより脱泡が可能となった。表に示し
た結果より1.Onr/gより小さい範囲では付着性が
悪く、2.0♂/gより大きい範囲では焼結性が悪くな
ることが判る゛。このためガラス粉末の粒度はBET値
1.0〜2.0ml’/gに調整すべきである。
The table summarizes the results of adhesion and firing experiments conducted using this method. The adhesion time term is the time required to obtain a sufficient width, and is set to 0 if a short time is sufficient. Coarse glass powder was marked with an X because the glass powder settled in the container during the experiment and caused problems. With very fine glass powder, defoaming is not possible even if held at the softening point for a long time, but with glass powder marked with an O mark, defoaming is possible by holding the glass powder at a softening point of around 600°C for about 4 hours. It became. From the results shown in the table, 1. It can be seen that in a range smaller than Onr/g, the adhesion is poor, and in a range larger than 2.0♂/g, the sinterability is poor. Therefore, the particle size of the glass powder should be adjusted to a BET value of 1.0 to 2.0 ml'/g.

ガラス粉末の粒度を調整する本発明の方法lこより、電
気泳動法によって電歪材料積層体端面の内部電極露出部
基こ充分な巾と厚みを持つたち密なガラス被膜を形成す
ることが可能になり、電歪効果素子を安定に高い信頼度
で電気的に接続できるようになった。
The method of the present invention for adjusting the particle size of glass powder makes it possible to form a dense glass coating with sufficient width and thickness on the exposed portion of the internal electrode on the end face of the electrostrictive material laminate by electrophoresis. This makes it possible to electrically connect electrostrictive elements stably and with high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

M1図は電気泳動法を用いた絶縁膜を利用して電気的接
続を行なった電歪効果素子の外観図である。図中番号1
は保護膜部の電歪材料、2は歪を発生する部分の電歪材
料、3.4は内部電極、7.8は電気泳動法により形成
した絶縁膜をそれぞれ示す。11は外部電極、12.1
3はマイナス側およびプラス側の外部接続端子をそれぞ
れ示す。 第2図は電気泳動法を適用するための仮設外部電極付電
歪材料積層体の外観図である。図中番号5.6は内部電
極を一層おきlこ相互に接続している仮設外部電極を示
す。 第3図は内部電極露出部とその周辺のセラミック上に一
層おきにガラス粉末を付着させた電歪材料積層体を示す
外観図。図中番号7は付着させたガラス粉末を示す。 第4図は両方の端面にガラス被膜を形成した電歪材料積
層体の切断位置(点#)を示す外観図である。図中番号
9は両端の使用できない小片、lOは電歪効果素子とし
て使用できる部分をそれぞれ示す。 第5図は電気泳動装置の接続方法を示す外観図である。 図中番号21は電歪材料積層体、22は容器、nは円i
型対向電極をそれぞれ示す。又は直流電源、25はプラ
ス側端子、届はマイナス側端子、27は導線を相互に接
続するリングをそれぞれ示す。 第1図 3 第2図 第3図 第LI−図 n 第5図 4
Diagram M1 is an external view of an electrostrictive effect element in which electrical connections are made using an insulating film using an electrophoresis method. Number 1 in the diagram
2 shows the electrostrictive material of the protective film portion, 2 the electrostrictive material of the part where strain is generated, 3.4 the internal electrode, and 7.8 the insulating film formed by electrophoresis. 11 is an external electrode, 12.1
3 indicates external connection terminals on the negative side and the positive side, respectively. FIG. 2 is an external view of an electrostrictive material laminate with temporary external electrodes for applying the electrophoresis method. In the figure, number 5.6 indicates a temporary outer electrode which interconnects the inner electrodes. FIG. 3 is an external view showing an electrostrictive material laminate in which glass powder is deposited every other layer on the internal electrode exposed portion and the surrounding ceramic. Number 7 in the figure indicates the attached glass powder. FIG. 4 is an external view showing the cutting position (point #) of an electrostrictive material laminate with glass coatings formed on both end faces. In the figure, number 9 indicates a small piece at both ends that cannot be used, and lO indicates a portion that can be used as an electrostrictive effect element. FIG. 5 is an external view showing how to connect the electrophoresis device. In the figure, number 21 is the electrostrictive material laminate, 22 is the container, and n is the circle i.
The mold counter electrodes are shown respectively. or a DC power source; 25 is a positive terminal; 27 is a negative terminal; and 27 is a ring for interconnecting conductive wires. Fig. 1 3 Fig. 2 Fig. 3 Fig. LI-Fig. n Fig. 5 4

Claims (1)

【特許請求の範囲】[Claims] 帯電したガラス粉末を含む懸濁液中で電歪材料と内部を
極との積層体の内部電極層の全部又は一部を一層の電極
とし、対向電極板を他方の電極として両電極間に]l(
流電圧を印加し、電気泳動法によって前記の帯電したガ
ラス粉末を前記積層体表面の内部電極層の露出部の全部
又は一部およびその周辺の電歪相料上に付着させる工程
を有する電歪効果素子の製造方法において、前記ガラス
粉末としてB E ’i’比表面積の値で1、θ〜2.
 Orl/ g O)粒度の粉末を用いることを特徴と
する電歪効果素子の製造方法。
All or part of the internal electrode layer of a laminate of an electrostrictive material and an electrode inside in a suspension containing charged glass powder is used as one layer of electrodes, and the counter electrode plate is used as the other electrode between both electrodes] l(
Electrostriction comprising the step of applying a current voltage and depositing the charged glass powder on all or part of the exposed portion of the internal electrode layer on the surface of the laminate and the electrostrictive phase material around it by electrophoresis. In the method for manufacturing an effect element, the glass powder has a specific surface area of B E 'i' of 1, θ to 2.
A method for manufacturing an electrostrictive element, characterized by using powder having a particle size of Orl/g O).
JP58194901A 1982-12-22 1983-10-18 Manufacture of electrostrictive-effect element Granted JPS6086881A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58194901A JPS6086881A (en) 1983-10-18 1983-10-18 Manufacture of electrostrictive-effect element
DE8383307867T DE3373594D1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
EP83307867A EP0113999B1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
US06/940,210 US4681667A (en) 1982-12-22 1986-12-10 Method of producing electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194901A JPS6086881A (en) 1983-10-18 1983-10-18 Manufacture of electrostrictive-effect element

Publications (2)

Publication Number Publication Date
JPS6086881A true JPS6086881A (en) 1985-05-16
JPS6318351B2 JPS6318351B2 (en) 1988-04-18

Family

ID=16332212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194901A Granted JPS6086881A (en) 1982-12-22 1983-10-18 Manufacture of electrostrictive-effect element

Country Status (1)

Country Link
JP (1) JPS6086881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132491A (en) * 1986-11-21 1988-06-04 Toko Inc Manufacture of piezoelectric ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132491A (en) * 1986-11-21 1988-06-04 Toko Inc Manufacture of piezoelectric ceramic

Also Published As

Publication number Publication date
JPS6318351B2 (en) 1988-04-18

Similar Documents

Publication Publication Date Title
JP5304159B2 (en) Manufacturing method of multilayer ceramic capacitor
US4681667A (en) Method of producing electrostrictive effect element
EP0167392A2 (en) Method of producing electrostrictive effect element
JP3047708B2 (en) Manufacturing method of ceramic laminated electronic component
JPS6317355B2 (en)
JPH0564873B2 (en)
JPH0256826B2 (en)
JPS6086881A (en) Manufacture of electrostrictive-effect element
JP3463610B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH0256827B2 (en)
JPS60178678A (en) Manufacture of electronic component of ceramic lamination
JPH03283581A (en) Laminated piezoelectric actuator element
JPS59115579A (en) Electrostrictive effect element and manufacture thereof
JPH06181343A (en) Laminated displacement element and manufacture thereof
JPS6086883A (en) Manufacture of electrostrictive-effect element
JPS6318352B2 (en)
JP3038296B2 (en) Electronic component manufacturing method
JPH05267743A (en) Manufacture of laminated piezoelectric actuator
JPS6353296A (en) Formation of insulating powder layer by electrophoresis
JPH0420248B2 (en)
JPS6214483A (en) Manufacture of electrostrictive effect element
JPH0153497B2 (en)
JPH056836A (en) Manufacture of laminated capacitor and dielectric paste used for it
JPH03179714A (en) Manufacture of ceramic electronic part
JPS6086884A (en) Manufacture of electrostrictive-effect element