JPS6214483A - Manufacture of electrostrictive effect element - Google Patents

Manufacture of electrostrictive effect element

Info

Publication number
JPS6214483A
JPS6214483A JP60153703A JP15370385A JPS6214483A JP S6214483 A JPS6214483 A JP S6214483A JP 60153703 A JP60153703 A JP 60153703A JP 15370385 A JP15370385 A JP 15370385A JP S6214483 A JPS6214483 A JP S6214483A
Authority
JP
Japan
Prior art keywords
electrodes
internal
electrode
laminate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60153703A
Other languages
Japanese (ja)
Inventor
Yukihiro Kato
幸宏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60153703A priority Critical patent/JPS6214483A/en
Publication of JPS6214483A publication Critical patent/JPS6214483A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/063Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain an electrostrictive-effect element having high insulation characteristics and high reliability, by forming an insulation layer by means of the electrophoresis in which an internal electrode on which the insulation layer is required to be formed is used as a negative electrode while the other internal electrode requiring no insulation film is used as a positive plate. CONSTITUTION:In order to produce an electrostrictive material layered body 6 having a layered capacitor structure, an electrostrictive material 1 and internal electrodes 2 and 3 are layered and temporary external electrodes 4 and 5 are provided on two side faces of the layers. One of the exposed side faces of the layered body 6 is covered with adhesive tape, and the layered body 6 is dipped in a suspension 11 received in a container 12 and an insulation layer is formed by means of the electrophoresis. The layered body is then cut off along cutting lines in the vicinity of the temporary external electrodes and between them to obtain a layered body having no temporary external electrodes. An external electrode 15 is then applied and baked so that the exposed ends of the internal electrodes are connected with the face of the layered body having the insulation layer. Thus, an electrostrictive-effect element is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は縦効果を利用した積層コンデンサ構造を有する
電歪効果素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing an electrostrictive element having a multilayer capacitor structure that utilizes the longitudinal effect.

〔従来の技術〕[Conventional technology]

積層コンデンサ構造を有する電歪効果素子は低電圧で大
きな歪を発生する優れたアクチーエータ−である。この
素子は、第12図a)及びb)K示すように、電歪材料
21と、該電歪材料21を間に挾むように積層された内
部電極22゜23とからなり、該内部電極22.23が
、向い合う側面に設けられた二つの外部電極24.25
に内部電極22.23の一端部で一層ごと交互に電気的
に接続された構造を有している。そのため、一方の外部
電極24に接続された内部電極22ともう一方の外部電
極25に接続された内部電極26とは中央では重なって
いるが内外部電極24,25の近くでは重なっていない
An electrostrictive effect element having a multilayer capacitor structure is an excellent actuator that generates large distortion at low voltage. As shown in FIGS. 12a) and b)K, this element consists of an electrostrictive material 21 and internal electrodes 22 and 23 laminated with the electrostrictive material 21 sandwiched therebetween. 23 are two external electrodes 24 and 25 provided on opposite sides.
It has a structure in which each layer is electrically connected alternately at one end of the internal electrodes 22 and 23. Therefore, the internal electrode 22 connected to one external electrode 24 and the internal electrode 26 connected to the other external electrode 25 overlap at the center, but do not overlap near the inner and outer electrodes 24 and 25.

このような電歪効果素子の外部電極24.25間に電圧
を印加すると基本的にはプラス側内部電極とマイナス側
内部電極の重なった部分26だけが電界強度が高くなり
、その部分の電歪材料の変形が生じる。外部電極近傍の
内部電極の重なっていない部分27.28は電界強度が
弱いため、変形しないばかりか、該素子全体の変形を阻
害する働きをする。
When a voltage is applied between the external electrodes 24 and 25 of such an electrostrictive effect element, the electric field strength basically increases only in the overlapped part 26 of the positive internal electrode and the negative internal electrode, and the electrostrictive effect in that part increases. Deformation of the material occurs. Since the non-overlapping portions 27 and 28 of the internal electrodes near the external electrodes have a weak electric field strength, they not only do not deform, but also serve to inhibit deformation of the entire element.

したがって、このような構造の素子では電歪材料固有の
歪量を得ることができない。また、?tJt圧を印加し
たり、長時間電圧を印加したりする場合、変形する部分
としない部分の境界に応力集中が起ることにより素子が
破壊される恐れがあるといり問題がある。
Therefore, with an element having such a structure, it is not possible to obtain the amount of strain specific to electrostrictive materials. Also,? When a tJt pressure is applied or a voltage is applied for a long period of time, there is a problem in that the element may be destroyed due to stress concentration occurring at the boundary between the deformed part and the non-deformed part.

上記の問題を改善するために1第13図a)及びb)に
示すように内部電極51の全ての端部が電歪材料32表
面に露出し、−mおきにワイヤー55で電気的に接続さ
れ、そのワイヤー33に電極端子34.35が取り付け
られる構造とすることが謁見られる。このような構造と
すると内部電極31が重な9ている部分36のみとなる
ため、電圧印加時には電歪材料32に均一な電界がかか
り、応力集中は発生しない。したがって材料固有の大き
な歪が得られ、変形による素子の破壊が生じにくい。
In order to improve the above problem, all the ends of the internal electrodes 51 are exposed to the surface of the electrostrictive material 32, and electrically connected every -m with wires 55, as shown in FIGS. 13 a) and b). It is seen that the structure is such that electrode terminals 34 and 35 are attached to the wire 33. With this structure, the internal electrodes 31 overlap only in the overlapping portion 36, so that a uniform electric field is applied to the electrostrictive material 32 when voltage is applied, and stress concentration does not occur. Therefore, a large strain inherent to the material can be obtained, and the element is less likely to be destroyed due to deformation.

ところが、電歪材料に高電界をかけるためには内部電極
の間隔を200μm程度とする必要があるので、ワイヤ
ーを用いて内部電極を一層おきに接続することは工業的
には極めて困難である0 そこで、側面に露出した内部電極の端部を一層おきに絶
縁し、その後膣側面に全面的に外部電極を形成すること
により内部電極を一層おきに外部電極に接続することが
考えられる。このような方法としては、例えば特開昭5
9−175176号に配賦されており、電歪材料と内部
電極とが交互に積層され、内部電極を一層おきにそれぞ
れ接続する二つの外部電極が側面く形成された積層コン
デンサ構造の積層体を作製する。次に、積層体の一方の
外部電極と、該積層体とは別に設置する電極板との間に
直流電圧を印加し、電気泳動法によって前記内部電極露
出面の一方の面の内部電極の端部とその近傍に一層おき
に絶縁層を形成する。次にもう一方の外部電極と、該積
層体とは別に設置する電極板との間に直流電圧を印加し
、電気泳動法によって、もう一方の内部電極露出面のま
だ絶縁層で被覆されていない内部電極の端部とその近傍
に絶縁材料を形成する。次に、積層体を外部電極近傍で
切断し、一層おきに内部電極の端部に?3縁材料を形成
し丸面に外部電極を形成する方法がおる。
However, in order to apply a high electric field to an electrostrictive material, it is necessary to set the interval between internal electrodes to about 200 μm, so it is extremely difficult from an industrial perspective to connect internal electrodes every other layer using wires. Therefore, it is conceivable to insulate the ends of the internal electrodes exposed on the side surfaces in every other layer, and then connect the internal electrodes to the external electrodes in every other layer by forming external electrodes on the entire surface of the vaginal side surface. As such a method, for example, Japanese Unexamined Patent Publication No. 5
No. 9-175176, which has a multilayer capacitor structure in which electrostrictive materials and internal electrodes are alternately laminated, and two external electrodes connecting the internal electrodes every other layer are formed on the sides. Create. Next, a DC voltage is applied between one external electrode of the laminate and an electrode plate installed separately from the laminate, and the ends of the internal electrodes on one of the exposed surfaces of the internal electrodes are electrophoresed. An insulating layer is formed every other layer in the area and its vicinity. Next, a DC voltage is applied between the other external electrode and an electrode plate installed separately from the laminate, and the exposed surface of the other internal electrode that is not yet covered with the insulating layer is detected by electrophoresis. An insulating material is formed at and near the ends of the internal electrodes. Next, cut the laminate near the external electrode, and cut every other layer to the end of the internal electrode. There is a method of forming three edge materials and forming external electrodes on a round surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記したような、積層体の一方の外部電
極と、積層体とは別に設置した電極板との間に直流電圧
を印加する電気泳動法では、電圧を印加した外部電極に
接続された内部電極の端部以外の内部電極の端部にも絶
縁材料が薄く付着することがあり、そのため、このよう
に製作された電歪効果素子に内部電極と外部電極との電
気的導通不良が発生することがあるという問題がある。
However, in the electrophoresis method described above in which a DC voltage is applied between one external electrode of the laminate and an electrode plate installed separately from the laminate, the internal A thin layer of insulating material may adhere to the ends of the internal electrodes other than the ends of the electrodes, resulting in poor electrical continuity between the internal electrodes and the external electrodes in the electrostrictive effect element manufactured in this way. There is a problem that sometimes happens.

本発明は上記問題点を解決するだめのもので、絶縁性が
良好で、内部電極と外部電極との電気的導通不良がなく
、信頼性の高い電歪効果素子の製造方法を提供すること
を目的とするものである。
The present invention is intended to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing an electrostrictive element that has good insulation properties, has no electrical conduction defects between internal electrodes and external electrodes, and is highly reliable. This is the purpose.

内部電極とが交互に積層され、該内部電極が積層体の側
面に設けられた二つの外部電極に該内部電極の一端で一
層ごと交互に接続され、そして該内部電極の端部が外部
電極の設けられていない二つの側面に露出している積層
コンデンサ構造を有する積層体を製作する工程と、前記
積層体の二つの外部電極間に直流電圧を印加する電気泳
動法によって前記二つの内部電極露出面のうちの一方の
面の内部電極の端部とその近傍に一層おきに絶縁層を形
成する工程と、部電極の端部とその近傍に一層おきに絶
縁層を形成する工程と、 絶縁層が形成された積層体を筒外部成極近傍で切断する
工程と、 切断された積層体の絶縁層が形成された面に内部電極を
接続するように外部X極を形成する工程とを有すことを
特徴とする。
The inner electrodes are alternately stacked, and the inner electrodes are alternately connected layer by layer to two outer electrodes provided on the sides of the laminate at one end of the inner electrodes, and the ends of the inner electrodes are connected to the outer electrodes. A step of manufacturing a laminate having a multilayer capacitor structure exposed on two side surfaces that are not provided, and exposing the two internal electrodes by an electrophoresis method in which a DC voltage is applied between the two external electrodes of the laminate. a step of forming an insulating layer every other layer at and in the vicinity of the end of the internal electrode on one of the surfaces; a step of forming an insulating layer every other layer at the end of the internal electrode and in the vicinity thereof; a step of cutting the laminate on which the laminate is formed near the cylinder external polarization, and a step of forming an external X pole so as to connect an internal electrode to the surface of the cut laminate on which the insulating layer is formed. It is characterized by

本発明に用いることができる電歪材料は特に限定されな
いが、例えばp b Il+ =03−1’bZrU、
やこれに第三成分としてPb(Mr115 Nb2/3
) (J、、Pb(Y ’I/S Nb215 ) 0
3、Pb (Mn 115 Sb2/3 ) 03又は
pb(Co115 Nb2/3 ) 03  が加わっ
たものなどが挙げられる。この電歪材料を用いてドクタ
ーブレード法やドローイング法などによりグリーンシー
トを作成する。このグリーンシート上に内部電極材をス
クリーン印刷等により形成し、積層したのち焼結するが
、この内部電極材には白金やパラジウムなどを用いるこ
とができる。
The electrostrictive material that can be used in the present invention is not particularly limited, but for example, p b Il+ =03-1'bZrU,
Pb (Mr115 Nb2/3
) (J,,Pb(Y'I/S Nb215) 0
3, Pb(Mn 115 Sb2/3 ) 03 or pb(Co115 Nb2/3 ) 03 are added. A green sheet is created using this electrostrictive material by a doctor blade method, a drawing method, or the like. An internal electrode material is formed on this green sheet by screen printing or the like, laminated, and then sintered. Platinum, palladium, or the like can be used for this internal electrode material.

電気泳動法により、積層体の側面に露出した内部電極の
端部に絶縁層を形成するが、この絶縁層の絶縁材料とし
てはホウケイ酸亜鉛系結晶ガラス粉末やホウケイ酸鉛系
結晶ガラス粉末などが挙げられる。形成する絶縁層の厚
さは、必要とする耐電圧と絶縁材料の絶縁性により決定
される。例えば電気泳動法で絶縁層としてホウケイ酸亜
鉛系結晶ガラス粉末を析出させ、焼き付けて絶縁する場
合、積層電歪材料の厚みが100μm 程度のときには
分極電圧は500■程度が必要であるので、絶縁材料の
耐電圧は分極電圧の2倍の1000V程度が必要であり
、この耐電圧を満たす上記絶縁ガラス粉末の析出層の厚
さは50μm程度である。
An insulating layer is formed at the end of the internal electrode exposed on the side surface of the laminate by electrophoresis, and the insulating material for this insulating layer is zinc borosilicate crystalline glass powder or lead borosilicate crystalline glass powder. Can be mentioned. The thickness of the insulating layer to be formed is determined by the required withstand voltage and the insulation properties of the insulating material. For example, when insulating by depositing zinc borosilicate crystalline glass powder as an insulating layer by electrophoresis and baking it, a polarization voltage of about 500 μm is required when the thickness of the laminated electrostrictive material is about 100 μm. The withstand voltage is required to be about 1000 V, which is twice the polarization voltage, and the thickness of the deposited layer of the insulating glass powder that satisfies this withstand voltage is about 50 μm.

〔作  用〕[For production]

電歪材料と内部電極とが交互に積層され、該内部電極が
積層体の側面に設けられた二つの外部電極に接続され、
そして該内部電極の端部が外部電極の設けられていない
二つの側面に露出している積層コンデンサ構造を有する
積層体を製作し、該積層体の二つの外部電極間に直流電
圧を印加して、一方の内部電極露出面に絶縁材料を電気
泳動させるので、絶縁材料の荷電粒子は、上記二つの外
部電極に接続された内部電極のつち、該粒子と逆の極性
を有する一方の内部電極の1部に引き寄せられ、該端部
とその近傍に析出する。もう一方の、該粒子と同じ極性
を有する内部電極の端部には該粒子は同極性のため反発
するので全く析出しない。このようにすると内部電極は
二つの外部電極に一層ごと交互に接続されているため、
一方の内部電極露出面に一層おきに内部電極の端部とそ
の近傍に絶縁層が形成される。
Electrostrictive materials and internal electrodes are alternately laminated, and the internal electrodes are connected to two external electrodes provided on the sides of the laminated body,
Then, a laminate having a multilayer capacitor structure in which the ends of the internal electrodes are exposed on two side surfaces where no external electrodes are provided is manufactured, and a DC voltage is applied between the two external electrodes of the laminate. Since the insulating material is electrophoresed on the exposed surface of one of the internal electrodes, the charged particles of the insulating material are transferred to one of the internal electrodes connected to the two external electrodes, which has the opposite polarity to the particles. It is attracted to a part of the edge and precipitates in the vicinity of the edge. On the other end of the internal electrode, which has the same polarity as the particles, the particles are repelled because they have the same polarity, so they are not deposited at all. In this way, the internal electrodes are connected alternately to the two external electrodes, layer by layer.
Insulating layers are formed every other layer on the exposed surface of one of the internal electrodes at the ends of the internal electrodes and in the vicinity thereof.

史に、絶縁層を形成する面を変え、二つの外部電極に印
加する直流電圧の極性を逆にして電気泳動を行うと絶縁
層が形成されていない内部電極の端部とその近傍に絶縁
層を形成することができる。
Historically, when electrophoresis is performed by changing the surface on which the insulating layer is formed and reversing the polarity of the DC voltage applied to the two external electrodes, an insulating layer forms at the end of the internal electrode where no insulating layer is formed and in the vicinity. can be formed.

一層おきに内部電極の端部に絶縁層を形成した積層体を
両外部電極近傍で切断し、内部電極が重ならない部分を
取り除くことKよって内部電極が重ならない部分のない
積層体を得ることができる。
By cutting the laminate in which an insulating layer is formed at the end of every other internal electrode near both external electrodes and removing the part where the internal electrodes do not overlap, it is possible to obtain a laminate without any part where the internal electrodes do not overlap. can.

この積層体の絶縁層を形成した二つの側面に全体的に外
部電極を形成することによって、前記二つの側面の内部
電極の端部に一層ごと交互に絶縁層が形成されているの
で内部電極を一層ごと交互に二つの外部電極に接続する
ことができる0 〔実 施 例〕 本発明を一実施例により図面を参照して説明する。
By forming external electrodes entirely on the two side surfaces of the laminate on which the insulating layers are formed, the insulating layers are alternately formed layer by layer at the ends of the internal electrodes on the two side surfaces, so that the internal electrodes can be Each layer can be alternately connected to two external electrodes. [Example] The present invention will be described by way of an example with reference to the drawings.

実施例 まず、第1図に示すような電歪材料1と内部を極2,3
を積層し、二つの側面に仮設外部電極4.5を形成した
積層コンデンサ構造の逼歪材料積層体乙の製造方法につ
いて説明する〇ff17酸ジル:ff 7 &鉛Pb(
1’ix Zr1− x ) (J3(ただし、! =
= 0.40〜0.60)を主成分とする電歪材料力焼
粉末に微量のポリビニルブチラール等の有機バインダー
を添加し、これをエタノール等の有機溶媒中に分散させ
たスラリーを用意した。次に1通常の積層セラミックコ
ンデンサの製造に使用されるキャスティング製膜装置に
よりこのスラリーをポリエステルフィルム上に数百マイ
クロメータの厚さに塗布し、乾燥した。
Example First, as shown in FIG.
We will explain the manufacturing method of a strained material laminate B with a multilayer capacitor structure in which temporary external electrodes 4.5 are laminated and temporary external electrodes 4.5 are formed on two sides.
1'ix Zr1- x ) (J3 (However, ! =
A slurry was prepared by adding a small amount of an organic binder such as polyvinyl butyral to an electrostrictive material calcined powder whose main component was 0.40 to 0.60), and dispersing this in an organic solvent such as ethanol. Next, this slurry was coated onto a polyester film to a thickness of several hundred micrometers using a casting film forming apparatus used in the production of conventional multilayer ceramic capacitors, and dried.

次いでこの乾燥したスラリーを該フィルムからはく離し
、電歪材料グリーンシートを得た。一部のグリーンシー
トには更に、内部電極として白金ペーストをスクリーン
印刷した。これらのグリーンシートを数十枚重ね、熱プ
レスにより圧着一体化したのち、1250℃で焼成した
。これを内部電極が一層ごと交互に二つの相対する側面
に露出するように切断し、仮設外部電極を塗布焼き付け
し、更に、上記両側面とは異なる側面近傍で切断して、
第1図に示すような内部電極2.5が露出した積層体6
を得た。第1図において、7は保護膜部分の電歪材料を
示し、1は歪を生じる電歪材料を示す。内部電極2゜5
はそれぞれ仮設外部電極4,5に接続されている。
Next, this dried slurry was peeled off from the film to obtain an electrostrictive material green sheet. Some of the green sheets were also screen printed with platinum paste as internal electrodes. Several dozen of these green sheets were stacked, pressed into one piece using a hot press, and then fired at 1250°C. This is cut so that the internal electrodes are exposed alternately on the two opposing sides, coated with temporary external electrodes, and then cut near the sides different from the above two sides.
Laminated body 6 with exposed internal electrodes 2.5 as shown in FIG.
I got it. In FIG. 1, 7 indicates the electrostrictive material of the protective film portion, and 1 indicates the electrostrictive material that causes strain. Internal electrode 2゜5
are connected to temporary external electrodes 4 and 5, respectively.

次に、このようにして得られた電歪材料積層体6に電気
泳動法により絶縁層を形成する。
Next, an insulating layer is formed on the electrostrictive material laminate 6 thus obtained by electrophoresis.

まず、付着させる絶縁材料であるホウケイ酸亜鉛系結晶
ガラス粉末10t1エタノール500m1及びヨウ素0
.52をスターテで1時間混合した。
First, 10 t of zinc borosilicate crystal glass powder, which is an insulating material to be attached, 500 ml of ethanol, and 0 iodine.
.. 52 was mixed for 1 hour with a starter.

混合したのち、3分間静置し、沈殿物を除去して懸濁液
を調製した。この懸濁液では、ヨウ素が電解質の役割を
果たし、ガラス粉末粒子はプラスに帯電している。
After mixing, the mixture was allowed to stand for 3 minutes, and the precipitate was removed to prepare a suspension. In this suspension, iodine acts as an electrolyte and the glass powder particles are positively charged.

前記電歪材料積層体6の内部電極2,3が露出している
片面を懸濁液にぬらさないように粘着テープで覆い、仮
設電極4をマイナス端子8に、他方の仮設電極5をプラ
ス端子9に接続した。そして、マイナス端子8及びプラ
ス端子9を直流電源10に接続し、前記懸濁液11を満
した容器12に前記積層体6を沈めた。懸濁液11をス
ターテ13でかくはんしなから20Vの電圧を該積層体
6の外it極4及び5に印加した。電圧を印加する時間
を10秒から100秒までの間で変えて上記操作を繰り
返えした。
One side of the electrostrictive material laminate 6 on which the internal electrodes 2 and 3 are exposed is covered with adhesive tape so as not to get wet with the suspension, and the temporary electrode 4 is connected to the negative terminal 8 and the other temporary electrode 5 is connected to the positive terminal. Connected to 9. Then, the negative terminal 8 and the positive terminal 9 were connected to a DC power source 10, and the laminated body 6 was submerged in a container 12 filled with the suspension 11. While the suspension 11 was stirred by the starter 13, a voltage of 20 V was applied to the outer IT poles 4 and 5 of the laminate 6. The above operation was repeated by changing the voltage application time from 10 seconds to 100 seconds.

このようにして絶縁層を形成した積層体を得た。得られ
た積層体の要部断面図を第3図に示す。ガラス粉末から
なる絶縁層14はマイナス端子8に電気的に接続された
内部電極4の露出した端部とその近傍の電歪材料表面の
みに形成された。
In this way, a laminate with an insulating layer formed thereon was obtained. A cross-sectional view of the main parts of the obtained laminate is shown in FIG. The insulating layer 14 made of glass powder was formed only on the exposed end of the internal electrode 4 electrically connected to the negative terminal 8 and on the surface of the electrostrictive material in the vicinity thereof.

第4図Km気泳動時間と析出絶縁層厚さの関係を表わす
グラフを示す。電気泳動法で絶縁ガラス粉末層を析出さ
せ、焼き付けして絶縁する場合、積層電歪材料の厚さが
1008℃程度のときKは分極電圧は5oov程度が必
要であるので、絶縁層の耐電圧は2倍の1000Vは必
要であり、この耐電圧を満たすのに必要とする絶縁ガラ
スの電気泳動析出層の厚さは50μmである。したがり
て、第4図のグラフかられかるように、絶縁層を形成す
る電気泳動時間は約50秒以上であればよい。本実施例
では100秒まで電気泳動を行ったが、導通をとるべき
内部電極の露出した端部には、該内部1!極がプラス端
子に接続されたので絶縁層は形成されず、0.1Ω以上
の抵抗値も計測されなかった。
FIG. 4 shows a graph showing the relationship between Km pneumophoresis time and the thickness of the deposited insulating layer. When insulating by depositing an insulating glass powder layer by electrophoresis and baking it, when the thickness of the laminated electrostrictive material is about 1008°C, the polarization voltage of K is required to be about 5oov, so the withstand voltage of the insulating layer is is required to be twice as high as 1000V, and the thickness of the electrophoretic deposited layer of insulating glass required to satisfy this withstand voltage is 50 μm. Therefore, as can be seen from the graph in FIG. 4, the electrophoresis time for forming the insulating layer may be about 50 seconds or more. In this example, electrophoresis was performed for up to 100 seconds, but the exposed end of the internal electrode that should be electrically conductive was exposed to the inside 1! Since the pole was connected to the positive terminal, no insulating layer was formed and no resistance value of 0.1Ω or more was measured.

次に、50秒間電気泳動して絶縁層を形成した積層体に
、絶縁層を形成する面を変え、印加する直流電圧の極性
を逆にして再度電気泳動により絶縁層を形成した。
Next, on the laminate on which the insulating layer was formed by electrophoresis for 50 seconds, the surface on which the insulating layer was formed was changed, the polarity of the applied DC voltage was reversed, and the insulating layer was again formed by electrophoresis.

このようにして絶縁層を形成した積層体を、第5図に示
すように仮設外部電極4.5の近傍及びそれらの間の切
断線15に沿って切断し、第6図及びその要部拡大図で
ある第7図に示すような仮設外部電極のないa増体を得
た。
The laminate on which the insulating layer was formed in this way was cut along the cutting line 15 near the temporary external electrode 4.5 and between them as shown in FIG. An a-bulk without temporary external electrodes as shown in FIG. 7 was obtained.

次に、第8図に示すように1積層体の絶縁層を形成した
面に内部電極の露出端部が接続されるように外部電極1
5を塗布焼き付は罠より形成した。
Next, as shown in FIG. 8, the external electrode 1 is connected so that the exposed end of the internal electrode is connected to the surface on which the insulating layer of one laminate is formed.
5 was applied and baked on from a trap.

上記のようにして製作し九電歪効果素子は、所定の電圧
を損失なく印加することが可能であった。
The nine electrostrictive effect elements manufactured as described above were able to apply a predetermined voltage without loss.

比較例 実施例と同様にして得た仮設外部電極4,5を有する電
歪材料積層体6の内部電極が露出した面に粘着テープを
貼り、一方の仮設外部電極4に、直流電源10に接続し
たマイナス端子を接続した。次いで実施例1と同様に調
製した懸濁液11を容器12に満たし、上記積層体61
にその中に入れ、直流電源10に接続されたステンレス
板の陽極17を該積層体の内部電極の露出面の前方1c
rnのところに配置した。スター215で懸濁液11を
かくはんしながら仮設外部電極4と陽極17の間に20
Vの電圧を印加して電気泳動を行った。?a圧を印加す
る時間を10秒から100秒まで変えてE記操作を繰り
返えした。50秒間電気泳動を行った積層体の要部断面
図を第10図に示す。マイナス端子8に電気的に接続さ
れた内部1を極4の露出した端部に約60μmの厚さの
絶縁層14が形成された。
Comparative Example Adhesive tape was applied to the exposed surface of the internal electrode of an electrostrictive material laminate 6 having temporary external electrodes 4 and 5 obtained in the same manner as in Example, and one temporary external electrode 4 was connected to a DC power source 10. Connected the negative terminal. Next, the container 12 is filled with the suspension 11 prepared in the same manner as in Example 1, and the laminate 61 is
The stainless steel plate anode 17 connected to the DC power source 10 is placed in front 1c of the exposed surface of the internal electrode of the laminate.
It was placed at rn. 20 between the temporary external electrode 4 and the anode 17 while stirring the suspension 11 with the star 215.
Electrophoresis was performed by applying a voltage of V. ? The operation described in E was repeated by changing the time for applying pressure a from 10 seconds to 100 seconds. FIG. 10 shows a cross-sectional view of the main parts of the laminate subjected to electrophoresis for 50 seconds. An insulating layer 14 with a thickness of about 60 μm was formed on the exposed end of the pole 4 with the interior 1 electrically connected to the negative terminal 8 .

しかし、導通を必要とするもう一方の内部電極5の端部
にも約6μ馬の厚さの絶縁層14が形成した。第11図
に電気泳動時間と析出絶縁層の厚さの関係を表わすグラ
フを示す。このグラフかられかるように電気泳動時間が
20秒以上では導通を必要とする内部電極5にも絶縁層
が形成された。
However, an insulating layer 14 with a thickness of about 6 μm was also formed at the end of the other internal electrode 5 that required conduction. FIG. 11 shows a graph showing the relationship between electrophoresis time and the thickness of the deposited insulating layer. As can be seen from this graph, when the electrophoresis time was 20 seconds or more, an insulating layer was also formed on the internal electrodes 5 which required conduction.

次に、絶縁層を形成する面を変え、マイナス端子に接続
した仮設外部電極4をもう一方の仮設電極5と変えて前
記操作を繰り返えした。
Next, the above operation was repeated by changing the surface on which the insulating layer was formed and replacing the temporary external electrode 4 connected to the negative terminal with the other temporary electrode 5.

このようKして得られた積層体を実施例と同様に切断し
て仮設外部電極を取り除き、実施例と同様にして外部電
極を形成した。
The laminate thus obtained was cut in the same manner as in the examples to remove the temporary external electrodes, and external electrodes were formed in the same manner as in the examples.

上記のようにして得られた電歪効果素子は導通が必要な
内部電極端部に絶縁層が形成されているので導通をとる
場合数にΩの抵抗が生じた。
Since the electrostrictive effect element obtained as described above has an insulating layer formed at the end of the internal electrode where conduction is required, a resistance of several Ω occurred when conduction was established.

また、場合によっては該素子に電圧が印加されない恐れ
もある。
Furthermore, in some cases, there is a possibility that no voltage will be applied to the element.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は、上記したように、絶縁層の形成が必要
な内部電極をマイナス極とし、絶縁層の形成が不要な内
部電極をプラス極として電気泳動法により絶縁層を形成
するので、絶縁層の形成が不要な内部電極には絶縁層を
全く形成させないで、絶縁層の形成が必要な内部電極の
みに絶縁層を形成することができ、その結果、絶縁性が
良好で、内部電極と外部電極との電気的導通不要がなく
、信頼性の高い電歪効果素子を製造することができる。
As described above, in the method of the present invention, the internal electrode that requires the formation of an insulating layer is used as the negative electrode, and the internal electrode that does not require the formation of an insulating layer is used as the positive electrode, and the insulating layer is formed by electrophoresis. It is possible to form an insulating layer only on the internal electrodes that require the formation of an insulating layer, without forming any insulating layer on the internal electrodes that do not require the formation of a layer. There is no need for electrical continuity with external electrodes, and a highly reliable electrostrictive effect element can be manufactured.

更に、積層体の内部電極自体を電気泳動法の両極として
用いるため、通常の電気泳動法に必要な対向電極が不要
であり装置が簡略化される0
Furthermore, since the internal electrodes of the laminate themselves are used as both poles for electrophoresis, there is no need for counter electrodes required for normal electrophoresis, simplifying the apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の電歪材料積層体の斜視図、 第2図は本発明の一実施例の電気泳動装置の断面図、 第6図は本発明の一実施例の絶縁層を形成した電歪材料
積層体の要部断面図、 第4図は本発明の一実施例の電気泳動時間と析出絶縁層
の厚さの関係を示すグラフ、第5図は本発明の一実施例
の絶縁層を形成した電歪材料積層体の斜視図、 第6図は第5図の積層体から切り出した積層体の斜視図
、 第7図は第6図の要部拡大図、 第8図は本発明の一実施例の電歪効果素子の斜視図、 第9図は比較例の電気泳動装置゛の断面図、第10図は
比較例の絶縁層を形成した電歪材料積層体の要部断面図
、 第11図は比較例の電気泳動時間と析出絶縁層の厚さの
関係を示すグラフ、 @12図a〕は従来の積層コンデンサ型電歪素子の側面
図、第12図b)は第12図q)の上面図、第16図a
)は従来の積層電歪効果素子の側面図、第13図b)は
第13図a)の上面図を表わす。 図中、 1.7,21.32・・・電歪材料 2.5,22,25.5’I・・・内部電極4.5・・
・仮設外部電極  6・・・積層体8・・・マイナス端
子  9・・・プラス端子10・・・直流it源   
11・・・懸濁液12 、、、容器     15川ス
ターラ14・・・絶縁層 16.24.25・・・外部電極 17・・・陽極     33・・・ワイヤー特許 出
 願 人  トヨタ自動車株式会社(ほか1名) 第8図 第9図 第10図 □ C) C) Ω −qフ 折土絶縁層厚二 μm
FIG. 1 is a perspective view of an electrostrictive material laminate according to an embodiment of the present invention, FIG. 2 is a sectional view of an electrophoresis device according to an embodiment of the present invention, and FIG. 6 is an insulation diagram of an embodiment of the present invention. FIG. 4 is a graph showing the relationship between the electrophoresis time and the thickness of the precipitated insulating layer in an embodiment of the present invention, and FIG. 6 is a perspective view of a laminate cut out from the laminate shown in FIG. 5; FIG. 7 is an enlarged view of the main parts of FIG. 6; FIG. 8 is a perspective view of an electrostrictive effect element according to an embodiment of the present invention, FIG. 9 is a cross-sectional view of an electrophoretic device according to a comparative example, and FIG. 10 is an electrostrictive material laminate with an insulating layer formed as a comparative example. Figure 11 is a graph showing the relationship between the electrophoresis time and the thickness of the precipitated insulating layer in a comparative example; @Figure 12 a] is a side view of a conventional multilayer capacitor type electrostrictive element; Figure 12 b) is a top view of Fig. 12q), Fig. 16a
) shows a side view of the conventional laminated electrostrictive element, and FIG. 13b) shows a top view of FIG. 13a). In the figure, 1.7, 21.32... Electrostrictive material 2.5, 22, 25.5'I... Internal electrode 4.5...
-Temporary external electrode 6...Laminated body 8...Minus terminal 9...Positive terminal 10...DC IT source
11... Suspension 12... Container 15 River stirrer 14... Insulating layer 16.24.25... External electrode 17... Anode 33... Wire patent Applicant Toyota Motor Corporation ( and 1 other person) Figure 8 Figure 9 Figure 10 □ C) C) Ω -q Folded earth insulation layer thickness 2 μm

Claims (1)

【特許請求の範囲】  電歪材料と内部電極とが交互に積層され、該内部電極
が積層体の側面に設けられた二つの外部電極に該内部電
極の一端で一層ごと交互に接続され、そして該内部電極
の端部が外部電極の設けられていない二つの側面に露出
している積層コンデンサ構造を有する積層体を製作する
工程と、 前記積層体の二つの外部電極間に直流電圧を印加して電
気泳動法によつて前記二つの内部電極露出面のうちの一
方の面の内部電極の端部とその近傍に一層おきに絶縁層
を形成する工程と、印加する直流電圧の極性を逆にし、
絶縁層を形成する内部電極露出面を他方の面に変えて前
記と同様に内部電極の端部とその近傍に一層おきに絶縁
層を形成する工程と、 絶縁層が形成された積層体を両外部電極近傍で切断する
工程と、 切断された積層体の、絶縁層が形成された面に外部電極
を内部電極に接続するように形成する工程とからなるこ
とを特徴とする電歪効果素子の製造方法。
[Claims] Electrostrictive materials and internal electrodes are alternately laminated, the internal electrodes are alternately connected layer by layer at one end of the internal electrodes to two external electrodes provided on the side surfaces of the laminate, and manufacturing a laminate having a multilayer capacitor structure in which the ends of the internal electrodes are exposed on two side surfaces where no external electrodes are provided; and applying a DC voltage between the two external electrodes of the laminate. forming an insulating layer every other layer at the end of the internal electrode and its vicinity on one of the two exposed surfaces of the internal electrode by electrophoresis, and reversing the polarity of the applied DC voltage. ,
A step of changing the exposed surface of the internal electrode forming the insulating layer to the other surface and forming an insulating layer every other layer at the end of the internal electrode and its vicinity in the same manner as described above; An electrostrictive effect element comprising the steps of cutting near the external electrode, and forming the external electrode on the surface of the cut laminate on which the insulating layer is formed so as to connect the external electrode to the internal electrode. Production method.
JP60153703A 1985-07-12 1985-07-12 Manufacture of electrostrictive effect element Pending JPS6214483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60153703A JPS6214483A (en) 1985-07-12 1985-07-12 Manufacture of electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60153703A JPS6214483A (en) 1985-07-12 1985-07-12 Manufacture of electrostrictive effect element

Publications (1)

Publication Number Publication Date
JPS6214483A true JPS6214483A (en) 1987-01-23

Family

ID=15568262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60153703A Pending JPS6214483A (en) 1985-07-12 1985-07-12 Manufacture of electrostrictive effect element

Country Status (1)

Country Link
JP (1) JPS6214483A (en)

Similar Documents

Publication Publication Date Title
JPS62274681A (en) Electrostrictive effect element
JPS6317354B2 (en)
JPH0256830B2 (en)
JPS6317355B2 (en)
JPH0364979A (en) Electrostrictive effect element
JPH0564873B2 (en)
JPH0256826B2 (en)
JPS6132835B2 (en)
JPS6214483A (en) Manufacture of electrostrictive effect element
JPH03283581A (en) Laminated piezoelectric actuator element
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPS60178678A (en) Manufacture of electronic component of ceramic lamination
JPH0256827B2 (en)
JP3237966B2 (en) Multilayer piezoelectric element
JPH0420248B2 (en)
JPH06283776A (en) Multilayer piezoelectric element
JPS6086883A (en) Manufacture of electrostrictive-effect element
JPH04250676A (en) Manufacture of piezoelectric laminate
JPH049390B2 (en)
JPS6318352B2 (en)
JPH02164085A (en) Electrostriction effect element
JPS6086881A (en) Manufacture of electrostrictive-effect element
JPS6225475A (en) Electrostrictive effect element and manufacture thereof
JPH0832131A (en) Laminated piezolectric element and its manufacture
JPH02164082A (en) Electrostriction effect element