JPS6086883A - Manufacture of electrostrictive-effect element - Google Patents

Manufacture of electrostrictive-effect element

Info

Publication number
JPS6086883A
JPS6086883A JP58194903A JP19490383A JPS6086883A JP S6086883 A JPS6086883 A JP S6086883A JP 58194903 A JP58194903 A JP 58194903A JP 19490383 A JP19490383 A JP 19490383A JP S6086883 A JPS6086883 A JP S6086883A
Authority
JP
Japan
Prior art keywords
electrode
glass powder
electrostrictive
temporary
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58194903A
Other languages
Japanese (ja)
Other versions
JPS6318353B2 (en
Inventor
Atsushi Ochi
篤 越智
Kazuaki Uchiumi
和明 内海
Masanori Suzuki
正則 鈴木
Mitsuhiro Midorikawa
緑川 光宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58194903A priority Critical patent/JPS6086883A/en
Priority to DE8383307867T priority patent/DE3373594D1/en
Priority to EP83307867A priority patent/EP0113999B1/en
Publication of JPS6086883A publication Critical patent/JPS6086883A/en
Priority to US06/940,210 priority patent/US4681667A/en
Publication of JPS6318353B2 publication Critical patent/JPS6318353B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a favorable glass coated film by a method wherein, when glass powder is made to stick to the exposed parts of internal electrode layers by an electrophoresis method, the internal potential of parts of the exposed parts, where the glass powder is not stuck, is set at the same potential as that of an opposed electrode plate or at a potential close to that of the opposed electrode plate. CONSTITUTION:a laminated body 40 constituted by laminating alternately internal electrodes and electrostrictive material is placed in an electrified glass powder-containing suspension. The internal electrodes are made to expose at the end surfaces of the laminated body 40. A temporary external electrode 12 and a temporary external electrode 14 are provided at both sides of the laminated body 40 and the temporary external electrodes 12 and 14 are connected with the internal electrodes every one layer. A DC power source 33 is connected to the temporary external electrode 12 and an opposed electrode plate 31. The opposed electrode plate 31 and the temporary external electrode 14 are mutually connected and the opposed electrode plate 31 and the temporary external electrode 14 are both set at the same potential. By constituting in such a way, glass powder sticks to the internal electrodes connected with the temporary electrode 12 and the vicinities thereof. When this laminated body 40 is baked, the purposive insulating pattern can be accurately formed on the exposed electrodes, thereby enabling to improve the connection of the electrostrictive-effect element and external terminals.

Description

【発明の詳細な説明】 本発明は縦効果を利用した電歪効果素子の製造法に関す
るものであり、その目的は露出した電極の一部を選択的
にかつ高い信頼度でガラス膜によって被い、絶縁するこ
とである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrostrictive element using the longitudinal effect, and its purpose is to selectively and reliably cover a portion of an exposed electrode with a glass film. , is to insulate.

これを目的として本発明者等は先に帯電したガラス粉末
を含む懸濁液を用いた電気泳動法により絶縁パターンを
形成することを特徴とする工法を提案している。第1図
〜第6図によってその概略を説明する。第1図、第2図
はガラス被膜を付ける前の電歪材料積層体の内部電極の
露出した端面を示す外観図である。第3図、第4図は帯
状のガラス粉末を付着した電歪材料と内部電極との積層
体の端面を同じく表側と裏側から見た外観図である。1
6で示す内部電極は全て仮設外部電極12に接続してお
り帯電したガラス粉末を含む懸濁液中で対向電極と外部
電極12との間に直流電圧を印加することにより内部電
極露出部16とその周辺のセラミック上に帯状にガラス
粉末11が付着する。裏側の端面においては仮設外部電
極14に接続している内部電極13とその周辺のセラミ
ック上にガラス粉末15が付着する。これを焼成固着さ
せることにより内部電極露出部とその周辺のセラミック
上に一層おきにガラス被膜が形成される。両端を除去し
素子の最終形状に切断し、外部電極を形成すれば多数の
内部電極を一層おきに接続することができる。第5図は
ガラス被膜を形成した電歪材料積層体の切断位置(点線
部分)を示す外観図である。
For this purpose, the present inventors have proposed a construction method characterized by forming an insulating pattern by electrophoresis using a suspension containing electrically charged glass powder. The outline will be explained with reference to FIGS. 1 to 6. FIGS. 1 and 2 are external views showing the exposed end faces of the internal electrodes of the electrostrictive material laminate before the glass coating is applied. FIGS. 3 and 4 are external views of the end faces of a laminate of an electrostrictive material to which band-shaped glass powder is adhered and internal electrodes, as seen from the front and back sides. 1
All of the internal electrodes indicated by 6 are connected to the temporary external electrode 12, and by applying a DC voltage between the counter electrode and the external electrode 12 in a suspension containing charged glass powder, the internal electrode exposed portion 16 is connected to the temporary external electrode 12. Glass powder 11 is attached in a band shape to the ceramic around the ceramic. On the back end surface, glass powder 15 adheres to the internal electrode 13 connected to the temporary external electrode 14 and the ceramic around it. By firing and fixing this, a glass film is formed every other layer on the exposed portion of the internal electrode and the ceramic around it. By removing both ends, cutting into the final shape of the device, and forming external electrodes, a large number of internal electrodes can be connected every other layer. FIG. 5 is an external view showing the cutting position (dotted line area) of the electrostrictive material laminate on which the glass coating is formed.

第6図は電気的接続を行なった電歪効果素子である。1
7は外部電極で13で示す内部電極は全てこの外部電極
に接続している。16で示す内部電極は全て裏側の外部
電極に接続している。プラス側端子19およびマイナス
側端子20の間に電圧を印加すれば上、下の保護膜部を
除(電歪材料全体に内部電極に垂直方向の電界とそれに
伴う歪が発生して電歪効果素子として動作する。
FIG. 6 shows an electrostrictive effect element with electrical connections. 1
7 is an external electrode, and all internal electrodes 13 are connected to this external electrode. All internal electrodes indicated by 16 are connected to external electrodes on the back side. By applying a voltage between the positive side terminal 19 and the negative side terminal 20, the upper and lower protective film parts are removed (an electric field perpendicular to the internal electrode and associated strain is generated throughout the electrostrictive material, causing an electrostrictive effect. Operates as an element.

この方法の問題点として、電気泳動付着の時にガラスの
付着してはいけない部分、すなわち後で形成される外部
電極に接続させる内部電極の露出部にわずかにガラス粉
が付着し、焼成後不要の薄いガラス膜で被われてしまう
ことである。第7図は不要なガラス膜の固着した端面上
に外部電極を形成した電歪効果素子の断面図である。図
中番号11 、15は本来の絶縁被膜。21は不要のガ
ラス膜を示す。これが形成されると内部電極13は外部
電極17に接続されず、内部電極16は外部電雁18に
接続されない。19 、20はそれぞれマイナス側およ
びプラス側の外部端子を示している。
The problem with this method is that a small amount of glass powder adheres to the parts of the glass that should not be attached during electrophoretic deposition, that is, to the exposed parts of the internal electrodes that will be connected to the external electrodes that will be formed later. It is covered with a thin glass film. FIG. 7 is a sectional view of an electrostrictive element in which external electrodes are formed on the end face to which an unnecessary glass film is fixed. Numbers 11 and 15 in the figure are the original insulation coatings. 21 indicates an unnecessary glass film. When this is formed, the internal electrode 13 is not connected to the external electrode 17, and the internal electrode 16 is not connected to the external electrode 18. Reference numerals 19 and 20 indicate negative and positive external terminals, respectively.

余計な部分にもガラス粉末が付着する原因は、セラミッ
ク材料の誘電率が高く、誘電分極のために付着させない
内部電極を含めて電歪材料全体の電位が付着させるべき
内部電極の電位とほぼ同じになるからである。比誘電率
2700の電歪材料積層体に電気泳動法を適用した場合
について、第3図にもとづいて説明する。帯電したガラ
ス粉末を含む懸濁液に前記積層体および対向電極板を設
置し、仮設外部電極12′と対向電極板との間に20 
V O)直流電圧を印加した。その時対向電極と内部電
極露出部13との間の電位差も17Vとかなり大きく、
帯電したガラス粉末の一部は付着させてはいけない西部
電極露出部13の上にも付着してしまった。
The reason why glass powder adheres to unnecessary parts is that the dielectric constant of the ceramic material is high, and the potential of the entire electrostrictive material, including the internal electrodes that are not attached due to dielectric polarization, is almost the same as the potential of the internal electrodes that should be attached. This is because it becomes A case in which the electrophoresis method is applied to an electrostrictive material laminate having a dielectric constant of 2700 will be explained based on FIG. 3. The laminate and the counter electrode plate are placed in a suspension containing electrically charged glass powder, and 2000 mL is placed between the temporary external electrode 12' and the counter electrode plate.
VO) A DC voltage was applied. At that time, the potential difference between the counter electrode and the internal electrode exposed portion 13 was also quite large, 17V.
A portion of the charged glass powder also adhered to the western electrode exposed portion 13, which should not be allowed to adhere.

本発明の目的はこのような欠点を除いた電歪効果素子の
製造方法を提供することである。
An object of the present invention is to provide a method for manufacturing an electrostrictive element that eliminates such drawbacks.

本発明は帯電したガラス粉末を含む懸濁液中で電歪材料
と内部電極との積層体の端面の内部電極近傍にガラス粉
を付着させる際、この余計な部分への付着を防ぐために
ガラス粉末を付着させない内部電極の電位を対向電極と
同電位か又はそれに近い電位にすることである。対向電
極と同電位あるいは同電位に近づけるためには対向電極
に接続するか、導電物質からなるアンテナを付着させな
い内部電極をまとめた仮設外部電極から出して対向電極
の近傍に設置することにより実現可能になる。第8図、
第9図は接続する場合とアンテナを出す場合の電気泳動
装置と電歪材料積層体の配置およびそれらの接続方法を
示す外観図である。ただし、第9図は上方からの図であ
る。12は付着させるべき内部電極をまとめた仮設外部
電極、14は付着させない方の内部電極をまとめた仮設
外部電極である。第8図においては仮設外部電極14は
導線32により対向電極31に接続されている。第9図
にふいては仮設外部電極14からアンテナ35が出て対
向電極の近傍までのびている。33は直流電源、34は
懸濁液を保持する容器である。これにより外部電極に接
続される方の内部電極上にはガラス粉は全く付着せず焼
成することにより目的とした第“3図、第4図に示すよ
うなガラス被膜の絶縁パターンが得られ、切断後外部電
極を形成することにより電歪効果素子は完全に電気的に
接続される。
In the present invention, when glass powder is attached near the internal electrode on the end face of a laminate of an electrostrictive material and an internal electrode in a suspension containing charged glass powder, the glass powder is The potential of the internal electrodes to which no particles are attached is set to be the same potential as the counter electrode or a potential close to it. In order to have the same potential or close to the same potential as the counter electrode, this can be achieved by connecting it to the counter electrode, or by taking it out from a temporary external electrode made up of internal electrodes that do not have an antenna made of conductive material attached and placing it near the counter electrode. become. Figure 8,
FIG. 9 is an external view showing the arrangement of the electrophoretic device and the electrostrictive material laminate when connected and when the antenna is taken out, and the method of connecting them. However, FIG. 9 is a view from above. Reference numeral 12 denotes a temporary outer electrode that is a collection of internal electrodes to be attached, and 14 is a temporary outer electrode that is a collection of internal electrodes that are not to be attached. In FIG. 8, the temporary external electrode 14 is connected to the counter electrode 31 by a conducting wire 32. In FIG. In FIG. 9, an antenna 35 comes out from the temporary external electrode 14 and extends to the vicinity of the counter electrode. 33 is a DC power source, and 34 is a container that holds the suspension. As a result, no glass powder adheres to the internal electrode that is connected to the external electrode, and by firing, the desired insulation pattern of the glass coating as shown in Figures 3 and 4 is obtained. After cutting, the electrostrictive element is completely electrically connected by forming external electrodes.

次に実施例に従って本発明の詳細な説明する。Next, the present invention will be explained in detail according to examples.

マグネシウムニオブ酸鉛(Pb(Mg%Nb%)Os)
およびチタン酸鉛(PbTiO,)を主成分とする電歪
材料予焼粉末に微量の有機バインダを添加し、これを有
機溶媒中に分散させたスラリーを準備した。
Magnesium lead niobate (Pb(Mg%Nb%)Os)
A slurry was prepared by adding a small amount of an organic binder to an electrostrictive material pre-fired powder containing lead titanate (PbTiO,) as a main component and dispersing this in an organic solvent.

通常の積層セラミックコンデンサの製造に使用されるキ
ャスティング製膜装置によりこのスラリーをマイラーフ
ィルム上に数百ミクロンの厚さに塗布し乾燥させた。こ
れをフィルムから剥離し、電歪材料グリーンシートを得
た。一部のグリーンシートには更に内部電極として白金
ペーストをスクリーン印刷した。これらのグリーンシー
トを数10枚重ね、熱プレスにより圧着一体化した後1
250℃で焼成し、電歪材料績l置体を得た。これを内
部電極が一層おきに表面に露出するような位置で切断し
2つの仮設外部電極を塗布焼付けし、更に側面を切断し
て内部電極を露出させた。このようにして得られた電歪
材料積層体を電気泳動法に適用する。wc1図、第2図
はこの電歪材料積層体の内部電極の露出した端面を示す
斜視図である。多数の内部電極13 、16は一層おき
に交互に2つの仮設外部電極14 、12にそれぞれ接
続している。
This slurry was coated onto a Mylar film to a thickness of several hundred microns using a casting film forming apparatus used in the production of ordinary multilayer ceramic capacitors and dried. This was peeled off from the film to obtain an electrostrictive material green sheet. Some of the green sheets were further screen-printed with platinum paste as internal electrodes. After stacking several dozen of these green sheets and pressing them together using a heat press, 1
It was fired at 250°C to obtain an electrostrictive material assembly. This was cut at a position where the internal electrodes were exposed on the surface every other layer, two temporary external electrodes were coated and baked, and the sides were further cut to expose the internal electrodes. The electrostrictive material laminate thus obtained is applied to electrophoresis. wc1 and 2 are perspective views showing exposed end faces of internal electrodes of this electrostrictive material laminate. A large number of internal electrodes 13 and 16 are alternately connected to two temporary external electrodes 14 and 12, respectively, on every other layer.

次に帯電したガラス粉末を含む懸濁液を以下の方法で作
製する。ホウケイ酸亜鉛系結晶化ガラス粉末30g、エ
タノール290mA! 、 5%ヨウ素エタノール溶液
10fiAを高速ホモジナイザーで混合する。
Next, a suspension containing charged glass powder is prepared by the following method. Zinc borosilicate crystallized glass powder 30g, ethanol 290mA! , 5% iodine ethanol solution 10fiA is mixed with a high speed homogenizer.

ヨウ素が電解質の役割を果たし、ガラス粉末はプラスに
帯電している。30分間超音波をかけた後、30分間静
置して沈殿物を除去し残りの懸濁液を使用する。
Iodine acts as an electrolyte, and the glass powder is positively charged. After applying ultrasound for 30 minutes, the suspension is allowed to stand for 30 minutes to remove the precipitate, and the remaining suspension is used.

次に第8図に従って電気泳動装置の構成と接続方法とを
説明する。
Next, the configuration and connection method of the electrophoresis device will be explained according to FIG.

前記電歪材料積層体の内部電極が露出した端面の片面を
粘着テープで被いm濁液にぬれるのを防いだ後前記懸濁
液を満たした容器具に沈める。積層体の付着させたい端
面の前方lαの距離のところに付着させたい端面よりひ
とまわり大きなステンレス製対向電極板31を沈める。
One side of the exposed end surface of the electrostrictive material laminate is covered with an adhesive tape to prevent it from getting wet with the suspension, and then submerged in a container filled with the suspension. A counter electrode plate 31 made of stainless steel, which is slightly larger than the end surface to which the laminate is to be attached, is sunk at a distance lα in front of the end surface to which the laminate is to be attached.

対向電極板を直流電源のプラス端子に接続し、仮設外部
電極14を対向電極醤こ接続し同電位とする。12で示
す仮設外部電、艶をマイナス端子に接続し、20 V 
300秒間電圧を印加する。終了後懸濁液から引き上げ
乾燥させると、第3図に示すように、内部電標露出部の
上とその周辺の電歪材料表面に巾200ミクロンのガラ
ス粉末の付着11が得られた。
The counter electrode plate is connected to the positive terminal of a DC power supply, and the temporary external electrode 14 is connected to the counter electrode to have the same potential. Connect the temporary external power supply indicated by 12 to the negative terminal and connect it to 20 V.
Apply voltage for 300 seconds. When the suspension was removed from the suspension and dried, glass powder 11 having a width of 200 microns was obtained on the surface of the electrostrictive material on and around the exposed portion of the internal electrode, as shown in FIG.

裏面の粘着テープを取り除いた後、705℃で10分間
保持することにより焼成しガラス被膜を電歪材料に固着
させた。
After removing the adhesive tape on the back side, the glass film was baked by holding at 705° C. for 10 minutes to fix the glass film to the electrostrictive material.

次に反対側の面にガラス被膜を形成する。まず既に被膜
を形成した面を粘着テープで被い保護した後、図中番号
14で示す仮設外部電極を直流電源のマイナス端子に接
続し一回目と同様な方法で電圧を印加して13で示す内
部電極の露出部とその周辺のセラミック上にガラス粉末
を付着させる。これを−回目と同様に焼成して帯状のガ
ラス被膜を形成する。
Next, a glass coating is formed on the opposite side. First, protect the surface on which the film has already been formed by covering it with adhesive tape, then connect the temporary external electrode shown as number 14 in the figure to the negative terminal of the DC power supply, and apply voltage in the same way as the first time, as shown at 13. Glass powder is deposited on the exposed parts of the internal electrodes and the ceramic around them. This is fired in the same manner as the second time to form a band-shaped glass coating.

以上のように表側と裏側にガラス被膜を形成した電歪材
料積層体を第5図の点線で示す位置で切断する。両端の
仮設外部電極のついた小片2個は使用できず、それらを
除く小片が電歪効果素子となる。
The electrostrictive material laminate with the glass coating formed on the front and back sides as described above is cut at the position shown by the dotted line in FIG. 5. The two small pieces with temporary external electrodes on both ends cannot be used, and the other small pieces serve as electrostrictive elements.

得られた電歪効果素子は第6図に示すように2つの外部
電極を表側と裏側に形成することにより容易に電気的に
接続され、2つの外部端子19 、20の間に電圧を印
加すると上、下の保護膜部を除く電歪材料全体に均一な
電界が生じ%1000分の1程度の歪を発生する。
The obtained electrostrictive effect element can be easily electrically connected by forming two external electrodes on the front and back sides as shown in FIG. 6, and when a voltage is applied between the two external terminals 19 and 20. A uniform electric field is generated in the entire electrostrictive material except for the upper and lower protective film parts, and a strain of about 1/1000% is generated.

電気的に接続された電歪効果素子は側面の内部電極露出
部を含めて全体をエポキシ樹脂でコートし耐湿性、絶縁
性を持たせる。
The electrically connected electrostrictive effect element is coated entirely with epoxy resin, including the exposed internal electrodes on the sides, to provide moisture resistance and insulation.

本発明の方法により電歪材料積層体端面の内部電極露出
部に高い信頼度で選択的にガラス粉末を付着させること
ができるようになった。これを焼成、固着させることに
より露出電極上に目的とする絶縁パターンを精度よく形
成でき、その結果、外部電極、外部端子との接続が良好
になった。
By the method of the present invention, it has become possible to selectively adhere glass powder to the internal electrode exposed portions of the end faces of the electrostrictive material laminate with high reliability. By firing and fixing this, a desired insulating pattern could be formed on the exposed electrode with high precision, and as a result, connections with external electrodes and external terminals were improved.

本発明の方法を用いて絶縁被膜を形成した場合、接続不
良が25%から3チに減少した。
When the insulating film was formed using the method of the present invention, the number of connection failures was reduced from 25% to 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は電気泳動法を適用する目的で仮設外部
電極12および14を設けた電画材料積層体の表側と裏
側の端面を示す外観図である。図中番号13 、16は
内部電極露出部である。第3図、第4図は内部電極露出
部の一部とその周辺のセラミック上にガラス粉末を付着
させた電歪材料積層体を示す外観図。図中番号11 、
15は付着したガラス粉末を示す。第5図はガラス粉末
を付着後焼成固着させた積層体と、その切断位置を示す
外観図である。第6図は電気的に接続された電歪効果素
子を示す図。図中番号17は外部電極%19 、20は
外部接続端子をそれぞれ示す。 第7図は不要なガラス膜が形成されたために電気的接続
が不可能となった電歪効果素子の断面図。 図中番号21は不要のガラス被膜を示す。 第8図は付着させない内部電極の電位を対向電極と同電
位にする場合の電気泳動装置の接続方法を示す外観図で
ある。図中番号31は対向電極板。 32は仮設外部電極14と対向電極板とを接続する導線
を示す。33 、34はそれぞれ直流電源と容器を示す
。第9図は付着させない方の内部電極の電位を対向電極
の電位に近づける場合の電気泳動装置の接続方法を示す
上方からの外観図である。図中番号35はアンテナを示
す。 第1図 1 第3図 第5図 第6図
FIGS. 1 and 2 are external views showing the front and back end surfaces of a laminate of electrographic materials provided with temporary external electrodes 12 and 14 for the purpose of applying electrophoresis. In the figure, numbers 13 and 16 are internal electrode exposed parts. FIG. 3 and FIG. 4 are external views showing an electrostrictive material laminate in which glass powder is adhered to a part of the internal electrode exposed portion and the surrounding ceramic. Number 11 in the diagram,
15 shows attached glass powder. FIG. 5 is an external view showing a laminate in which glass powder is attached and fixed by firing, and its cutting position. FIG. 6 is a diagram showing electrically connected electrostrictive elements. In the figure, number 17 indicates an external electrode, and 20 indicates an external connection terminal. FIG. 7 is a cross-sectional view of an electrostrictive element in which electrical connection is impossible due to the formation of an unnecessary glass film. Number 21 in the figure indicates an unnecessary glass coating. FIG. 8 is an external view showing a method of connecting an electrophoresis device when the potential of the internal electrode to which no material is attached is set to the same potential as that of the counter electrode. Number 31 in the figure is a counter electrode plate. Reference numeral 32 indicates a conducting wire connecting the temporary external electrode 14 and the counter electrode plate. 33 and 34 indicate a DC power source and a container, respectively. FIG. 9 is an external view from above showing a method of connecting an electrophoresis device when the potential of the internal electrode to which no adhesion is made approaches the potential of the counter electrode. Number 35 in the figure indicates an antenna. Figure 1 Figure 1 Figure 3 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 帯電したガラス粉末を含む懸濁液中で、電歪材料と内部
電極との積層体の端面に露出した内部電極の一部とその
周辺の電歪材料上に選択的に前記ガラス粉末を付着させ
る工程を有する電歪効果素子の製造方法において、前記
工程でガラス粉末を付着させない内部電極の電位を対向
電極と同電位か又はそれに近い電位にすることを特徴と
する電歪効果素子の製造方法。
In a suspension containing electrically charged glass powder, the glass powder is selectively deposited on a part of the internal electrode exposed at the end face of the laminate of the electrostrictive material and the internal electrode and the electrostrictive material in the vicinity thereof. A method for manufacturing an electrostrictive effect element comprising a step, wherein in the step, the potential of the internal electrode to which no glass powder is attached is set to the same potential as the counter electrode or a potential close to the same potential.
JP58194903A 1982-12-22 1983-10-18 Manufacture of electrostrictive-effect element Granted JPS6086883A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58194903A JPS6086883A (en) 1983-10-18 1983-10-18 Manufacture of electrostrictive-effect element
DE8383307867T DE3373594D1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
EP83307867A EP0113999B1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
US06/940,210 US4681667A (en) 1982-12-22 1986-12-10 Method of producing electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194903A JPS6086883A (en) 1983-10-18 1983-10-18 Manufacture of electrostrictive-effect element

Publications (2)

Publication Number Publication Date
JPS6086883A true JPS6086883A (en) 1985-05-16
JPS6318353B2 JPS6318353B2 (en) 1988-04-18

Family

ID=16332248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194903A Granted JPS6086883A (en) 1982-12-22 1983-10-18 Manufacture of electrostrictive-effect element

Country Status (1)

Country Link
JP (1) JPS6086883A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176802A (en) * 1993-12-20 1995-07-14 Nec Corp Manufacture of piezoelectric actuator
JP2010093038A (en) * 2008-10-08 2010-04-22 Murata Mfg Co Ltd Multilayer ceramic capacitor and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176802A (en) * 1993-12-20 1995-07-14 Nec Corp Manufacture of piezoelectric actuator
JP2010093038A (en) * 2008-10-08 2010-04-22 Murata Mfg Co Ltd Multilayer ceramic capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6318353B2 (en) 1988-04-18

Similar Documents

Publication Publication Date Title
JPS62274681A (en) Electrostrictive effect element
JPS6317354B2 (en)
JPS6317355B2 (en)
EP0167392A2 (en) Method of producing electrostrictive effect element
JPS61182284A (en) Electrostrictive effect element
JPH0256826B2 (en)
JPH0666483B2 (en) Electrostrictive effect element
JPS6086883A (en) Manufacture of electrostrictive-effect element
JPH0256827B2 (en)
JPS60178678A (en) Manufacture of electronic component of ceramic lamination
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPS59115579A (en) Electrostrictive effect element and manufacture thereof
JPS6086882A (en) Manufacture of electrostrictive-effect element
JPH05267743A (en) Manufacture of laminated piezoelectric actuator
JPH0256822B2 (en)
JPH0420248B2 (en)
JPS6086881A (en) Manufacture of electrostrictive-effect element
JPH02137280A (en) Electrostriction effect element and its manufacture
JPH0256828B2 (en)
JPH0256829B2 (en)
JPS6225475A (en) Electrostrictive effect element and manufacture thereof
JPH0342488B2 (en)
JPS6214483A (en) Manufacture of electrostrictive effect element
JPS62297242A (en) Production of anti-fogging mirror
JPH02153514A (en) Manufacture of laminated capacitor