JPH0256829B2 - - Google Patents
Info
- Publication number
- JPH0256829B2 JPH0256829B2 JP13675984A JP13675984A JPH0256829B2 JP H0256829 B2 JPH0256829 B2 JP H0256829B2 JP 13675984 A JP13675984 A JP 13675984A JP 13675984 A JP13675984 A JP 13675984A JP H0256829 B2 JPH0256829 B2 JP H0256829B2
- Authority
- JP
- Japan
- Prior art keywords
- electrostrictive
- exposed
- laminate
- layer
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000011368 organic material Substances 0.000 claims abstract description 22
- 239000000843 powder Substances 0.000 claims abstract description 20
- 230000000694 effects Effects 0.000 claims abstract description 13
- 238000004070 electrodeposition Methods 0.000 claims abstract description 8
- 238000000151 deposition Methods 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000009413 insulation Methods 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 238000005520 cutting process Methods 0.000 abstract description 3
- 230000005669 field effect Effects 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 13
- 230000005684 electric field Effects 0.000 description 12
- 239000012212 insulator Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 6
- 238000001962 electrophoresis Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000003985 ceramic capacitor Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- FKSZLDCMQZJMFN-UHFFFAOYSA-N [Mg].[Pb] Chemical compound [Mg].[Pb] FKSZLDCMQZJMFN-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- ZFZQOKHLXAVJIF-UHFFFAOYSA-N zinc;boric acid;dihydroxy(dioxido)silane Chemical compound [Zn+2].OB(O)O.O[Si](O)([O-])[O-] ZFZQOKHLXAVJIF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/05—Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
- H10N30/053—Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明の方法は圧電又は電歪材料の電気・機械
エネルギー変換能力を利用した駆動素子や微小変
位素子等のエレクトロメカニカルデバイスの製造
方法に関するものである。[Detailed Description of the Invention] (Industrial Application Field) The method of the present invention relates to a method for manufacturing electromechanical devices such as drive elements and minute displacement elements that utilize the electrical/mechanical energy conversion ability of piezoelectric or electrostrictive materials. It is.
(従来技術とその問題点)
縦効果を利用した電歪効果素子の構造において
素子断面積と同じ大きさの内部電極を有すること
が必要である。これは電圧印加時に電歪材料又は
圧電材料全体に均一な電界を発生させるためであ
る。内部電極面積が素子断面より小さいと電歪又
は圧電材料内部の内部電極端部付近に必ず電界の
不均一な部分が生まれそれに伴つて強い応力集中
が起こる。(Prior Art and its Problems) In the structure of an electrostrictive element that utilizes the longitudinal effect, it is necessary to have internal electrodes with the same size as the cross-sectional area of the element. This is to generate a uniform electric field throughout the electrostrictive material or piezoelectric material when voltage is applied. If the area of the internal electrode is smaller than the cross section of the element, a non-uniform part of the electric field will always be created near the end of the internal electrode inside the electrostrictive or piezoelectric material, and strong stress concentration will occur accordingly.
また低電圧で大きな電界を発生させ大きな歪を
得るためには、内部電極相互の間隔を100ミクロ
ン程度にして多数の内部電極を電歪又は圧電材料
内部に形成することが必要である。 Furthermore, in order to generate a large electric field at a low voltage and obtain a large strain, it is necessary to form a large number of internal electrodes inside the electrostrictive or piezoelectric material with a mutual spacing of about 100 microns.
以上2つの理由で縦効果を利用した電歪効果素
子を電気的に接続するのは従来の方法では非常に
困難である。つまり前者の制約より積層セラミツ
クコンデンサで行なわれるように素子端面全体を
被うような外部電極による接続方法は用いること
ができない。また後者の制約により厚膜プロセス
等で用いられている絶縁膜と導体の印刷による形
成法は精度上から適用が困難である。 For the above two reasons, it is extremely difficult to electrically connect electrostrictive elements that utilize longitudinal effects using conventional methods. In other words, due to the former restriction, it is not possible to use a connection method using external electrodes that covers the entire end face of the element, as is done with multilayer ceramic capacitors. Moreover, due to the latter limitation, it is difficult to apply the printing method of insulating films and conductors used in thick film processes etc. from the viewpoint of accuracy.
そこで本発明者等は先に電気泳動法により電歪
又は圧電材料積層体の端面に露出した内部電極層
とその近傍のセラミツク上に一層おきに無機絶縁
物を形成することを特徴とする電気的接続方法を
提案した。第1図はこの方法により電気的接続を
行なつた電歪効果素子の外観図である。電歪材料
1,2と内部電極とが積層されて構成される素子
の端面に露出した内部電極層およびその周辺のセ
ラミツク上に一層おきに無機絶縁物5が形成され
ている。裏側の端面には一層ずらした内部電極上
に同じく、無機絶縁物6が形成されている。この
絶縁物および露出したままの内部電極4を横断し
て帯状の外部電極7が形成されている。図中番号
3と4で示される多数の内部電極は一層おきにプ
ラス側外部接続端子10およびマイナス側外部接
続端子8にそれぞれ接続している。 Therefore, the present inventors first developed an electrical insulator characterized by forming an inorganic insulator every other layer on the internal electrode layer exposed on the end face of the electrostrictive or piezoelectric material laminate and the ceramic in the vicinity by electrophoresis. A connection method was proposed. FIG. 1 is an external view of an electrostrictive effect element electrically connected by this method. An inorganic insulator 5 is formed every other layer on the internal electrode layer exposed at the end face of the element formed by laminating electrostrictive materials 1 and 2 and internal electrodes, and on the ceramic around the internal electrode layer. Similarly, an inorganic insulator 6 is formed on the internal electrodes which are further shifted from each other on the end face on the back side. A band-shaped external electrode 7 is formed across this insulator and the exposed internal electrode 4. A large number of internal electrodes indicated by numbers 3 and 4 in the figure are connected to the positive external connection terminal 10 and the negative external connection terminal 8 at every other layer, respectively.
この構造の素子の問題点は形成した絶縁物の巾
が狭いことである。第2図はこの構造の素子に直
流電圧を印加した時の構造図を示す。矢印は電気
力線を示す。外部電極7,9の形成面の近傍につ
いてみると、絶縁物5,6の巾が狭いため外部電
極7,9と内部電極3,4との間に他の部分より
強い電界が発生するのがわかる。その方向も他の
大部分の場所と異なつて内部電極面に平行な成分
を持つている。その結果この部分に不均一な歪の
発生に奇因する応力集中が発生し1.5kV/mm以上
の強電界を素子に印加すると素子が破壊する。ま
た電気泳動法により内部電極露出層とその周辺の
セラミツク上を広く被うと厚みも比例して増加し
形成された絶縁物の体積が大きくなり素子の変位
を抑圧する。また電気泳動法により絶縁を行なう
場合、工程上の不良が発生するとシヨート状態と
なり素子は全く使用不能となる。故障モードはオ
ープン状態の方が望ましい。 A problem with the device having this structure is that the width of the formed insulator is narrow. FIG. 2 shows a structural diagram when a DC voltage is applied to an element having this structure. Arrows indicate lines of electric force. Looking at the vicinity of the surfaces where the external electrodes 7 and 9 are formed, it is found that because the widths of the insulators 5 and 6 are narrow, a stronger electric field is generated between the outer electrodes 7 and 9 and the inner electrodes 3 and 4 than in other parts. Recognize. Its direction is also different from most other locations, as it has a component parallel to the internal electrode plane. As a result, stress concentration occurs in this part due to uneven strain, and if a strong electric field of 1.5 kV/mm or more is applied to the element, the element will be destroyed. Further, when the internal electrode exposed layer and the surrounding ceramic are widely covered by the electrophoresis method, the thickness increases proportionally, and the volume of the formed insulator increases, suppressing the displacement of the element. Further, when insulation is performed by electrophoresis, if a defect occurs in the process, a short state will occur and the device will become completely unusable. It is preferable for the failure mode to be in the open state.
(発明の目的)
本発明は絶縁の信頼度を向上させ、同時に電歪
材料内部の電界の均一化により高電界駆動と大き
な歪の発生を得ることができ、絶縁耐圧の向上が
可能となる電歪効果素子の製造方法を提供するこ
とを目的とする。(Objective of the Invention) The present invention improves the reliability of insulation, and at the same time makes it possible to achieve high electric field drive and generation of large strain by uniformizing the electric field inside the electrostrictive material, thereby making it possible to improve the insulation voltage. It is an object of the present invention to provide a method for manufacturing a strain effect element.
(発明の構成)
本発明は電歪材料と内部電極とを交互に積層
し、該積層体において内部電極端部が露出した相
対向する二側面に該内部電極端部と一層おきに接
続する外部電極を形成する電歪効果素子の製造方
法において、内部電極端部が露出した積層体側面
の一層おきの内部電極上に電着法により有機材料
を折出させ加熱、固着させる工程、該積層体側面
の他の部分にガラス粉末を堆積させる工程、該積
層体を熱処理し、有機材料を分解させガラス粉末
を焼付ける工程、該積層体側面に一層おきに露出
した内部電極端部を接続する外部電極を当該側面
上に形成する工程とを備えたことを特徴とする電
歪効果素子の製造方法。(Structure of the Invention) The present invention is characterized in that electrostrictive materials and internal electrodes are alternately laminated, and an external layer is connected to the internal electrode end every other layer on two opposing sides of the laminate where the internal electrode end is exposed. A method of manufacturing an electrostrictive effect element forming an electrode, a step of precipitating an organic material by an electrodeposition method onto every other layer of internal electrodes on a side surface of a laminate in which an end portion of the internal electrodes is exposed, and heating and fixing the organic material; Depositing glass powder on other parts of the side surface, heat treating the laminate to decompose the organic material and baking the glass powder, and connecting the exposed internal electrode ends of every other layer to the laminate side surface. 1. A method of manufacturing an electrostrictive element, comprising the step of forming an electrode on the side surface.
(構成の詳細な説明)
本発明は上述の方法をとることにより、従来の
電気泳動法による電歪効果素子の製造方法の問題
点を解決した。(Detailed Description of Structure) The present invention solves the problems of the conventional method of manufacturing an electrostrictive effect element using electrophoresis by using the method described above.
まず、絶縁物の形成を堆積により行なうことと
したため絶縁の信頼性が大きく向上した。また不
良のモードが接続不良となりオープン状態となつ
た結果不良素子の歪の発生は数十分の一程度減少
するものの素子としては充分に使用できることに
なつた。一方電着による有機材料の形成によつて
絶縁パターン作製を行なうことにより絶縁膜の開
口部を狭くすることができるようになつた。第3
図は以下に示す実施例の方法により電気的接続を
行なつた電歪効果素子の概略図である。誘電率の
低いガラス被膜31,33が素子の端面を広く被
つているため素子側面の外部電極の影響を受ける
ことなくセラミツク内部に均一な電界が発生し応
力の集中が起こらなくなつた。ここで21,22
は電歪材料、23,24は内部電極、32,34
は外部電極、35,36は外部接続端子である。 First, since the insulator was formed by deposition, the reliability of the insulation was greatly improved. Furthermore, as a result of the failure mode being a connection failure and an open state, the occurrence of distortion in the defective element was reduced by several tenths, but the element could still be used satisfactorily. On the other hand, it has become possible to narrow the opening of an insulating film by forming an insulating pattern by forming an organic material by electrodeposition. Third
The figure is a schematic diagram of an electrostrictive effect element electrically connected by the method of the embodiment described below. Since the glass coatings 31 and 33 having a low dielectric constant widely cover the end faces of the element, a uniform electric field is generated inside the ceramic without being affected by the external electrodes on the sides of the element, and stress concentration is prevented. Here 21, 22
is an electrostrictive material, 23 and 24 are internal electrodes, 32 and 34
is an external electrode, and 35 and 36 are external connection terminals.
(実施例)
以下本発明の実施例について図面を参照して詳
細に説明する。マグネシウムニオブ酸鉛およびチ
タン酸鉛を主成分とする電歪材料予焼粉末に微量
の有機バインダを添加しこれを有機溶媒中に分散
させたスラリーを準備した。通常の積層セラミツ
クコンデンサの製造に使用されるキヤステイング
製膜装置によりこのスラリーをマイラーフイルム
上に約100ミクロンの厚さに塗布し乾燥させた。
これをフイルムから剥離し電歪材料グリーンシー
トを得た。一部のグリーンシートにはさらに内部
電極として白金ペーストをスクリーン印刷した。
これらのグリーンシートを数百枚重ね、熱プレス
により圧着一体化した後1240℃で焼成し電歪材料
積層体を得た。これを内部電極が一層おきに表面
に露出するような位置2ケ所で切断し、あらわれ
た面に仮設外部電極を塗布焼き付けし、さらに前
記仮設外部電極形成面と異なる側面2ケ所を切断
し、内部電極全層を露出させた。(Example) Examples of the present invention will be described in detail below with reference to the drawings. A slurry was prepared by adding a small amount of an organic binder to an electrostrictive material pre-fired powder containing magnesium lead niobate and lead titanate as main components, and dispersing this in an organic solvent. This slurry was coated onto a Mylar film to a thickness of about 100 microns using a casting film-forming device used in the production of conventional multilayer ceramic capacitors and dried.
This was peeled off from the film to obtain an electrostrictive material green sheet. Some of the green sheets were further screen-printed with platinum paste as internal electrodes.
Several hundred of these green sheets were stacked, pressed together using a hot press, and then fired at 1240°C to obtain an electrostrictive material laminate. This is cut at two locations where the internal electrodes are exposed on the surface every other layer, temporary external electrodes are applied and baked on the exposed surface, and two side surfaces different from the surface on which the temporary external electrodes are formed are cut. The entire electrode layer was exposed.
第4図は以上のようにして作製した仮設外部電
極付電歪材料積層体と以下に説明する方法で形成
する有機物質膜27の形成位置を示す外観図であ
る。図中番号21および22は電歪材料、23は
内部電極で一層おきにそれぞれ仮設外部電極25
と26に接続している。 FIG. 4 is an external view showing the electrostrictive material laminate with temporary external electrodes produced as described above and the formation position of the organic material film 27 formed by the method described below. In the figure, numbers 21 and 22 are electrostrictive materials, 23 is an internal electrode, and temporary external electrodes 25 are placed every other layer.
and 26.
次にこのような積層体に電着法により有機物質
を形成する。電着法に用いる懸濁液は、カチオン
系電着塗装用エマルジヨンと樹脂硬化剤および水
とからなる。この懸濁液を容器に満たし前記積層
体および金メツチ処理済のステンレス製対向電極
板を沈め、前記仮設外部電極の一方を直流電源の
マイナス側端子に、前記対向電極板をプラス側端
子に接続し直流電圧を約5分間印加するとマイナ
ス側端子に接続している内部電極露出部の上に前
記エマルジヨン粒子が付着する。これを200℃30
分間加熱して固着させ有機物質の帯状膜27を形
成する。次にこの積層体を有機物質膜形成面を上
にしてホウケイ酸亜鉛系結晶化ガラス粉末とエタ
ノールとからなる懸濁液中に15分間静置する。 Next, an organic material is formed on such a laminate by electrodeposition. The suspension used in the electrodeposition method consists of a cationic electrodeposition coating emulsion, a resin curing agent, and water. Fill a container with this suspension, submerge the laminate and gold-metal-treated stainless steel counter electrode plate, and connect one of the temporary external electrodes to the negative terminal of a DC power source and the counter electrode plate to the positive terminal. When a DC voltage is applied for about 5 minutes, the emulsion particles adhere to the exposed portion of the internal electrode connected to the negative terminal. This at 200℃30
The film is heated for a minute to solidify and form a band-shaped film 27 of organic material. Next, this laminate is left standing for 15 minutes in a suspension consisting of zinc borosilicate-based crystallized glass powder and ethanol, with the surface on which the organic substance film is formed facing upward.
第5図は帯状有機物質膜を形成した端面にガラ
ス粉末を堆積した電歪材料積層体の外観図を示
す。図中番号28は積層体端面上に堆積したガラ
ス粉末、29は有機物質膜上に堆積したガラス粉
末によるうね状の盛りあがりをそれぞれ示す。第
6図はこの積層体の断面を示す。図中番号21と
22は電歪材料、23と24は内部電極、27は
有機物質膜、28と29は堆積したガラス粉末を
それぞれ示す。 FIG. 5 shows an external view of an electrostrictive material laminate in which glass powder is deposited on the end face on which a band-shaped organic material film is formed. In the figure, numeral 28 indicates glass powder deposited on the end face of the laminate, and numeral 29 indicates a ridge-like bulge due to the glass powder deposited on the organic material film. FIG. 6 shows a cross section of this laminate. In the figure, numbers 21 and 22 indicate electrostrictive materials, 23 and 24 internal electrodes, 27 an organic material film, and 28 and 29 deposited glass powder, respectively.
次に有機物質膜上に堆積したガラス粉末28の
みをスクレツパー等で削り取る。その後500℃30
分間加熱して有機物質膜27を熱分解によるガス
化によつて取り除く。次に700℃で10分間焼成し
ガラス被膜31を形成する。 Next, only the glass powder 28 deposited on the organic substance film is scraped off with a scraper or the like. then 500℃30
The organic substance film 27 is removed by gasification by thermal decomposition by heating for a minute. Next, the glass film 31 is formed by firing at 700° C. for 10 minutes.
第7図は有機物質膜上のガラス粉を取り除いた
積層体の断面を示す。第8図は有機物質膜を熱分
解により除去した積層体の断面図である。図中番
号30は有機物質膜の消失した空間、29は堆積
したガラス粉を示す。第9図および第10図はガ
ラスを焼き付けた積層体の断面図と外観図であ
る。ガラスは溶解の過程で表面張力により角がと
れやや広がつて積層体表面に固着する。図中番号
31は形成されたガラス被膜、24は露出してい
る内部電極端部をそれぞれ示す。ガラス被膜の開
口部は第2図に示す電気泳動法によりガラス被膜
を形成した場合にくらべて狭くなつている。本発
明によればガラス軟化温度での保持時間を変える
ことによりガラスの流れ具合をコントロールして
開口部の広さを決めることができる。 FIG. 7 shows a cross section of the laminate from which glass powder on the organic material film has been removed. FIG. 8 is a cross-sectional view of a laminate from which an organic material film has been removed by thermal decomposition. In the figure, number 30 indicates a space where the organic material film has disappeared, and number 29 indicates the deposited glass powder. FIG. 9 and FIG. 10 are a sectional view and an external view of a laminate made of baked glass. During the melting process, the surface tension of the glass causes the glass to become rounded and slightly widened, and is fixed to the surface of the laminate. In the figure, numeral 31 indicates the formed glass coating, and 24 indicates the exposed end of the internal electrode. The opening of the glass coating is narrower than that in the case where the glass coating is formed by the electrophoresis method shown in FIG. According to the present invention, the width of the opening can be determined by controlling the flow of the glass by changing the holding time at the glass softening temperature.
同様の方法と手順で反対側の端面の内部電極一
層分だけずらした位置にガラス被膜33を形成す
る。 Using the same method and procedure, a glass coating 33 is formed on the opposite end face at a position shifted by one layer of the internal electrode.
次に外部電極をペースト印刷と焼付けにより表
側と裏側の端面に形成する。第11図は外部電極
32を形成した積層体の外観図である。図中破線
の位置で切断し最終素子形状となる。第12図は
得られた電歪効果素子の外観図である。第13図
は同じく構造図を示す。図中番号21と22は電
歪材料、31と33はガラス被膜、32と34は
外部電極、35と36はそれぞれプラス側マイナ
ス側の外部接続端子を示す。本発明による素子は
有機絶縁材料等でさらに外装することにより耐環
境性を向上させることが可能である。 Next, external electrodes are formed on the front and back end surfaces by paste printing and baking. FIG. 11 is an external view of a laminate on which external electrodes 32 are formed. The final element shape is obtained by cutting at the position indicated by the broken line in the figure. FIG. 12 is an external view of the obtained electrostrictive effect element. FIG. 13 also shows a structural diagram. In the figure, numbers 21 and 22 are electrostrictive materials, 31 and 33 are glass coatings, 32 and 34 are external electrodes, and 35 and 36 are positive and negative external connection terminals, respectively. The element according to the present invention can be further coated with an organic insulating material or the like to improve its environmental resistance.
(発明の効果)
本発明の方法は一度端面の全面にガラス粉を堆
積してから不必要部分を除去しているので絶縁す
べき箇所は確実に絶縁されており絶縁不良による
シヨートを主な原因としていた歩留りの低さが50
%から95%へと大きく改善された、絶縁物の巾が
広がりうね状から膜状にと近づき堅固なガラス被
膜が形成されたため、絶縁耐圧が500Vから900V
へと大きく改善された。また絶縁物が広がつた結
果セラミツク内部に発生する電界のうち内部電極
に対して平行な成分が大幅に減少して均一な電界
が発生する。その結果、2kV/mm以上の高電界で
駆動できて変位が大きくとれる、1kV/mm程度の
通常の電界強度での駆動では1億回以上の長期連
続駆動時の不良発生率が大きく減少する等の特性
改善が得られた。(Effects of the Invention) The method of the present invention deposits glass powder on the entire surface of the end face and then removes unnecessary parts, so the parts that should be insulated are reliably insulated, and the main cause is shortening due to poor insulation. The low yield that was supposed to be 50
% to 95%, the width of the insulator has expanded from ridge-like to film-like, and a solid glass film has been formed, increasing the dielectric strength from 500V to 900V.
has been greatly improved. Furthermore, as a result of the spread of the insulator, the component of the electric field generated inside the ceramic that is parallel to the internal electrodes is significantly reduced, and a uniform electric field is generated. As a result, it is possible to drive with a high electric field of 2 kV/mm or more and achieve a large displacement, and when driven with a normal electric field strength of about 1 kV/mm, the failure rate during long-term continuous driving of more than 100 million times is greatly reduced. An improvement in the characteristics was obtained.
第1図は電気泳動法を用いて作製した電歪効果
素子の斜視図である。第2図は第1図の素子の断
面と直流電圧印加時の電気力線を示す図である。
第3図は本発明の方法により作製した電歪効果素
子の断面と直流電圧印加時の電気力線を示す図で
ある。第4図は端面に露出した内部電極とその周
辺のセラミツク上に一層おきに電着法により有機
物質膜を形成した電歪材料積層体の外観図であ
る。第5図と第6図はそれぞれ端面上にガラス粉
末を堆積させた電歪材料積層体の斜視図と断面図
である。第7図は有機物質膜上に堆積したガラス
粉末のみを削り取つた電歪材料積層体の断面図で
あり、第8図は同積層体を500℃で加熱し有機物
質膜を熱分解して除去せしめたものの断面図を示
す。第9図はこの積層体を700℃で焼成しガラス
被膜を形成したものの断面図であり、第10図は
同じ積層体のガラス被膜形成面を示す斜視図であ
る。第11図は前記ガラス被膜形成面に複数の外
部電極を形成させた電歪材料積層体を示す斜視図
である。第12図は反対側端面にも同様にガラス
被膜と外部電極を形成した後最終形状に切断して
得た電歪効果素子を示す外観図であり、第13図
は同じく断面図である。
図中番号1,2,21,22は電歪材料、3,
4,23,24は内部電極、5と6はガラス被
膜、7,8,9,10はそれぞれ外部接続端子を
示す。25と26はそれぞれマイナス側プラス側
の仮設外部電極を示す。27は有機物質膜を示
す。28,29はそれぞれ有機物質膜上、電歪材
料上に堆積したガラス粉末を示す。30は有機物
質膜の熱分解による消失によつて生まれた空へき
を、31,33はガラス被膜を示す。32と34
はそれぞれプラス側マイナス側の外部電極を示
す。35と36はそれぞれプラス側マイナス側の
外部接続端子を37は直流電源を示す。
FIG. 1 is a perspective view of an electrostrictive effect element manufactured using electrophoresis. FIG. 2 is a diagram showing a cross section of the element shown in FIG. 1 and lines of electric force when a DC voltage is applied.
FIG. 3 is a diagram showing a cross section of an electrostrictive element manufactured by the method of the present invention and lines of electric force when a DC voltage is applied. FIG. 4 is an external view of an electrostrictive material laminate in which an organic material film is formed every other layer by electrodeposition on the internal electrodes exposed at the end faces and the ceramic around the internal electrodes. FIGS. 5 and 6 are a perspective view and a cross-sectional view, respectively, of an electrostrictive material laminate with glass powder deposited on its end faces. Figure 7 is a cross-sectional view of an electrostrictive material laminate in which only the glass powder deposited on the organic substance film has been scraped off, and Figure 8 is a sectional view of the electrostrictive material laminate obtained by heating the same laminate at 500°C to thermally decompose the organic substance film. A cross-sectional view of what was removed is shown. FIG. 9 is a cross-sectional view of this laminate which was fired at 700° C. to form a glass coating, and FIG. 10 is a perspective view showing the surface of the same laminate on which the glass coating was formed. FIG. 11 is a perspective view showing an electrostrictive material laminate in which a plurality of external electrodes are formed on the surface on which the glass coating is formed. FIG. 12 is an external view showing an electrostrictive effect element obtained by similarly forming a glass coating and an external electrode on the opposite end face and then cutting it into the final shape, and FIG. 13 is a sectional view thereof as well. Numbers 1, 2, 21, 22 in the figure are electrostrictive materials, 3,
4, 23, and 24 are internal electrodes, 5 and 6 are glass coatings, and 7, 8, 9, and 10 are external connection terminals, respectively. 25 and 26 indicate temporary external electrodes on the minus side and the plus side, respectively. 27 indicates an organic material film. 28 and 29 indicate glass powder deposited on the organic material film and the electrostrictive material, respectively. Reference numeral 30 indicates a gap created by the disappearance of the organic material film through thermal decomposition, and 31 and 33 indicate glass coatings. 32 and 34
indicate the positive and negative external electrodes, respectively. 35 and 36 are positive and negative external connection terminals, respectively, and 37 is a DC power supply.
Claims (1)
層体において内部電極端部が露出した相対向する
二側面に該内部電極端部と一層おきに接続する外
部電極を形成する電歪効果素子の製造方法におい
て、内部電極端部が露出した積層体側面の一層お
きの内部電極上に電着法により有機材料を折出さ
せ加熱、固着させる工程、該積層体側面の他の部
分にガラス粉末を堆積させる工程、該積層体を熱
処理し、有機材料を分解させガラス粉末を焼付け
る工程、該積層体側面に一層おきに露出した内部
電極端部を接続する外部電極を当該側面上に形成
する工程とを備えたことを特徴とする電歪効果素
子の製造方法。1 Electrostrictive effect in which electrostrictive materials and internal electrodes are alternately laminated, and external electrodes are formed every other layer on two opposing sides of the laminate where the internal electrode ends are exposed, and are connected to the internal electrode ends every other layer. In a method for manufacturing an element, an organic material is precipitated by electrodeposition on every other internal electrode layer on the side surface of the laminate where the end of the internal electrode is exposed, heated and fixed, and glass is applied to other parts of the side surface of the laminate. A step of depositing powder, a step of heat-treating the laminate to decompose the organic material and baking the glass powder, and forming an external electrode on the side surface of the laminate to connect the end of the internal electrode exposed every other layer. A method for manufacturing an electrostrictive element, comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13675984A JPS6127687A (en) | 1984-07-02 | 1984-07-02 | Production of electrostrictive effect element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13675984A JPS6127687A (en) | 1984-07-02 | 1984-07-02 | Production of electrostrictive effect element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6127687A JPS6127687A (en) | 1986-02-07 |
JPH0256829B2 true JPH0256829B2 (en) | 1990-12-03 |
Family
ID=15182837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13675984A Granted JPS6127687A (en) | 1984-07-02 | 1984-07-02 | Production of electrostrictive effect element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6127687A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0442947Y2 (en) * | 1987-06-29 | 1992-10-12 | ||
JPH0774410A (en) * | 1994-09-06 | 1995-03-17 | Ngk Spark Plug Co Ltd | Manufacture of electrostriction laminate |
DE102012104830A1 (en) * | 2012-06-04 | 2013-12-05 | Epcos Ag | Multi-layer component and method for producing a multilayer component |
DE102012105318A1 (en) | 2012-06-19 | 2013-12-19 | Epcos Ag | Method for producing a ceramic component and a ceramic component |
-
1984
- 1984-07-02 JP JP13675984A patent/JPS6127687A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6127687A (en) | 1986-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6317354B2 (en) | ||
JPS6127688A (en) | Electrostrictive effect element and production thereof | |
JPS6317355B2 (en) | ||
JPH04253382A (en) | Electrostrictive effect element | |
JPH0256826B2 (en) | ||
EP1381094A2 (en) | Insulation for piezoceramic multilayer actuators | |
JPH0256829B2 (en) | ||
JPS61182284A (en) | Electrostrictive effect element | |
JPH10290031A (en) | Laminated-type piezo-electric actuator and manufacture thereof | |
JPS6132835B2 (en) | ||
JPS6355986A (en) | Manufacture of electrostriction effect element | |
JPH02137280A (en) | Electrostriction effect element and its manufacture | |
JPS60229381A (en) | Manufacture of electrostrictive effect element | |
JPS6318352B2 (en) | ||
JPS60178678A (en) | Manufacture of electronic component of ceramic lamination | |
JPH04359577A (en) | Manufacture of laminated piezoelectric actuator element | |
JPH0519313B2 (en) | ||
JPH04268775A (en) | Electrostrictive effect element | |
JPS6086883A (en) | Manufacture of electrostrictive-effect element | |
JPH0832131A (en) | Laminated piezolectric element and its manufacture | |
JP2003347621A (en) | Manufacturing method of laminated piezoelectric actuator | |
JPH07240545A (en) | Laminated piezoelectric element | |
JPH06283776A (en) | Multilayer piezoelectric element | |
JPS60247981A (en) | Manufacture of electrostrictive effect element | |
JPS6225475A (en) | Electrostrictive effect element and manufacture thereof |