JPS6086882A - Manufacture of electrostrictive-effect element - Google Patents

Manufacture of electrostrictive-effect element

Info

Publication number
JPS6086882A
JPS6086882A JP58194902A JP19490283A JPS6086882A JP S6086882 A JPS6086882 A JP S6086882A JP 58194902 A JP58194902 A JP 58194902A JP 19490283 A JP19490283 A JP 19490283A JP S6086882 A JPS6086882 A JP S6086882A
Authority
JP
Japan
Prior art keywords
glass powder
laminated body
internal electrodes
electrostrictive
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58194902A
Other languages
Japanese (ja)
Other versions
JPS6318352B2 (en
Inventor
Atsushi Ochi
篤 越智
Kazuaki Uchiumi
和明 内海
Masanori Suzuki
正則 鈴木
Mitsuhiro Midorikawa
緑川 光宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58194902A priority Critical patent/JPS6086882A/en
Priority to DE8383307867T priority patent/DE3373594D1/en
Priority to EP83307867A priority patent/EP0113999B1/en
Publication of JPS6086882A publication Critical patent/JPS6086882A/en
Priority to US06/940,210 priority patent/US4681667A/en
Publication of JPS6318352B2 publication Critical patent/JPS6318352B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the insulating coated film of a fine pattern by a method wherein electrified glass powder is accumulated on the surface of a laminated body, which has been made of electrostrictive material and placed in a suspension, and unnecessary glass powder of the glass powder is removed by applying an electric field in between internal electrodes constituting the laminated body and an opposed electrode plate installed in the suspension. CONSTITUTION:A laminated body 21 constituted by laminating alternately internal electrodes and electrostrictive material is placed in an electrified glass powder-containing suspension 26. The internal electrodes are made to expose at the end surfaces of the laminated body 21. A temporary external electrode 22 and a temporary external electrode 23 are provided on both sides of the laminated body 21, and the temporary external electrodes 22 and 23 are made to connect with the internal electrodes every one layer. The laminated body 21 is left intact in the suspension 26, glass powder 24 is made to be accumulated on the surface of the laminated body 21 and a DC power source 27 is connected to the external electrode 23 and an opposed electrode plate 25. According to such a way, the glass powder 24 in the vicinities of the internal electrodes connected to the electrode 23 is removed. By baking the laminated body obtained in such a way, the insulating coated film of a fine pattern not only can be formed, but also the layer thickness thereof can be controlled.

Description

【発明の詳細な説明】 本発明は縦効果を利用した電歪効果素子の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an electrostrictive element using longitudinal effect.

縦効果を利用した電歪効果素子の構造においては電歪材
料全体に電界を発生させることにより歪発生時の応力集
中を防ぐため素子の断面全体と同じ大きさの内部電極を
持つことが必要である。菫た低電圧で高い電界を発生さ
せ大きな歪を得るためには内部電極相互の間隔を100
ミクロン程U+こすることが必要である。以上2つの理
由で素子断面と同じ面積の内部を極を有する電歪効果素
子を電気的に接続するには大きな困難が伴う。
In the structure of an electrostrictive element that utilizes the longitudinal effect, it is necessary to have internal electrodes that are the same size as the entire cross section of the element in order to prevent stress concentration when strain occurs by generating an electric field throughout the electrostrictive material. be. In order to generate a high electric field with a very low voltage and obtain a large strain, the distance between the internal electrodes should be set to 100 mm.
It is necessary to rub by a micron. For the above two reasons, it is very difficult to electrically connect an electrostrictive element having poles within the same area as the cross section of the element.

そこで本発明者等は先に電気泳動法により、電歪材料積
層体の端面に露出した内部電極層とその近傍のセラミッ
ク上に一層おきに絶縁物を形成することを特徴とする電
気的接続方法を提案した。
Therefore, the present inventors first developed an electrical connection method characterized by forming an insulator every other layer on the internal electrode layer exposed on the end face of the electrostrictive material laminate and the ceramic in its vicinity by electrophoresis. proposed.

第1図はその方法により接続した電歪効果素子の外観図
である。端面に露出した内部電極層およびその近傍のセ
ラミ、り上に電気泳動法により一層おきに絶縁物7が形
成されている。裏側の端面には一層だけずらした内部′
F!極上に同じく絶縁物8が形成されている。この絶縁
物および露出した抜まの内部を極4を横断して帯状の外
部電極11を形成する。裏側にも同様に内部電極3に対
して外部電極を形成することにより多数の内部電極は一
層おきにプラス側端子13又はマイナス側端子12にそ
れぞれ接続される。これらの外部端子間に直流電圧を印
加することにより保護膜部1を除く電歪材料2全俸に均
一な電界が発生し積層方向と平行に素子が伸長する。応
力集中がないためtηり返し電圧を印加しても素子は破
壊せず、また内部電極間距離が短かいため100v以下
の低電圧で駆動することができる。
FIG. 1 is an external view of an electrostrictive effect element connected by this method. An insulator 7 is formed every other layer by electrophoresis on the internal electrode layer exposed on the end face and the ceramic layer in the vicinity thereof. On the back end surface, there is an internal space that is shifted by one layer.
F! An insulator 8 is also formed on the top. A band-shaped external electrode 11 is formed by crossing the pole 4 through this insulator and the exposed hollow inside. By similarly forming external electrodes for the internal electrodes 3 on the back side, a large number of internal electrodes are connected to the positive side terminal 13 or the negative side terminal 12 at every other layer. By applying a DC voltage between these external terminals, a uniform electric field is generated over the entire area of the electrostrictive material 2 except for the protective film portion 1, and the element is expanded in parallel to the stacking direction. Since there is no stress concentration, the element will not be destroyed even if tη repeated voltages are applied, and since the distance between internal electrodes is short, it can be driven with a low voltage of 100 V or less.

この素子の製造方法について前年に説明する。The method for manufacturing this element will be explained in the previous year.

まず第2図に示すような内部vt極3.4と電歪材料1
.2とを交互に積層した積層体を積層セラミックコンデ
ンサの製造技術を応用して作製する。
First, an internal VT pole 3.4 and an electrostrictive material 1 as shown in FIG.
.. A laminate in which 2 and 2 are alternately stacked is manufactured by applying manufacturing technology for multilayer ceramic capacitors.

多数の内部を極3.4は表側と裏側の端面に露出してお
り、また911而に形成した2つの仮設外部電極5.6
に一層おきに交互に接続している。懸濁液中にこの積層
体と対向電極用金属板とを設置し、直流電圧をこの対向
電極板から、前記仮設外部電極5に向けて印加すると懸
濁液中のプラスをこ帯電したガラス粉末は電気泳動によ
って内部電極3とその近傍の電歪材料上に付着する。第
3図は表側の端面にガラス粉末を付着させた積層体の外
観図である。図中番号1は保護膜の働きをする電歪材料
、2は電界が発生して歪を生ずる部分の電歪材料を示す
。41ま露出している内部電極を示し、それらの間lこ
存在する内部電極はガラス粉末7によって被われている
A large number of internal electrodes 3.4 are exposed on the front and back end surfaces, and two temporary external electrodes 5.6 are formed at 911.
They are connected alternately every other layer. When this laminate and a metal plate for a counter electrode are placed in a suspension and a DC voltage is applied from the counter electrode plate toward the temporary external electrode 5, the positively charged glass powder in the suspension is is deposited on the internal electrode 3 and the electrostrictive material in its vicinity by electrophoresis. FIG. 3 is an external view of a laminate with glass powder adhered to the front end face. In the figure, numeral 1 indicates an electrostrictive material that functions as a protective film, and numeral 2 indicates an electrostrictive material in a portion where an electric field is generated to cause distortion. The inner electrodes 41 are shown exposed, and the inner electrodes between them are covered with glass powder 7.

該ガラス粉末を焼成固着させた後、裏側の端面について
も同様な方法でガラス粉末を付着し、焼成固着させる。
After the glass powder is baked and fixed, the glass powder is applied to the back end face in the same manner and fixed by baking.

この絶縁物を形成した積層体は第4図1こ破線で示すよ
うな位置で切断され両端の小片9を除いた数個の小片1
0ヲこ外部電極11を形成すると第1図fこ示す電歪効
果素子が得られる。
The laminated body formed with this insulator is cut at the position shown by the broken line in FIG.
When the outer electrode 11 is formed in half, the electrostrictive effect element shown in FIG. 1f is obtained.

この方法の問題点は付着によって形成された帯状の絶縁
物に切れやくびれが生じやすいことである。原因として
は懸濁液内の対流によって局部的に電界の弱い部分が発
生し、その部分への付着が起らないためと考えられる。
The problem with this method is that the band-shaped insulator formed by adhesion tends to be cut or constricted. The reason is thought to be that convection within the suspension generates locally weak electric field areas, and no adhesion occurs in those areas.

焼成固着後その上から外部電極を形成すると切れの部分
ではショートになり、くびれの部分では絶縁耐圧が大き
く低下し実用にならない〇 本発明はこの問題を解決することを目的としており、ま
ず第2図に示すような電歪材料と内部電極との積層体を
帯電したガラス粉末を含む懸濁液中に沈め、内部電極の
露出した端面全面をこガラス粉末を堆積させる。次に同
じ懸濁液内に対向電極板を設置し、仮設外部を極6とこ
の対向!極板との間に直流市、圧を印加する。仮設外部
電極6に接続している内部電極4とその近傍に堆積して
いるガラス粉末は堆積後もプラスに帯電しているため、
直流電界の方向に静電力を受けて積層体表面から除去さ
れる。得られた絶縁物のパターン形状は通常の電気泳動
法、すなわち対向電極板から仮設外部電極5に向けて直
流電圧を印加した場合と全く同じである。しかしながら
堆積によってあらかじめ形成するガラス粉末層は欠陥の
ない完全なものであり、また堆積後の電圧印加によって
絶縁膜を形成させる部分すなわち内部電極3とその近傍
のセラミック上のガラス粉末層が破壊されることは全く
ない。
If an external electrode is formed on top of it after firing and fixing, it will cause a short circuit at the broken part, and the dielectric strength will drop significantly at the constricted part, making it impractical.The purpose of the present invention is to solve this problem. A laminate of an electrostrictive material and an internal electrode as shown in the figure is immersed in a suspension containing charged glass powder, and the glass powder is deposited on the entire exposed end surface of the internal electrode. Next, a counter electrode plate is installed in the same suspension, and the temporary outside is placed opposite the pole 6! Apply direct current and pressure between the electrode plate. The internal electrode 4 connected to the temporary external electrode 6 and the glass powder deposited near it are positively charged even after deposition, so
It is removed from the surface of the laminate by electrostatic force in the direction of the DC electric field. The pattern shape of the obtained insulator is exactly the same as that of the usual electrophoresis method, that is, when a DC voltage is applied from the counter electrode plate toward the temporary external electrode 5. However, the glass powder layer formed in advance by deposition is perfect with no defects, and the glass powder layer on the ceramic on the internal electrode 3 and its vicinity is destroyed by applying voltage after deposition. Not at all.

本発明の特徴は一度、全面に堆積させた後不必要す部分
のみを除去することにある。この方法により、は不惑g
な部分に一層ガラス粉末が残留することはあっても、絶
縁すべき場所へのガラス粉末の付着状態は完全であり、
焼成固着により切れやくびれの全くない良好な帯状絶縁
被膜が形成される。
The feature of the present invention is that after depositing on the entire surface, only unnecessary portions are removed. By this method, you will not be confused
Although more glass powder may remain in certain areas, the glass powder is completely adhered to the areas that should be insulated.
By firing and fixing, a good band-shaped insulating film with no cuts or constrictions is formed.

以下実施例に従い本発明の詳細な説明を行なう。The present invention will be explained in detail below according to Examples.

まず第2図に示すような構造の多数の内部電極と1組の
仮設外部11!極とを有する電歪材料2全俸をして以下
の方法により作製する。
First, a large number of internal electrodes and a set of temporary external electrodes 11 have a structure as shown in FIG. An electrostrictive material 2 having a pole is made by the following method.

マグネシウムニオブ酸鉛(Pb(fVigl/3Nb2
/3)Os)およびチタン酸鉛(PbTiO,)を主成
分とする電歪材料予焼粉末に倣量の有機バインダーを添
加し、これを有機溶媒中をこ分散させたスラリーを準備
した。通常の積層セラミックコンデンサの製造に使用さ
れるキャスティング製膜装置によりこのスラリーをマイ
ラーフィルム上に数百ミクロンの厚さに塗布し乾燥させ
た。これをフィルムから剥離し、電歪材料グリーンシー
トを得た。一部のグリーンシートには更に内部電極とし
て白金ペーストをスクリーン印刷した。これらのグリー
ンシートを数10枚重ね、熱プレスにより圧着一体化し
た後1250℃で焼成し、電歪材料積層体を得た。
Magnesium lead niobate (Pb(fVigl/3Nb2
/3) A slurry was prepared by adding an amount of an organic binder to an electrostrictive material pre-fired powder containing lead titanate (PbTiO) and lead titanate (PbTiO, ) as main components, and dispersing this in an organic solvent. This slurry was coated onto a Mylar film to a thickness of several hundred microns using a casting film forming apparatus used in the production of ordinary multilayer ceramic capacitors and dried. This was peeled off from the film to obtain an electrostrictive material green sheet. Some of the green sheets were further screen-printed with platinum paste as internal electrodes. Several ten of these green sheets were stacked, pressed together by heat press, and then fired at 1250° C. to obtain an electrostrictive material laminate.

これを内部電極が一層おきに表面に露出するような位置
で切断し仮設外部電極を塗布焼付けし更に側面を切断し
て第2図に示すような内部電極が露出している積層体を
得た。このようにして得られた電歪材料積層体に電気泳
動法を適用する。第2図において1は保護膜部分の電歪
材料、2は歪を生じる電歪材料をそれぞれ示す。内部電
極3.4はそれぞれ5と6で示す仮設外部を極lこ接続
しており、他の内部電極は一層おきに交互に2つの仮設
外部電極に接続されている。
This was cut at a position where the internal electrodes were exposed on the surface every other layer, temporary external electrodes were applied and baked, and the sides were cut to obtain a laminate with exposed internal electrodes as shown in Figure 2. . Electrophoresis is applied to the electrostrictive material laminate thus obtained. In FIG. 2, reference numeral 1 indicates the electrostrictive material of the protective film portion, and reference numeral 2 indicates the electrostrictive material that causes strain. The inner electrodes 3.4 are connected to the temporary outer electrodes 5 and 6 respectively, and the other inner electrodes are connected alternately to the two temporary outer electrodes on every other layer.

次に付着物であるガラス粉末を含む懸濁液を以下の方法
で作製する。ホウケイ酸亜給糸結晶化ガラス粉末30g
、エタノール290 ml!、5%ヨウ素エタノール溶
液10m/を高速ホモジナイザーで混合する。ヨウ素が
電解質の役割を果たし、ガラス粉末はプラスに帯電して
いる。30分間超背波をかけた後、30分間静置して沈
澱物を除去し残りの懸濁液を使用する。
Next, a suspension containing glass powder as deposits is prepared by the following method. 30g borosilicate crystallized glass powder
, 290 ml of ethanol! , 10 m/5% iodine ethanol solution are mixed in a high speed homogenizer. Iodine acts as an electrolyte, and the glass powder is positively charged. After applying ultraback waves for 30 minutes, the suspension was allowed to stand for 30 minutes to remove the precipitate, and the remaining suspension was used.

前記電歪材料積層体の内部電極が露出している端面の片
方を粘着テープで被い懸濁液にぬれるのを防いだ後、付
着させる端面を上向きにして、前記懸濁液中に沈め、1
5分間放置し端面全面にガラス粉末を堆積させる。放置
する時間を長(すること【こよって堆積するガラス粉末
の厚みを増加させることができる。すた遠心法により強
制的に沈降速度を早め、かつ堆積層の密度を増加させる
こともできる。
After covering one end face of the electrostrictive material laminate with an exposed internal electrode with an adhesive tape to prevent it from getting wet with the suspension, submerge it in the suspension with the end face to be attached facing upward; 1
Leave for 5 minutes to deposit glass powder all over the end surface. The thickness of the deposited glass powder can be increased by leaving it for a longer period of time.The centrifugation method can forcefully accelerate the sedimentation rate and increase the density of the deposited layer.

次に懸濁液内に対向電極板を沈め、前記積層体の上方3
cIrLの位置に設置する。直流電源のプラス端子に仮
設外部電極詔を接続しマイナス端子に対向!極板を接続
し、20Vで200秒印加する。この場合、懸濁液の代
りにエチルアルコールでも良い。
Next, the counter electrode plate is submerged in the suspension, and the upper part of the laminate is
Install it at the cIrL position. Connect a temporary external electrode to the positive terminal of the DC power supply and face the negative terminal! Connect the electrode plates and apply 20V for 200 seconds. In this case, ethyl alcohol may be used instead of the suspension.

第5図は設置方法を示す概念図である。図中番号21は
内部電極を有する電歪材料積層体、22は絶縁ずべき内
部電極を菫とめた仮設外部電極、23は露出させるべき
内部電極をまとめた仮設外部電極をそれぞれ示す=21
1は@屠体端面に堆積したガラス粉末である。25は対
向!極板、26は前記懸濁液又はエチルアルコール、2
7は直流電源、銘は容器をそれぞれ示す。
FIG. 5 is a conceptual diagram showing the installation method. In the figure, number 21 indicates an electrostrictive material laminate having internal electrodes, 22 indicates a temporary external electrode that collects internal electrodes that should be insulated, and 23 indicates a temporary external electrode that collects internal electrodes that should be exposed = 21
1 is glass powder deposited on the end surface of the carcass. 25 is on the opposite side! Electrode plate, 26 is the suspension or ethyl alcohol, 2
7 indicates the DC power supply, and the name indicates the container.

電圧印加後、積層体を懸濁液又はエタノールから引き上
げ乾燥させ、710℃空気雰囲気で焼成し固着させる。
After applying a voltage, the laminate is pulled up from the suspension or ethanol, dried, and baked at 710° C. in an air atmosphere to fix it.

反対側の端面にも同様の方法でパターン形成を行な−)
た後、第4図に示すような破線の位置で切断し、絶縁物
を形成した2つの面に帯状の外ffts電極を形成する
と、第1図に示すように内部を極が素子断面に等しい電
歪効果素子を電気的Eこ接続することができる。
Form a pattern on the opposite end face in the same way.
After that, it is cut at the position of the broken line as shown in Fig. 4, and a band-shaped outer ffts electrode is formed on the two surfaces on which the insulator is formed.As shown in Fig. 1, the inner pole is equal to the cross section of the element. The electrostrictive element can be electrically connected.

本発明tこよれは歳細な絶縁パターンを高い信頼度で形
成することができるはかりでなく、従来制御がI!l!
lI@であった絶縁物の層厚を懸濁液中での放置時間の
コントロールという簡単な方法で実現することが可能で
あり大量生産に適した製造方法である。
The problem with the present invention is that it is not a scale that can form a thin insulation pattern with high reliability, and the conventional control is not capable of forming thin insulation patterns with high reliability. l!
It is possible to achieve the layer thickness of the insulator, which was lI@, by a simple method of controlling the standing time in the suspension, and this manufacturing method is suitable for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

M1図は電気泳動法を用いて電気的に接続された、内部
lt!LIJ7Aが素子断面積に等しい電歪効果素子を
示す外観図である。図中番号1は保護膜部の電歪材料セ
ラミックス、2は歪を生ずる部分の電歪材料セラミック
ス、3.4は内部電極、7.8はそれらを被う絶縁被膜
、11は内部′a極を一層おきに相互に接続する外部電
4Mをそれぞれ示す。12.13はマイナス側およびプ
ラス側の外部端子を示す。 第2図は電気泳動法を適用するための電歪材料積層体の
外観図である。図中番号1は保護膜部の電歪材料積層体
、2は歪を発生する部分の電歪材料積層体、3.4は端
面に露出した内部電極、5.6はこれらを相互に接続し
ている仮設外s電極をそれぞれ示す。 第3図は端面の内部電極の露出した部分とその周辺のセ
ラミック上にガラス粉末を形成した電歪材料積層体の外
観図である。図中番号1は保護膜部の電歪材料セラミッ
ク、2は歪を発生する部分の電歪材料セラミック、7は
付着したガラス粉末、5.6は内部電極を一層おきに相
互に接続する仮設外部電極、4は露出している内部電極
をそれぞれ示す。第4図は絶縁被膜を形成した電歪材料
積層体の切断位置(点線部分)を示す外観図である。 図中番号9は両端の使えない部分、1θは外部電極の形
成により電歪効果素子として働く部分をそれぞれ示す。 第5図は本発明の方法による電気泳動装置の接続方法を
示す概略図である。図中番号21は電歪材料積層体、n
はガラス粉を付着させるべき内部電極をまとめた仮設外
部電極、囚は付着させない方の内部電極をまとめた仮設
外部電極をそれぞれ示す。Uは堆積したガラス粉末、2
5は対向電極板、26は帯電したガラス粉末を含む懸濁
液又はエタノール、27は直流電源、路は容器をそれぞ
れ示す。 第1図 第2図 第3図
M1 diagram is an internal lt! electrically connected using electrophoresis method. FIG. 7 is an external view showing an electrostrictive effect element in which LIJ7A is equal to the cross-sectional area of the element. In the figure, number 1 is the electrostrictive material ceramic of the protective film part, 2 is the electrostrictive material ceramic of the part that causes strain, 3.4 is the internal electrode, 7.8 is the insulating coating that covers them, and 11 is the internal 'a electrode. External electric currents 4M are shown which are connected to each other every other layer. 12 and 13 indicate negative and positive external terminals. FIG. 2 is an external view of an electrostrictive material laminate to which electrophoresis is applied. In the figure, number 1 is the electrostrictive material laminate in the protective film portion, 2 is the electrostrictive material laminate in the portion where strain is generated, 3.4 is the internal electrode exposed on the end surface, and 5.6 is the interconnection between these. The temporary outer s-electrodes are shown respectively. FIG. 3 is an external view of an electrostrictive material laminate in which glass powder is formed on the exposed portion of the internal electrode on the end face and the surrounding ceramic. In the figure, number 1 is the electrostrictive material ceramic of the protective film part, 2 is the electrostrictive material ceramic of the part where strain is generated, 7 is the attached glass powder, and 5.6 is the temporary exterior that interconnects the internal electrodes every other layer. Electrodes 4 indicate exposed internal electrodes, respectively. FIG. 4 is an external view showing the cutting position (dotted line portion) of the electrostrictive material laminate on which the insulating coating is formed. In the figure, number 9 indicates an unusable portion at both ends, and 1θ indicates a portion that functions as an electrostrictive element by forming an external electrode. FIG. 5 is a schematic diagram showing a method of connecting an electrophoresis device according to the method of the present invention. Number 21 in the figure is an electrostrictive material laminate, n
indicates a temporary outer electrode that is a group of inner electrodes to which glass powder should be attached, and a temporary outer electrode that is a group of inner electrodes to which no glass powder should be attached. U is the deposited glass powder, 2
5 is a counter electrode plate, 26 is a suspension containing charged glass powder or ethanol, 27 is a DC power source, and the path is a container. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 電歪材料と内部電極とが交互に積層された電歪材料積層
体を作製し、該積層体の端面Iこ露出した内部電極の一
部およびその近傍の電歪材料上にガラス粉末を付着させ
る工程を有する電歪効果素子の製造方法において、帯電
したガラス粉末を含む懸濁液中に前記積層体を置き、あ
らかじめ沈降により前記端面全面にガラス粉末を堆積さ
せておき、次にガラス粉末を付着させない内部!極と懸
濁液中に設置した対向電極用金属板との間に電界をかけ
ることにより前記ガラス粉末を付着させない内部電極上
に堆積したガラス粉末のみを静電的力により取り除くこ
とを特徴とする電歪効果素子の製造方法。
An electrostrictive material laminate in which electrostrictive materials and internal electrodes are alternately laminated is produced, and glass powder is attached onto a portion of the internal electrodes exposed on the end surface I of the laminate and the electrostrictive material in the vicinity thereof. In a method for manufacturing an electrostrictive effect element having a step, the laminate is placed in a suspension containing charged glass powder, the glass powder is deposited on the entire surface of the end face by sedimentation in advance, and then the glass powder is attached. Inside that won't let you! The method is characterized in that by applying an electric field between the electrode and a metal plate for a counter electrode placed in the suspension, only the glass powder deposited on the internal electrode, which does not allow the glass powder to adhere, is removed by electrostatic force. A method for manufacturing an electrostrictive element.
JP58194902A 1982-12-22 1983-10-18 Manufacture of electrostrictive-effect element Granted JPS6086882A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58194902A JPS6086882A (en) 1983-10-18 1983-10-18 Manufacture of electrostrictive-effect element
DE8383307867T DE3373594D1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
EP83307867A EP0113999B1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
US06/940,210 US4681667A (en) 1982-12-22 1986-12-10 Method of producing electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194902A JPS6086882A (en) 1983-10-18 1983-10-18 Manufacture of electrostrictive-effect element

Publications (2)

Publication Number Publication Date
JPS6086882A true JPS6086882A (en) 1985-05-16
JPS6318352B2 JPS6318352B2 (en) 1988-04-18

Family

ID=16332229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194902A Granted JPS6086882A (en) 1982-12-22 1983-10-18 Manufacture of electrostrictive-effect element

Country Status (1)

Country Link
JP (1) JPS6086882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093038A (en) * 2008-10-08 2010-04-22 Murata Mfg Co Ltd Multilayer ceramic capacitor and method of manufacturing the same
WO2022270299A1 (en) * 2021-06-23 2022-12-29 京セラ株式会社 Laminated ceramic electronic component and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093038A (en) * 2008-10-08 2010-04-22 Murata Mfg Co Ltd Multilayer ceramic capacitor and method of manufacturing the same
WO2022270299A1 (en) * 2021-06-23 2022-12-29 京セラ株式会社 Laminated ceramic electronic component and manufacturing method therefor

Also Published As

Publication number Publication date
JPS6318352B2 (en) 1988-04-18

Similar Documents

Publication Publication Date Title
US4681667A (en) Method of producing electrostrictive effect element
JPH07176802A (en) Manufacture of piezoelectric actuator
JPS6317355B2 (en)
EP0167392A2 (en) Method of producing electrostrictive effect element
JPS61182284A (en) Electrostrictive effect element
JPH0256826B2 (en)
JPS6086882A (en) Manufacture of electrostrictive-effect element
JPH0256827B2 (en)
JPS60178678A (en) Manufacture of electronic component of ceramic lamination
JPS6086883A (en) Manufacture of electrostrictive-effect element
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPH05267743A (en) Manufacture of laminated piezoelectric actuator
JPS6086881A (en) Manufacture of electrostrictive-effect element
JPH0256829B2 (en)
JPH0256828B2 (en)
JPH02137280A (en) Electrostriction effect element and its manufacture
JPS6086884A (en) Manufacture of electrostrictive-effect element
JPH0342488B2 (en)
JPS60236207A (en) Method of forming electrode of laminated electronic part
JPS6214483A (en) Manufacture of electrostrictive effect element
JPH06112546A (en) Multilayer piezoelectric element and its manufacture
JPH0324710A (en) Capacitor and manufacture thereof
JPH05291642A (en) Electrostriction effect element and its fabrication
JPH06314829A (en) Manufacture of laminated piezoelectric actuator
JP2001157471A (en) Piezoelectric transducer