JPS6086884A - Manufacture of electrostrictive-effect element - Google Patents

Manufacture of electrostrictive-effect element

Info

Publication number
JPS6086884A
JPS6086884A JP58194904A JP19490483A JPS6086884A JP S6086884 A JPS6086884 A JP S6086884A JP 58194904 A JP58194904 A JP 58194904A JP 19490483 A JP19490483 A JP 19490483A JP S6086884 A JPS6086884 A JP S6086884A
Authority
JP
Japan
Prior art keywords
voltage
electrodes
glass powder
suspension
electrostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58194904A
Other languages
Japanese (ja)
Other versions
JPS6359275B2 (en
Inventor
Atsushi Ochi
篤 越智
Kazuaki Uchiumi
和明 内海
Masanori Suzuki
正則 鈴木
Mitsuhiro Midorikawa
緑川 光宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58194904A priority Critical patent/JPS6086884A/en
Priority to DE8383307867T priority patent/DE3373594D1/en
Priority to EP83307867A priority patent/EP0113999B1/en
Publication of JPS6086884A publication Critical patent/JPS6086884A/en
Priority to US06/940,210 priority patent/US4681667A/en
Publication of JPS6359275B2 publication Critical patent/JPS6359275B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a favorable insulating coated film by a method wherein, when glass powder is made to stick to the exposed parts of internal electrode layers by an electrophoresis method, inactive gas is made to ventilate in a suspension before DC voltage is impressed or/and during a time when the DC voltage is being impressed. CONSTITUTION:A laminated body constituted by laminating alternarly internal electrodes 3 and 4 and electrostrictive material 1 and 2 is manufactured in such a way that the internal electrodes 3 and 4 are made to expose at the surface of the laminated body and the back surface thereof. The electrodes 3 and 4 are made to connect alternately with temporary electrodes 5 and 6 provided on the sides of the laminated body every one layer. One side of the laminated body is covered with an adhesive tape and the laminated bdy is installed in an electrified glass powder-containing suspension along with an opposed electrode plate (not shown in the diagram). DC voltage is impressed in between the temporary electrode 5 and the opposed electrode plate, and glass powder 7 is made to stick to the internal electrodes 3 and the electrostriction material in the vicinities thereof. Before the voltage impression is performed or/and during a time when the voltage impression is being performed, inactive gas is made to ventilate in the suspension. When the laminated body obtained in such a way is baked, a dense glass coated film having high insulating withstand voltage can be obtained.

Description

【発明の詳細な説明】 本発明は縦効果を利用した電歪効果素子の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an electrostrictive element using longitudinal effect.

縦効果を利用した電歪効果素子の構造においては電歪材
料全体に電界を発生させることにより歪発生時の応力集
中を防ぐため素子の断面全体と同じ大きさの内部電極を
持つことが必要である。また低電圧で高い電界を発生さ
せ大きな歪を得るためには内部電極相互の間隔を100
ミクロン程度にすることが必要である。以上2つの理由
で素子断面と同じ面積の内部電極を有する電歪効果素子
を電気的に接続するには大きな困難が伴う。
In the structure of an electrostrictive element that utilizes the longitudinal effect, it is necessary to have internal electrodes that are the same size as the entire cross section of the element in order to prevent stress concentration when strain occurs by generating an electric field throughout the electrostrictive material. be. In addition, in order to generate a high electric field at low voltage and obtain large strain, the distance between the internal electrodes should be set to 100 mm.
It is necessary to reduce the thickness to about microns. For the above two reasons, it is very difficult to electrically connect an electrostrictive element having an internal electrode having the same area as the cross section of the element.

そこで本発明者等は先に電気泳動法により、電歪材料積
層体の端面に露出した内部電極層とその近傍のセラミッ
ク上に一層おきに絶縁物を形成することを特徴とする電
気的接続方法を提案した。
Therefore, the present inventors first developed an electrical connection method characterized by forming an insulator every other layer on the internal electrode layer exposed on the end face of the electrostrictive material laminate and the ceramic in its vicinity by electrophoresis. proposed.

第1図はその方法により接続した電歪効果素子の外観図
である。端面に露出した内部電極層およびその近傍のセ
ラミック上に電気泳動法により一層おきに絶縁物7が形
成されている。裏側の端面には一層だけずらした内部電
極上に同じく絶縁物8が形成されている。この絶縁物お
よび露出したままの内部電極4を横断して帯状の外部電
極11を形成する。裏側にも同様に内部電極3に対して
外部電極を形成することにより多数の内部電極は一層お
きにプラス側端子13又はマイナス側端子12にそれぞ
れ接続される。これらの外部端子間に直流電圧を印加す
ることにより保護膜部1を除く電歪材料2全体に均一な
電界が発生し、積層方向と平行に素子が伸長する。応力
集中がないため繰り返し電圧を印加しても素子は破壊せ
ず、また内部電極間距離が100ミクロン程度と短かい
ため100v以下の低電圧で駆動することができる。
FIG. 1 is an external view of an electrostrictive effect element connected by this method. An insulator 7 is formed every other layer by electrophoresis on the internal electrode layer exposed on the end face and the ceramic in the vicinity thereof. An insulator 8 is also formed on the inner electrode shifted by one layer on the end face on the back side. A band-shaped external electrode 11 is formed across this insulator and the exposed internal electrode 4. By similarly forming external electrodes for the internal electrodes 3 on the back side, a large number of internal electrodes are connected to the positive side terminal 13 or the negative side terminal 12 at every other layer. By applying a DC voltage between these external terminals, a uniform electric field is generated throughout the electrostrictive material 2 except for the protective film portion 1, and the element is expanded in parallel to the stacking direction. Since there is no stress concentration, the element will not be destroyed even if voltage is applied repeatedly, and since the distance between internal electrodes is as short as about 100 microns, it can be driven at a low voltage of 100 V or less.

この素子の製造方法について簡単に説明する。A method for manufacturing this element will be briefly explained.

まず、第2図に示すような内部電極3.4と電歪材料1
.2とを交互に積層した積層体を積層セラミックコンデ
ンサの製造技術を応用して作製する。
First, the internal electrode 3.4 and the electrostrictive material 1 as shown in FIG.
.. A laminate in which 2 and 2 are alternately stacked is manufactured by applying manufacturing technology for multilayer ceramic capacitors.

多数の内部電極3,4は表側と裏側の端面に露出してお
り、また側面に形成した2つの仮設外部電極5.6に一
層おきに交互に接続している。懸濁液中にこの積層体と
対向電極用金属板とを設置し。
A large number of internal electrodes 3, 4 are exposed on the front and back end surfaces, and are alternately connected to two temporary external electrodes 5.6 formed on the side surfaces at every other layer. This laminate and a metal plate for a counter electrode were placed in the suspension.

直流電圧をこの対向電極板から、前記仮設外部電極5に
向けて印加すると懸濁液中のプラスに帯電したガラス粉
末は電気泳動によって内部電極3とその近傍の電歪材料
上に付着する。
When a DC voltage is applied from this counter electrode plate toward the temporary external electrode 5, the positively charged glass powder in the suspension adheres to the internal electrode 3 and the electrostrictive material in its vicinity by electrophoresis.

第3図は表側の端面にガラス粉末を付着させた積層体の
外観図である。図中番号1は保護膜の働きをする電歪材
料、2は電界が発生して歪を生ずる部分の電歪材料を示
す。4は露出している内部電極を示し、それらの間に存
在する内部電極は帯状のガラス粉末付着7によって被わ
れている。該ガラス粉末を焼成固着させた後、裏側の端
面についても同様な方法でガラス粉末を付着し、焼成固
着させガラス被膜を形成させる。ガラス被膜を形成した
積層体は第4図に破線で示すような位置で切断され、両
端の小片9を除いた数個の小片1oに外部電極11を形
成すると第1図(a)に示す電歪効果素子が得られる。
FIG. 3 is an external view of a laminate with glass powder adhered to the front end face. In the figure, numeral 1 indicates an electrostrictive material that functions as a protective film, and numeral 2 indicates an electrostrictive material in a portion where an electric field is generated to cause distortion. 4 indicates exposed internal electrodes, and the internal electrodes present between them are covered with a band-shaped glass powder deposit 7. After the glass powder is baked and fixed, the glass powder is also attached to the end face of the back side in the same manner, and the glass powder is baked and fixed to form a glass coating. The laminated body with the glass coating formed thereon is cut at the position shown by the broken line in FIG. 4, and when the external electrodes 11 are formed on several pieces 1o excluding the pieces 9 at both ends, the electrodes shown in FIG. 1(a) are formed. A distortion effect element is obtained.

この方法の問題点としては時々付着性の非常に悪い懸濁
液が得られることおよび最初付着性の良好であった懸濁
液が使用開始後、短時間で付着性が急化し、はとんど付
着しなくなるか又は切れやくびれの非常に多い付着しか
得られなくなることである。原因としては空気中の酸素
が懸濁液に溶解してガラス粉末の帯電状態を変化させて
しまうからと考えられる。懸濁液は高速ホモミキサーに
よる混合、分散によって作製されるので空気中の酸素が
とりこまれて溶解しやすい。また、電気泳動付着作業中
には外気にさらされた状態で試料や治具の出し入れを行
なうため空気中の酸素が収り込まれやすい。
The problem with this method is that sometimes suspensions with very poor adhesion are obtained, and suspensions that initially had good adhesion quickly become adhesive in a short period of time after use. The problem is that the adhesive will not adhere at all, or that the adhesive will only have a lot of cuts and constrictions. The reason is thought to be that oxygen in the air dissolves into the suspension and changes the charging state of the glass powder. Since the suspension is prepared by mixing and dispersing using a high-speed homomixer, oxygen in the air is taken in and easily dissolved. Furthermore, during electrophoretic deposition work, samples and jigs are taken in and out while exposed to the outside air, so oxygen in the air is likely to be trapped.

本発明の目的は上記欠点を解決した電歪効果素子の製造
方法を提供するものである。
An object of the present invention is to provide a method for manufacturing an electrostrictive element that solves the above-mentioned drawbacks.

本発明は帯電したガラス粉末を含む懸濁液中において、
電歪材料と内部電極との積層体の内部電極層の全部又は
一部を一方の電極とし、対向電極板を他方の電極として
両電極間に直流電圧を印加し、′−気気泳動法よって前
記の帯電したガラス粉末を前記積層体表面の内部電極層
の露出部の全部又は一部およびその周辺の電歪材料上に
付着させる工程を有する電歪効果素子の製造方法におい
て、前記工程中直流屯圧印加の前文は/および印加中に
窒素等の不活性ガスを前記懸濁液に通気させる電歪効果
素子の製造方法である。これにより充分な巾と厚みを持
ち、切れやくびれのない良好な帯状付着を得ることがで
きる。
In the present invention, in a suspension containing charged glass powder,
All or part of the internal electrode layer of the laminate of the electrostrictive material and the internal electrode is used as one electrode, and the counter electrode plate is used as the other electrode, and a DC voltage is applied between both electrodes. In the method for manufacturing an electrostrictive element, the method includes the step of depositing the charged glass powder on all or a portion of the exposed portion of the internal electrode layer on the surface of the laminate and the electrostrictive material in the vicinity, wherein a direct current is applied during the step. The preamble to the application of tonnage pressure is/and a method for manufacturing an electrostrictive element in which an inert gas such as nitrogen is passed through the suspension during application. This makes it possible to obtain a good belt-like adhesion that has sufficient width and thickness and is free from cuts and constrictions.

方法は簡単で窒素等の不活性ガスを懸濁液内に設置した
パイプより噴出させるだけである。電圧印加前は200
リットル毎時で1時間バブリングすることにより付着性
の良好な懸濁液が得られる。
The method is simple; all you need to do is blow out an inert gas such as nitrogen from a pipe installed in the suspension. 200 before applying voltage
A suspension with good adhesion is obtained by bubbling at liters per hour for 1 hour.

また電圧印加中は150 !Jットル毎時程度の不活性
ガスを流すことにより、6時程度度連続して不着を行な
っても常に良好な結果が得られる。電圧印加時には懸濁
液中で電気化学反応に伴う物質移動により定常的な流れ
が生じて電界の弱い部分ができ部分的に付着しなくなる
ことがある。これを防ぎ、積層体端面全体に良好な付着
を得るには懸濁液をカクハンしなければならないが、カ
クハンによる酸素の溶解で付着性が悪化する問題がある
Also, 150 when voltage is applied! By flowing inert gas at a rate of about J liters per hour, good results can always be obtained even if non-adherence is performed continuously for about 6 hours. When a voltage is applied, a steady flow occurs in the suspension due to mass transfer accompanying an electrochemical reaction, creating a region with a weak electric field, which may cause partial adhesion to occur. In order to prevent this and obtain good adhesion to the entire end face of the laminate, it is necessary to stir the suspension, but there is a problem in that the mixing deteriorates the adhesion due to the dissolution of oxygen.

本発明の方法を適用して電圧印加時に、カクハンと同時
に窒素ガスをバブリングさせることにより、懸濁液の疲
労がなくなり、長時間の作業中宮に良好な付着が得られ
る。
By applying the method of the present invention and bubbling nitrogen gas at the same time as the suspension when voltage is applied, fatigue of the suspension is eliminated and good adhesion can be obtained during long-term work.

以下、実施例に従って本発明の詳細な説明を行なう。Hereinafter, the present invention will be explained in detail according to examples.

まず第2図に示すような構造の多数の内部電極と1組の
仮設外部電極とを有する電歪材料積層体をして以下の方
法により作製する。
First, an electrostrictive material laminate having a structure as shown in FIG. 2 and having a large number of internal electrodes and a set of temporary external electrodes is manufactured by the following method.

マグネシウムニオブ酸鉛(Pb(Mg%NbX )Os
 )およびチタン酸鉛(PbTi0. ) を主成分と
する電歪材料予焼粉末に微量の有機バインダーを添加し
Magnesium lead niobate (Pb(Mg%NbX)Os
) and lead titanate (PbTi0. ) and lead titanate (PbTi0. ) as the main components.

これを有機溶媒中に分散させたスラリーを準備した。通
常の積層セラミックコンデンサの製造に使用されるキャ
スティング製膜装置によりこのスラリーをマイラーフィ
ルム上に百ミクロンの厚さに塗布し乾燥させた。これを
フィルムから剥離し、電歪材料グリーンシートを得た。
A slurry was prepared by dispersing this in an organic solvent. This slurry was coated onto a Mylar film to a thickness of 100 microns using a casting film-forming device used in the production of conventional multilayer ceramic capacitors and dried. This was peeled off from the film to obtain an electrostrictive material green sheet.

一部のグリーンシートには更に内部電極として白金ペー
ストをスクリーン印刷した。これらのグリーンシートを
数10枚重ね、熱プレスにより圧着一体化した後、12
50℃で焼成し、電歪材料積層体を得た。これを内部電
極が一層おきに表面に露出するような位置で切断し仮設
外部電極を塗布焼付けし更に側面を切断して第2図に示
すような内部電極が露出している積層体を得た。このよ
うにして得られた電歪材料積層体に電気泳動法を適用す
る。第2図において1は保護膜部分の電歪材料、2は歪
を生じる電歪材料をそれぞれ示す。内部電極3,4はそ
れぞれ5と6で示す仮設外部電極に接続しており、他の
内部電極は一層おきに交互に2つの仮設外部電極に接続
されている。
Some of the green sheets were further screen-printed with platinum paste as internal electrodes. After stacking several dozen of these green sheets and pressing them together using a heat press, 12
It was fired at 50°C to obtain an electrostrictive material laminate. This was cut at a position where the internal electrodes were exposed on the surface every other layer, temporary external electrodes were applied and baked, and the sides were cut to obtain a laminate with exposed internal electrodes as shown in Figure 2. . Electrophoresis is applied to the electrostrictive material laminate thus obtained. In FIG. 2, reference numeral 1 indicates the electrostrictive material of the protective film portion, and reference numeral 2 indicates the electrostrictive material that causes strain. The inner electrodes 3, 4 are connected to temporary outer electrodes indicated at 5 and 6, respectively, and the other inner electrodes are connected to two temporary outer electrodes alternately in every other layer.

次に付着物であるガラス粉末を含む懸濁液を以下の方法
で作製する。ホウケイ酸亜鉛系結晶化ガラス粉末30g
、エタノール290mA! 、 54 Elつ素エタノ
ール溶液10 mlを高速ホモジナイザーで混合する。
Next, a suspension containing glass powder as deposits is prepared by the following method. Zinc borosilicate crystallized glass powder 30g
, ethanol 290mA! , 10 ml of the 54 El element ethanol solution is mixed with a high-speed homogenizer.

ヨウ素が電解質の役割を果たし、ガラス粉末はプラスに
帯電している。30分間超音波をかけた後、(資)分間
静置して沈殿物を除去もした。このような懸濁液を6つ
準備し、以下に述べる実験に用いた。
Iodine acts as an electrolyte, and the glass powder is positively charged. After applying ultrasonic waves for 30 minutes, the mixture was allowed to stand for a minute to remove the precipitate. Six such suspensions were prepared and used in the experiments described below.

比較のために3つの懸濁液は前処理として窒素ガスによ
るバブリングを毎時2007で1時間行なった。そして
、無処理のもの、前処理を行なったもの、それぞれにつ
いて、懸濁液を■静止状態、■カクハン、■カクハンし
ながら窒素ガスを毎時1501バブリング、の3通りの
状態で20 V aoo秒の直流電圧を印加し付着を行
なった。
For comparison, the three suspensions were pretreated with nitrogen gas bubbling at 2007/hr for 1 hour. Then, for each of the untreated and pretreated suspensions, the suspension was heated at 20 V aoo seconds under three conditions: ∎ static state, ∎ stirring, and ∎ bubbling nitrogen gas at 1,501 times per hour while stirring. Deposition was performed by applying a direct current voltage.

第5図〜第8図はカクハンおよび窒素ガスをバブリング
した場合の電気泳動装置の組立て方および接続方法を示
す外観図である。第5図は電歪材料積層体22の配置を
示しており、円筒型容器21内に付着すべき端面を外側
に向けて配置する。付着させない端面ば粘着テープで被
って保護する。付着させる内部電極をまとめた仮設外部
電極に導線部を取りつける。第6図は電気的接続方法を
示す。
FIGS. 5 to 8 are external views showing how to assemble and connect an electrophoresis device when bubbling nitrogen gas and nitrogen gas. FIG. 5 shows the arrangement of the electrostrictive material laminate 22, which is arranged with the end surface to be attached inside the cylindrical container 21 facing outward. Cover the edges that you do not want to stick with adhesive tape to protect them. Attach the conductor portion to the temporary external electrode made up of the internal electrodes to be attached. FIG. 6 shows the electrical connection method.

前記導線おはリング25にまとめた後、直流電源路のマ
イナス端子届に接続される。積層体端面と容器との間に
は円筒型対向電極冴が設置され、前記直流電源のプラス
端子27に接続されている。第7図はカクハンおよびバ
ブリングの方法を示す。内径5mのステンレス管刃を懸
濁液29内に導き、これを用いて窒素ガスをバブリング
させる。カクハンはステンレス製羽根31を回転させて
行なう。第8図はこれらを全て組立て、接続した電気泳
動装置を示す。前記ステンレス製羽根はモータ32によ
って回転し懸濁液をカクハンする。
After the conductive wires are collected in a ring 25, they are connected to the negative terminal of the DC power supply path. A cylindrical counter electrode is installed between the end face of the laminate and the container, and is connected to the positive terminal 27 of the DC power source. FIG. 7 shows the method of kakuhan and bubbling. A stainless steel tube blade with an inner diameter of 5 m is introduced into the suspension 29 and is used to bubble nitrogen gas. The rotation is performed by rotating the stainless steel blade 31. FIG. 8 shows an electrophoresis device in which all of these components are assembled and connected. The stainless steel vanes are rotated by a motor 32 to agitate the suspension.

以上の装置を用い、多数の電歪材料積層体を使って繰り
返し電気泳動付着を行ない、端面内での付着の均一性、
切れやくびれの状態、懸濁液の疲労、ガラス粉末の沈降
の4項目について付着性を総合的に調べた。表はその結
果をまとめたものである。X印は不良、Δ印は時々状態
が悪化、○印はおおむね良好、◎印は非常に良い、であ
る。
Using the above apparatus, electrophoretic deposition was repeatedly performed using a large number of electrostrictive material laminates, and the uniformity of the deposition within the end face was improved.
Adhesion was comprehensively investigated with respect to four items: breakage and constriction, fatigue of the suspension, and settling of glass powder. The table summarizes the results. An X mark indicates that the product is defective, a Δ mark indicates that the condition is sometimes deteriorated, a ◯ mark indicates that the condition is generally good, and a ◎ mark indicates that the condition is very good.

この結果をみると電圧印加中には窒素ガスを常にバブリ
ングしておくことが必要であり、また前処理としても窒
素ガスのバブリングが効果のあることが明らかである。
Looking at these results, it is clear that it is necessary to constantly bubble nitrogen gas during voltage application, and that bubbling nitrogen gas is also effective as a pretreatment.

電歪材料積層体の端面に電気泳動法により帯状のガラス
粉末を精度よく安定に形成するには懸濁液中でのガラス
粉末の帯電状態を良好に保つこと、乱流を生じさせて均
一な付着を端面全体に形成することの2点が重要である
が、窒素ガス等の不活性ガスによる懸濁液のバブリング
が大きな効果をあげる。この方法を用いることにより、
優秀な絶縁被膜が形成でき、絶縁耐圧の高い、良好に電
気的接続をされた電歪効果素子が安定に製造できる。
In order to form band-shaped glass powder accurately and stably on the end face of an electrostrictive material laminate by electrophoresis, it is necessary to maintain a good electrical charge state of the glass powder in the suspension, and to create a turbulent flow to form a uniform band-shaped glass powder. Two important points are that the adhesion be formed on the entire end surface, and bubbling of the suspension with an inert gas such as nitrogen gas has a great effect. By using this method,
An excellent insulating film can be formed, and electrostrictive elements with high dielectric strength and good electrical connections can be stably manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電気泳動法を用いた絶縁膜を利用して電気的接
続を行なった電歪効果素子の外観図である。図中番号1
は保護膜部の電歪材料、2は歪を発生する部分の電歪材
料、3.4は内部電極、7゜8は電気泳動法により形成
した絶縁膜をそれぞれ示す。11は外部電極、12.1
3はマイナス側およびプラス側の外部接続端子をそれぞ
れ示す。 第2図は電気泳動法を適用するための仮設外部電極付電
歪材料積層体の外観図である。図中番号5.6は内部電
極を一層おきに4tl互に接続している仮設外部電極を
示す。 第3図は内部電極露出部とその周、1のセラミック上に
一層おきにガラス粉末を付着させた電歪材料積層体を示
す。図中番号7は付着させこガラス粉末を示す。 第4図は両方の端面にガラス谷1.11俵をノー3成し
た電歪材料積層体と、その切断位置を示す外観図である
。図中番号9は両端の使用できない小片%lOは電歪効
果素子として使用できる部分をそれぞれ示す。 第5図は電歪材料積層体の設置方法を示す外観図である
。図中番号21は容器、22は積層体、詔は導線をそれ
ぞれ示す。第6図は電気的接続方法を示す外観図である
。図中番号スは対向電極板、あは接続用リング、26は
マイナス端子、27はプラス端子、あは直流電源をそれ
ぞれ示す。第7図はカクハンおよびバブリングの方法を
示す外観図である。図中番号29は懸濁液%30はステ
ンレス製管、31はステンレス製羽根を示す。第8図は
組み立て、接続した電気泳動装置全体を示す外観図であ
る。 図中番号32はモーターを示す。 第1図 13 第2図 53図 第L/−図 第5図 ?? 第す図 1111 第7図 第3図
FIG. 1 is an external view of an electrostrictive effect element in which electrical connections are made using an insulating film using an electrophoresis method. Number 1 in the diagram
2 indicates the electrostrictive material of the protective film portion, 2 indicates the electrostrictive material of the portion where strain is generated, 3.4 indicates the internal electrode, and 7.8 indicates the insulating film formed by electrophoresis. 11 is an external electrode, 12.1
3 indicates external connection terminals on the negative side and the positive side, respectively. FIG. 2 is an external view of an electrostrictive material laminate with temporary external electrodes for applying the electrophoresis method. Number 5.6 in the figure indicates a temporary external electrode in which 4tl of internal electrodes are connected to each other at every other layer. FIG. 3 shows an electrostrictive material laminate in which glass powder is deposited every other layer on the internal electrode exposed portion, its periphery, and one ceramic layer. Number 7 in the figure indicates the attached glass powder. FIG. 4 is an external view showing an electrostrictive material laminate with 1.11 bales of glass formed on both end faces and its cutting position. In the figure, numeral 9 indicates the unusable small piece %lO at both ends which can be used as an electrostrictive effect element. FIG. 5 is an external view showing a method of installing an electrostrictive material laminate. In the figure, numeral 21 represents a container, 22 represents a laminate, and numeral 21 represents a conductive wire. FIG. 6 is an external view showing the electrical connection method. In the figure, the number B indicates a counter electrode plate, A indicates a connecting ring, 26 indicates a negative terminal, 27 indicates a positive terminal, and A indicates a DC power supply. FIG. 7 is an external view showing the method of stirring and bubbling. In the figure, number 29 indicates a suspension % of 30, a stainless steel tube, and 31 indicates a stainless steel blade. FIG. 8 is an external view showing the entire assembled and connected electrophoresis device. Number 32 in the figure indicates a motor. Figure 1 13 Figure 2 Figure 53 Figure L/- Figure 5? ? Figure 1111 Figure 7 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 帯電したガラス粉末を含む懸濁液中で、電歪材料と内部
電極との積層体の内部電極層の全部又は一部を一方の電
極とし、対向電極板を他方の電極として両電極間に直流
電圧を印加し、電気泳動法によって前記の帯電したガラ
ス粉末を前記積層体表面の内部電極層の露出部の全部又
は一部およびその周辺の電歪材料上に付着させる工程を
有する電歪効果素子の製造方法において前記工程中、直
流電圧印加の前又は/および印加中に窒素等の不活性ガ
スを前記懸濁液に通気させることを特徴とする電歪効果
素子の製造方法。
In a suspension containing charged glass powder, all or part of the internal electrode layer of the laminate of electrostrictive material and internal electrodes is used as one electrode, and the counter electrode plate is used as the other electrode, and a direct current is applied between both electrodes. An electrostrictive effect element comprising the step of applying a voltage and depositing the charged glass powder on all or part of the exposed portion of the internal electrode layer on the surface of the laminate and the electrostrictive material around it by electrophoresis. A method for manufacturing an electrostrictive element, characterized in that an inert gas such as nitrogen is passed through the suspension before and/or during the application of a DC voltage during the step.
JP58194904A 1982-12-22 1983-10-18 Manufacture of electrostrictive-effect element Granted JPS6086884A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58194904A JPS6086884A (en) 1983-10-18 1983-10-18 Manufacture of electrostrictive-effect element
DE8383307867T DE3373594D1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
EP83307867A EP0113999B1 (en) 1982-12-22 1983-12-22 Method of producing electrostrictive effect element
US06/940,210 US4681667A (en) 1982-12-22 1986-12-10 Method of producing electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194904A JPS6086884A (en) 1983-10-18 1983-10-18 Manufacture of electrostrictive-effect element

Publications (2)

Publication Number Publication Date
JPS6086884A true JPS6086884A (en) 1985-05-16
JPS6359275B2 JPS6359275B2 (en) 1988-11-18

Family

ID=16332265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194904A Granted JPS6086884A (en) 1982-12-22 1983-10-18 Manufacture of electrostrictive-effect element

Country Status (1)

Country Link
JP (1) JPS6086884A (en)

Also Published As

Publication number Publication date
JPS6359275B2 (en) 1988-11-18

Similar Documents

Publication Publication Date Title
JP5304159B2 (en) Manufacturing method of multilayer ceramic capacitor
US5002647A (en) Process for preparation of thick films by electrophoresis
US4681667A (en) Method of producing electrostrictive effect element
JPH08269791A (en) Method for forming battery with partially titanium oxide-coated current collector
JPS61279695A (en) Formation of thin film by electrolytic synthesizing method
EP0167392A2 (en) Method of producing electrostrictive effect element
JPH0564873B2 (en)
JPS6086884A (en) Manufacture of electrostrictive-effect element
US2456995A (en) Piezoelectric crystal with moistureproof coatings
JPS60178678A (en) Manufacture of electronic component of ceramic lamination
JPH02158057A (en) Electrode substrate for bipolar lead-storage battery
JPH0256827B2 (en)
JP2002042790A (en) Method for manufacturing battery electrode and device for manufacturing battery electrode
JPS6318352B2 (en)
JPS6086883A (en) Manufacture of electrostrictive-effect element
TW201203291A (en) Manufacturing method of alloy resistor
JPH06112546A (en) Multilayer piezoelectric element and its manufacture
JPH0256829B2 (en)
JPS6086881A (en) Manufacture of electrostrictive-effect element
JPH02224311A (en) Manufacture of laminated ceramic electronic part
JPS6353296A (en) Formation of insulating powder layer by electrophoresis
JPH02137280A (en) Electrostriction effect element and its manufacture
JPS6214483A (en) Manufacture of electrostrictive effect element
JPH03120395A (en) Coating method with bismuth oxide
JPH0256828B2 (en)