JP2002042790A - Method for manufacturing battery electrode and device for manufacturing battery electrode - Google Patents

Method for manufacturing battery electrode and device for manufacturing battery electrode

Info

Publication number
JP2002042790A
JP2002042790A JP2000226629A JP2000226629A JP2002042790A JP 2002042790 A JP2002042790 A JP 2002042790A JP 2000226629 A JP2000226629 A JP 2000226629A JP 2000226629 A JP2000226629 A JP 2000226629A JP 2002042790 A JP2002042790 A JP 2002042790A
Authority
JP
Japan
Prior art keywords
current collector
active material
electrode
material layer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000226629A
Other languages
Japanese (ja)
Other versions
JP4501247B2 (en
Inventor
Hiroshi Uejima
啓史 上嶋
Kenichiro Kami
謙一郎 加美
Takashi Ookijima
俊 大木島
Manabu Yamada
学 山田
Kiyoshi Kanemura
聖志 金村
Juichi Hamagami
寿一 濱上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000226629A priority Critical patent/JP4501247B2/en
Publication of JP2002042790A publication Critical patent/JP2002042790A/en
Application granted granted Critical
Publication of JP4501247B2 publication Critical patent/JP4501247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a battery electrode and a manufacturing device, capable of easily forming a part on which an active material layer is not formed, in a manufacturing method for an electrode for a battery for forming an active material layer by an electrophoresis. SOLUTION: This manufacturing method for an electrode for a battery has an immersing process for immersing a collector 10 in solution in which active materials are dispersed in solvent, and an electrophoretic process for electrophoresing the active materials in solution by generating a potential gradient in the solution and then sticking the active materials as an active material layer to the front surface of the collector 10. The electrophoretic process uses shielding members 51, 52 for impeding the electrophoresis of the active materials to a specified part B on the front surface of the collector 10 and arranged independent of the collector 10. That is, the electrophoresis is impeded by the independent shielding members 51, 52 to prevent the active materials from being stuck to the front surface of the collector 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気泳動法を応用
した電池用電極の製造方法および製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a battery electrode to which electrophoresis is applied.

【0002】[0002]

【従来の技術】近年、ノート型コンピューター、小型携
帯機器、自動車等に用いられるクリーンなエネルギー源
として高性能二次電池の開発が盛んである。ここで用い
られる二次電池には、小型軽量でありながら大容量・高
出力であること、即ち高エネルギー密度・高出力密度で
あることが求められている。高エネルギー密度・高出力
密度を達成できる二次電池としては、リチウムイオン二
次電池等の非水電解質二次電池が有力視されている。
2. Description of the Related Art In recent years, high-performance secondary batteries have been actively developed as clean energy sources used in notebook computers, small portable devices, automobiles, and the like. The secondary battery used here is required to have a large capacity and a high output while being small and lightweight, that is, a high energy density and a high output density. As a secondary battery capable of achieving high energy density and high output density, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery is considered to be promising.

【0003】リチウムイオン二次電池には、リチウムイ
オンを吸蔵および放出できる正極活物質層をもつ正極
と、正極から放出されたリチウムイオンを吸蔵および放
出できる負極活物質層をもつ負極と、正極及び負極の間
に介在する多孔質セパレータと、正極と負極との間でリ
チウムイオンを移動させる電解液とを備えている。これ
ら電極を作成する従来の方法としては、活物質を懸濁し
た懸濁液をダイコーター、コンマコーター、ブレードコ
ーター等の塗布方式で金属箔等の薄膜からなる集電体表
面に塗布・乾燥させた後に、プレス等を行い高密度化し
ていた。
A lithium ion secondary battery includes a positive electrode having a positive electrode active material layer capable of inserting and extracting lithium ions, a negative electrode having a negative electrode active material layer capable of inserting and extracting lithium ions released from the positive electrode, and a positive electrode and a negative electrode. It has a porous separator interposed between the negative electrodes, and an electrolytic solution for moving lithium ions between the positive and negative electrodes. As a conventional method for producing these electrodes, a suspension in which an active material is suspended is applied to a current collector surface formed of a thin film such as a metal foil by a coating method such as a die coater, a comma coater, or a blade coater and dried. After that, pressing was performed to increase the density.

【0004】しかしながら、近年、高出力でかつ大電流
特性に優れた電池とするために電極の薄膜化が進み、従
来の製作方法では均一で精度良い活物質層の作製が困難
になってきた。この問題を解決するために、電気泳動法
を用いて集電体の全面に正極活物質層を形成する方法が
開示されている(電気化学学会 第66回大会要旨発表
No.P24)。
However, in recent years, the thickness of the electrode has been reduced in order to obtain a battery with high output and excellent large current characteristics, and it has become difficult to produce a uniform and accurate active material layer by the conventional production method. In order to solve this problem, a method of forming a positive electrode active material layer on the entire surface of a current collector using an electrophoresis method has been disclosed (Announcement No. P24 of the 66th Annual Meeting of the Electrochemical Society of Japan).

【0005】ところで、電極は、図6に示すように、集
電部分の抵抗を低減するために集電体10に活物質層未
形成部Bを設け、その部分から複数の集電リード11を
有する構造が採用されている。したがって、集電板表面
には活物質層が形成されていない部分を作製する必要が
ある。
As shown in FIG. 6, the electrode is provided with an active material layer-free portion B on a current collector 10 in order to reduce the resistance of the current collecting portion, and a plurality of current collecting leads 11 are formed from that portion. The structure which has is employ | adopted. Therefore, it is necessary to manufacture a portion where the active material layer is not formed on the surface of the current collector plate.

【0006】しかしながら、従来技術では集電体表面の
全部に活物質層が形成されることを防止する目的で、活
物質層を形成したくない集電体の部分にあらかじめマス
キングテープなどによりマスキングを行い、電気泳動に
より活物質層を形成した後にテープを剥がすことや、形
成された活物質層の一部を剥がすことにより活物質層の
ない部分を作製していた。
However, in the prior art, in order to prevent the active material layer from being formed on the entire surface of the current collector, a portion of the current collector on which the active material layer is not desired to be formed is previously masked with a masking tape or the like. Then, after forming the active material layer by electrophoresis, the tape is peeled off, or a part of the formed active material layer is peeled off to produce a portion without the active material layer.

【0007】[0007]

【発明が解決しようとする課題】このように従来技術で
は活物質層を形成されていない部分を作製するためには
多大な労力が必要であった。
As described above, in the prior art, a great deal of labor was required to produce a portion where no active material layer was formed.

【0008】したがって、本発明は、電気泳動法により
活物質層を形成する電池用電極の製造方法において、容
易に活物質層が形成されていない部分を形成することが
できる電池用電極の製造方法を提供することを解決すべ
き課題とする。
Accordingly, the present invention provides a method for manufacturing a battery electrode in which an active material layer is formed by electrophoresis, wherein a portion where the active material layer is not formed can be easily formed. Is the task to be solved.

【0009】また、本発明は、電気泳動法により活物質
層を形成する電池用電極を製造する装置において、容易
に活物質層が形成されていない部分を形成することがで
きる電池用電極の製造装置を提供することも解決すべき
課題とする。
Further, the present invention relates to an apparatus for manufacturing a battery electrode in which an active material layer is formed by an electrophoresis method, wherein a portion where the active material layer is not formed can be easily formed. Providing a device is also an issue to be solved.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の電池用電極の製造方法は、活物質を溶媒中に分散さ
せた溶液中に集電体を浸漬する浸漬工程と、前記溶液内
に電位勾配を発生させることで前記活物質を該溶液内で
電気泳動させて該活物質を活物質層として前記集電体表
面に付着させる電気泳動工程とを有する電池用電極の製
造方法において、前記電気泳動工程では、前記集電体表
面の所定部位への前記活物質の電気泳動を阻害する、該
集電体と独立して配設された遮蔽部材を用いることを特
徴とする。
According to the present invention, there is provided a method of manufacturing a battery electrode, comprising: immersing a current collector in a solution in which an active material is dispersed in a solvent; An electrophoresis step of causing the active material to be electrophoresed in the solution by generating a potential gradient in the solution and attaching the active material to the current collector surface as an active material layer. In the electrophoresis step, a shielding member that is arranged independently of the current collector and that inhibits electrophoresis of the active material to a predetermined site on the current collector surface is used.

【0011】つまり、独立した遮蔽部材によって電気泳
動を阻害し、集電体の表面に活物質が付着しないように
している。したがって、集電体にあらかじめ何らかの処
理を行うことなく、また何らかの後処理を行うこともな
く集電体の必要な部分に活物質層が形成されていない部
分を形成可能である。
That is, the electrophoresis is inhibited by the independent shielding member so that the active material does not adhere to the surface of the current collector. Therefore, a portion where the active material layer is not formed in a necessary portion of the current collector can be formed without performing any processing on the current collector in advance and without performing any post-processing.

【0012】そして、前記電気泳動工程において少なく
とも正極、負極からなる2種類の電極によって前記電位
勾配を発生させており、該正極および負極のうちのいず
れか一方は前記集電体が兼ねることが好ましい。集電体
に直接電圧を印加することにより、電気泳動の制御をよ
り精密に行うことができ、さらに電極の総数を減らすこ
とができる。また、集電体の両面に活物質層を形成する
ために、さらに他方の電極は前記集電体の両面側にそれ
ぞれ1つずつ設けられることがより好ましい。
In the electrophoresis step, the potential gradient is generated by at least two types of electrodes, a positive electrode and a negative electrode, and it is preferable that one of the positive electrode and the negative electrode also serves as the current collector. . By directly applying a voltage to the current collector, electrophoresis can be controlled more precisely, and the total number of electrodes can be reduced. Further, in order to form an active material layer on both surfaces of the current collector, it is more preferable that one other electrode is provided on each of both surfaces of the current collector.

【0013】さらに、活物質層の形成されていない部分
をより精密に制御するために前記遮蔽部材は、前記集電
体と同電位に調節されるか、絶縁体であることが好まし
い。
Further, in order to more precisely control the portion where the active material layer is not formed, it is preferable that the shielding member is adjusted to the same potential as the current collector or is an insulator.

【0014】またさらに、前記電気泳動工程は、前記集
電体の表面に前記活物質層の厚さが50μm以下、さら
には25μm以下となるように調節することが好まし
い。活物質層が薄い方が電池の内部抵抗が低くなるから
である。
In the electrophoresis step, the thickness of the active material layer on the surface of the current collector is preferably adjusted to 50 μm or less, more preferably 25 μm or less. This is because the thinner the active material layer, the lower the internal resistance of the battery.

【0015】また、活物質の表面電位を制御するために
前記溶液中には、前記活物質の表面を帯電させる帯電剤
を含むことが好ましい。
It is preferable that the solution contains a charging agent for charging the surface of the active material in order to control the surface potential of the active material.

【0016】そして、上記課題を解決する電池用電極の
製造装置は、集電体と該集電体の表面に形成された活物
質層とからなる電池用電極の製造装置であって、前記集
電体を送り出す集電体送出手段と、前記電極活物質層を
構成する活物質を溶媒中に分散させた溶液を保持し、該
溶液内に前記集電体を通過させる溶液槽と、前記溶液槽
内に電位勾配を発生させ、前記活物質を前記集電体上に
電気泳動させて付着させる電圧印加手段と、前記集電体
と独立して配設された部材であって、前記溶液槽内で前
記集電体の所定部位を遮蔽する遮蔽部材と、前記活物質
が付着した前記集電体を取り込む集電体取込手段とを有
することを特徴とする。
An apparatus for manufacturing a battery electrode for solving the above problems is an apparatus for manufacturing a battery electrode comprising a current collector and an active material layer formed on the surface of the current collector, Current collector sending means for sending a current collector, a solution tank holding a solution in which an active material constituting the electrode active material layer is dispersed in a solvent, and passing the current collector through the solution; and A voltage applying means for generating a potential gradient in the tank, causing the active material to be electrophoresed on the current collector and adhered thereto, and a member disposed independently of the current collector, wherein the solution tank And a current collector take-in means for taking in the current collector to which the active material has adhered.

【0017】つまり、独立した遮蔽部材によって電気泳
動を阻害し、集電体の表面に活物質が付着しないように
している。したがって、集電体にあらかじめ何らかの処
理を行うことなく、また何らかの後処理を行うこともな
く集電体の必要な部分に活物質層が形成されていない部
分を形成可能である。
That is, the electrophoresis is inhibited by the independent shielding member, so that the active material does not adhere to the surface of the current collector. Therefore, a portion where the active material layer is not formed in a necessary portion of the current collector can be formed without performing any processing on the current collector in advance and without performing any post-processing.

【0018】[0018]

【発明の実施の形態】本発明の電池用電極の製造方法お
よび製造装置が適用できる「電池用電極」とは、集電体
と集電体の表面に形成された活物質層とからなる電池用
電極である。したがって、「電池」とは集電体上に活物
質の層が形成されている電極を有する電池であれば特に
限定しない。たとえば、リチウムイオン二次電池(アル
ミニウム製正極集電体:リチウム−金属複合酸化物、銅
製集電体:炭素材料)、ニッケル水素二次電池(Ni正
極集電体:NiOH、Ni負極集電体:水素吸蔵合金)
等の一般的にいわれる電池の他に電気二重層キャパシタ
(アルミニウム製集電体:炭素材料)をも含む意味であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A "battery electrode" to which the method and apparatus for manufacturing a battery electrode of the present invention can be applied is a battery comprising a current collector and an active material layer formed on the surface of the current collector. Electrode. Therefore, the “battery” is not particularly limited as long as it has an electrode in which an active material layer is formed over a current collector. For example, lithium ion secondary battery (aluminum positive electrode current collector: lithium-metal composite oxide, copper current collector: carbon material), nickel hydrogen secondary battery (Ni positive electrode current collector: NiOH, Ni negative electrode current collector) : Hydrogen storage alloy)
And the like, in addition to batteries generally referred to as above and the like, including an electric double layer capacitor (a current collector made of aluminum: carbon material).

【0019】〈電池用電極の製造方法〉本実施形態の電
池用電極の製造方法は、浸漬工程と電気泳動工程とから
なる。
<Method for Manufacturing Battery Electrode> The method for manufacturing a battery electrode according to the present embodiment includes an immersion step and an electrophoresis step.

【0020】〔浸漬工程〕浸漬工程は、活物質を溶媒中
に分散させた溶液中に集電体を浸漬する工程である。こ
の浸漬工程において、集電体は全体を同時に浸漬するば
かりでなく連続的に溶液中に浸漬されても良い。
[Immersion Step] The immersion step is a step of immersing the current collector in a solution in which the active material is dispersed in a solvent. In this immersion step, the current collector may be immersed not only in the whole at the same time but also in the solution continuously.

【0021】活物質は、電池用電極が使用される電池に
よって異なる物質である。また、正極活物質、負極活物
質のいずれであっても適用できる。活物質は、溶媒に溶
解するものであっても良いし、溶解しないものであって
も良い。溶媒に溶解しないものである場合には、活物質
の粒子径が小さいことが好ましい。より緻密な活物質層
の形成ができるからである。また、必要に応じてPVD
F、PTFE等のバインダを加えても良い。活物質を溶
媒中に分散させる方法としては特に限定しないが、超音
波照射、攪拌子等による機械的攪拌が例として挙げられ
る。また、活物質以外にも必要に応じて種々の物質を溶
媒中に溶解乃至は分散させることができる。たとえば、
活物質を集電体表面に結合させる結着材、電気導電性を
付与する導電剤等である。また、溶媒中には、活物質の
表面を帯電させる帯電剤を含むことが好ましい。耐電状
態を制御することで、後述の電気泳動工程における活物
質の集電体表面への積層を制御しやすくなるからであ
る。帯電剤としては、溶媒中に溶解することでイオン化
するもの、たとえば、ヨウ素、カルボン酸、カルボン酸
リチウム、リチウムイミド塩等が挙げられる。なお、活
物質等を溶媒に分散乃至は溶解させる濃度は特に限定し
ない。物質の種類・状態によって溶媒中での帯電状態が
異なるので所望の組成となるようにそれぞれの濃度を調
節する。
The active material is a material that differs depending on the battery in which the battery electrode is used. Further, any of a positive electrode active material and a negative electrode active material can be applied. The active material may or may not be soluble in a solvent. When the active material is not soluble in a solvent, the active material preferably has a small particle size. This is because a denser active material layer can be formed. Also, if necessary, PVD
A binder such as F or PTFE may be added. The method for dispersing the active material in the solvent is not particularly limited, and examples thereof include ultrasonic irradiation and mechanical stirring using a stirrer or the like. Various substances other than the active material can be dissolved or dispersed in the solvent as needed. For example,
Examples of the binder include a binder that binds the active material to the surface of the current collector, and a conductive agent that imparts electrical conductivity. The solvent preferably contains a charging agent for charging the surface of the active material. This is because controlling the withstand state makes it easier to control the lamination of the active material on the surface of the current collector in an electrophoresis step described later. Examples of the charging agent include those that ionize when dissolved in a solvent, such as iodine, carboxylic acid, lithium carboxylate, and lithium imide salt. The concentration at which the active material or the like is dispersed or dissolved in the solvent is not particularly limited. Since the charged state in the solvent varies depending on the type and state of the substance, the respective concentrations are adjusted so as to obtain a desired composition.

【0022】溶媒は、特に限定しないが、集電体および
活物質に対して化学的・物理的に安定なものが好まし
い。たとえば、水、アセトン等のケトン、アルコール類
等である。
The solvent is not particularly limited, but is preferably one that is chemically and physically stable with respect to the current collector and the active material. For example, water, ketones such as acetone, alcohols and the like.

【0023】〔電気泳動工程〕電気泳動工程は、溶液内
に電位勾配を発生させることで活物質を溶液内で電気泳
動させて集電体表面に付着させる工程である。この電気
泳動工程では、集電体表面の所定部位への活物質の電気
泳動を阻害する集電体と独立して配設された遮蔽部材を
用いる。
[Electrophoresis Step] The electrophoresis step is a step in which an active material is electrophoresed in a solution by generating a potential gradient in the solution and adhered to the surface of the current collector. In this electrophoresis step, a shielding member that is provided independently of the current collector that inhibits electrophoresis of the active material to a predetermined site on the current collector surface is used.

【0024】溶液内に電位勾配を発生させる方法として
は、たとえば、対向する2つの電極に電圧を印加するこ
とで達成できる。電極の形状は、集電体の表面に均一に
活物質が付着するように、溶液内で集電体が通過する部
分の電位勾配が一定とすることができる形状が好まし
い。たとえば、電極の大きさを集電体が通過する部分を
覆うのに充分な大きさとする。そして、電極のいずれか
一方は溶液内に浸漬された集電体が兼ねることができ
る。集電体を電極とすることで、直接、活物質を集電体
に付着させることができる。なお、溶液内に発生させる
電位勾配の向きは、活物質等の溶液内における帯電電位
により決定される。すなわち、帯電した活物質が集電体
方向に移動するように電位勾配が決定される。たとえ
ば、活物質を正に帯電させた場合は集電体を負極とす
る。また、電極の数は2つに限られず、必要に応じて3
以上としても良い。たとえば、集電体の両面に活物質層
を形成したい場合に、集電体を正極とし、2つの負極を
集電体の両面に設けることで集電体の両面に活物質を付
着させることができる。
A method of generating a potential gradient in a solution can be achieved by, for example, applying a voltage to two opposing electrodes. The shape of the electrode is preferably such that the potential gradient in a portion of the solution through which the current collector passes can be constant so that the active material is uniformly attached to the surface of the current collector. For example, the size of the electrode is set to be large enough to cover a portion through which the current collector passes. Then, one of the electrodes can also serve as a current collector immersed in the solution. By using the current collector as an electrode, the active material can be directly attached to the current collector. The direction of the potential gradient generated in the solution is determined by the charged potential of the active material or the like in the solution. That is, the potential gradient is determined so that the charged active material moves toward the current collector. For example, when the active material is positively charged, the current collector is used as a negative electrode. The number of electrodes is not limited to two, but may be three if necessary.
It is good also as above. For example, when it is desired to form an active material layer on both sides of the current collector, the current collector is used as a positive electrode, and two negative electrodes are provided on both sides of the current collector, so that the active material can be attached to both sides of the current collector. it can.

【0025】電極に印加する電圧、電圧印加時間等の条
件としては特に限定されず、集電体表面に形成されるべ
き活物質層の厚さ、空隙率、組成等に応じて適宜選択さ
れる。電圧を高くすれば、活物質層が緊密化し空隙率が
小さくなる。ヨウ素添加アセトン溶液を溶媒に用いた場
合に好ましい印加電圧としては5〜500V程度を挙げ
ることができる。また、電圧を印加する時間を長くする
と、集電体表面の活物質層が厚くなる。また、活物質以
外に溶媒に分散させた結着剤等は、その性質により溶液
中での表面電位が異なり電気泳動の速度が異なるので電
極に印加する電圧を目的の活物質層組成となるように調
節する。なお、集電体表面に形成する活物質層の厚さは
集電体片面当たり好ましくは50μm以下、より好まし
くは25μm以下とする。活物質層の厚さが薄い方が電
池の内部抵抗が低くなりより高出力の電池を提供できる
からである。このように薄い活物質層は従来のダイコー
タ等により集電体表面に活物質を塗布する方法では精度
の高い形成が困難であった。それに対し電気泳動法によ
ると、電気泳動は電位勾配の大きい部分に優先的に活物
質が付着するので活物質層の厚さに不均等が生じると活
物質層が薄い部分から活物質が付着して活物質層の厚さ
は一定になるという利点がある。
The conditions such as the voltage applied to the electrode and the voltage application time are not particularly limited, and are appropriately selected according to the thickness, porosity, composition, etc. of the active material layer to be formed on the current collector surface. . When the voltage is increased, the active material layer becomes tight and the porosity is reduced. When the iodine-added acetone solution is used as a solvent, a preferable applied voltage is about 5 to 500 V. In addition, when the voltage application time is increased, the active material layer on the current collector surface becomes thicker. In addition, since a binder and the like dispersed in a solvent other than the active material have different surface potentials in a solution due to their properties and different electrophoretic speeds, the voltage applied to the electrodes is adjusted to a desired active material layer composition. Adjust to. Note that the thickness of the active material layer formed on the current collector surface is preferably 50 μm or less, more preferably 25 μm or less per one surface of the current collector. This is because the smaller the thickness of the active material layer is, the lower the internal resistance of the battery is, and a higher output battery can be provided. It has been difficult to form such a thin active material layer with high accuracy by a method of applying the active material to the current collector surface by a conventional die coater or the like. On the other hand, according to the electrophoresis method, in the electrophoresis, the active material adheres preferentially to a portion having a large potential gradient. This has the advantage that the thickness of the active material layer is constant.

【0026】遮蔽部材は、集電体の活物質を付着させた
くない部位に近接して設けられる。遮蔽部材と集電体と
の隙間は小さい方が活物質の不必要な部分への回り込み
が少なくなる。また、遮蔽部材の電位は遮蔽効果を向上
させるために集電体の近傍の電位に調節されることが好
ましい。さらに、遮蔽部材は集電体と同電位に調節され
ることがより好ましい。電位を調節することにより、遮
蔽部材と集電体との隙間に電位勾配が少なくなるので、
集電体への活物質の付着が少なくなるからである。そし
て、遮蔽部材は絶縁体とすることもできる。遮蔽部材を
絶縁体とすることにより遮蔽部材に付着する活物質量が
材料の無駄が少なくなるので好ましい。
The shielding member is provided in proximity to a portion of the current collector where the active material is not desired to adhere. The smaller the gap between the shielding member and the current collector, the less the active material goes into unnecessary parts. Further, it is preferable that the potential of the shielding member is adjusted to a potential near the current collector to improve the shielding effect. Further, it is more preferable that the shielding member is adjusted to the same potential as the current collector. By adjusting the potential, the potential gradient is reduced in the gap between the shielding member and the current collector,
This is because adhesion of the active material to the current collector is reduced. And the shielding member can also be an insulator. The use of an insulating material for the shielding member is preferable because the amount of active material adhering to the shielding member reduces waste of material.

【0027】また、電気泳動工程においても溶液内の活
物質が沈殿しないように何らかの方法で溶液の攪拌を続
けることが好ましい。
In the electrophoresis step, it is preferable to continue stirring the solution by any method so that the active material in the solution does not precipitate.

【0028】〈電池用電極の製造装置〉本実施形態の電
池用電極の製造装置は、集電体送出手段と溶液槽と電圧
印加手段と遮蔽部材と集電体取込手段とを有する。
<Production Apparatus for Battery Electrode> The production apparatus for a battery electrode according to the present embodiment includes a current collector sending means, a solution tank, a voltage applying means, a shielding member, and a current collector intake means.

【0029】集電体送出手段は集電体を送り出す手段で
ある。ここで「集電体」とは前述の集電体と同義であ
る。集電体送出手段としては、たとえば、ロール状に集
電体を巻き取り、必要に応じて集電体を送り出す手段が
ある。
The current collector sending means is a means for sending a current collector. Here, the “current collector” has the same meaning as the above-described current collector. As the current collector sending means, for example, there is a means for winding the current collector in a roll shape and sending out the current collector as needed.

【0030】溶液槽は、活物質を溶媒中に分散させた溶
液を保持し、その溶液内に集電体を通過させることがで
きる部材である。ここで「活物質」、「溶媒」としては
前述の活物質および溶媒と同義である。溶液槽の大きさ
としては集電体の活物質層を形成したい部分が少なくと
も溶液内に浸漬できる程度の大きさが必要である。ま
た、溶液槽内には、分散した活物質が沈殿しないように
撹拌装置を設けることが好ましい。撹拌装置としては超
音波発生器、攪拌翼等が例示できる。
The solution tank is a member that holds a solution in which an active material is dispersed in a solvent and allows a current collector to pass through the solution. Here, the terms “active material” and “solvent” have the same meanings as the above-mentioned active material and solvent. The size of the solution tank needs to be large enough to allow at least a part of the current collector on which the active material layer is to be formed to be immersed in the solution. Further, it is preferable to provide a stirring device in the solution tank so that the dispersed active material does not precipitate. Examples of the stirring device include an ultrasonic generator and a stirring blade.

【0031】電圧印加手段は、溶液槽内に電位勾配を発
生させ、活物質を集電体上に電気泳動させて付着させる
手段である。電圧印加手段としては、前述の複数の電極
により電圧を印加する手段が例示される。電極としては
前述したとおりである。
The voltage applying means is a means for generating a potential gradient in the solution tank, causing the active material to be electrophoresed on the current collector and adhered thereto. Examples of the voltage applying unit include a unit that applies a voltage using the plurality of electrodes described above. The electrodes are as described above.

【0032】遮蔽部材は、集電体と独立して配設された
部材であって、溶液槽内で集電体の所定部位を遮蔽する
部材である。遮蔽部材については前述したものと同じで
ある。
The shielding member is a member provided independently of the current collector, and is a member for shielding a predetermined portion of the current collector in the solution tank. The shielding member is the same as described above.

【0033】集電体取込手段は活物質が付着した集電体
を取り込む手段である。具体的には、ロール状に集電体
を巻き取る装置等が例示できる。
The current collector taking-in means is a means for taking in the current collector to which the active material has adhered. Specifically, a device that winds the current collector in a roll shape can be exemplified.

【0034】そして、これらの装置の他、必要に応じて
適当な手段を設けることができる。たとえば、集電体取
込手段の前に溶液によって濡れた集電体を乾燥させる乾
燥手段等である。
In addition to these devices, appropriate means can be provided as needed. For example, drying means for drying a current collector wet with a solution before the current collector intake means.

【0035】[0035]

【実施例】(電極板の製造装置)図1に示す電極板の製
造装置を用いて電極板を製造した。本電極板の製造装置
はロール状に巻回された集電体10を保持し送出する集
電体送出手段1と溶液槽2と溶液槽2内に設けられた2
枚の電極板31、32とその電極板31、32の間の集
電体10進行方向に向かって右側に集電体10の厚さ程
度の隙間をあけて設けられた金属製の遮蔽板51、52
と溶液槽2内の電極板31、32および遮蔽板51、5
2の間に集電体10が通過して溶液内に浸漬するように
保持するガイド6、7、8、9と集電体10を巻き取る
集電体取込手段4とからなる。そして電圧の制御が可能
な直流電源90の負極を集電体送出手段1を介して集電
体10に接続し、正極を電極板31、32および遮蔽板
51、52に接続する。これにより遮蔽板51、52と
集電体10とは等電位となる。
EXAMPLE (Electrode Plate Manufacturing Apparatus) An electrode plate was manufactured using the electrode plate manufacturing apparatus shown in FIG. The apparatus for manufacturing the present electrode plate includes a current collector sending means 1 for holding and sending a current collector 10 wound in a roll shape, a solution tank 2, and 2 provided in the solution tank 2.
A metal shielding plate 51 provided on the right side in the direction of travel of the current collector 10 between the electrode plates 31 and 32 and a gap about the thickness of the current collector 10 on the right side , 52
And the electrode plates 31 and 32 and the shielding plates 51 and 5 in the solution tank 2.
2, guides 6, 7, 8, and 9 for holding the current collector 10 so as to pass through and soak in the solution, and current collector take-up means 4 for winding the current collector 10. Then, the negative electrode of the DC power supply 90 whose voltage can be controlled is connected to the current collector 10 via the current collector sending means 1, and the positive electrode is connected to the electrode plates 31 and 32 and the shielding plates 51 and 52. As a result, the shielding plates 51 and 52 and the current collector 10 become equipotential.

【0036】したがって、図2に示すように、電極板3
1、32から集電体10の方向へ電気泳動された活物質
は遮蔽板51、52によって遮蔽されるので、集電体1
0のBの部分には活物質層が形成されない。遮蔽板5
1、52は集電体10と同電位に調節されているので、
遮蔽板51、52と集電体10との間に活物質が回り込
む量を減らすことができる。なお、図2においてAは集
電体上に付着した活物質層を示す。
Therefore, as shown in FIG.
The active materials electrophoresed in the direction of the current collector 10 from the current collectors 1 and 32 are shielded by the shield plates 51 and 52, so that the current collector 1
No active material layer is formed in the portion B of 0. Shield plate 5
1 and 52 are adjusted to the same potential as the current collector 10,
The amount of active material flowing between the shield plates 51 and 52 and the current collector 10 can be reduced. Note that in FIG. 2, A indicates an active material layer attached to the current collector.

【0037】集電体送出手段1に保持された集電体10
は、ガイド6、7、8、9により溶液槽2内を通過し集
電体取込手段3により取り込まれる。
The current collector 10 held by the current collector sending means 1
Is passed through the solution tank 2 by the guides 6, 7, 8, and 9, and is taken in by the current collector taking-in means 3.

【0038】また、図3に示す電極板の製造装置を用い
ても上述の製造装置と同様の電極板を製造することがで
きる。図3に示す電極板の製造装置は、集電体送出手段
1’と溶液槽2’と電極板31’、32’とガイド
6’、7’、8’、9’と集電体取込手段4’と遮蔽板
61、62とからなる。集電体送出手段1’と溶液槽
2’と電極板31’、32’とガイド6’、7’、
8’、9’と集電体取込手段4’とについては、上述の
製造装置と同様のものである。遮蔽板61、62は、電
極板31’、32’の間の集電体10進行方向に向かっ
て右側に集電体10の厚さ程度の隙間をあけて設けられ
た絶縁材料から構成される部材である。
Further, an electrode plate similar to the above-described manufacturing device can be manufactured by using the electrode plate manufacturing apparatus shown in FIG. The apparatus for manufacturing an electrode plate shown in FIG. 3 includes a current collector sending means 1 ', a solution tank 2', electrode plates 31 ', 32', guides 6 ', 7', 8 ', 9', and a current collector intake. It comprises means 4 'and shielding plates 61 and 62. Current collector sending means 1 ', solution tank 2', electrode plates 31 ', 32', guides 6 ', 7',
8 ', 9' and the current collector take-in means 4 'are the same as those in the above-described manufacturing apparatus. The shielding plates 61 and 62 are made of an insulating material provided on the right side in the direction of travel of the current collector 10 between the electrode plates 31 ′ and 32 ′ with a gap of about the thickness of the current collector 10. It is a member.

【0039】したがって、図4に示すように、電極板3
1、32から集電体10の方向へ電気泳動された活物質
は遮蔽板61、62によって遮蔽されるので、集電体1
0のBの部分には活物質層が形成されない。遮蔽板6
1、62は、活物質の移動を空間的に阻害するものなの
で、遮蔽板61、62の表面への活物質層の付着量は少
なくなる。
Therefore, as shown in FIG.
The active materials electrophoresed in the direction of the current collector 10 from the current collectors 1 and 32 are shielded by the shielding plates 61 and 62,
No active material layer is formed in the portion B of 0. Shield plate 6
Since 1 and 62 spatially inhibit the movement of the active material, the amount of the active material layer attached to the surfaces of the shielding plates 61 and 62 is reduced.

【0040】なお、以下の実施例において電極板の製造
は前者の製造装置を用いて行った。
In the following examples, the production of the electrode plate was performed using the former production apparatus.

【0041】(実施例1−1) 〔電極板の製造〕集電体10としてアルミニウム箔(厚
さ15μm)を用いた。溶液槽2内に貯留される溶液は
アセトンを溶媒として用いた。この溶媒中に活物質とし
てリチウムイオン二次電池の正極活物質であるLiNi
2 と導電材であるカーボンブラックと結着材であるP
TFE(ポリテトラフルオロエチレン)をアセトン10
00重量部に対し、それぞれ10、0.2、0.5重量
部を混合した。さらに帯電剤として0.5mol/Lの
よう素アセトン溶液をアセトン1000重量部に対して
5重量部を添加した。
Example 1-1 [Production of Electrode Plate] As the current collector 10, an aluminum foil (thickness: 15 μm) was used. The solution stored in the solution tank 2 used acetone as a solvent. LiNi as a positive electrode active material of a lithium ion secondary battery is used as an active material in this solvent.
O 2 , carbon black as a conductive material and P as a binder
TFE (polytetrafluoroethylene) in acetone 10
To 100 parts by weight, 10, 0.2, and 0.5 parts by weight, respectively, were mixed. Further, 5 parts by weight of a 0.5 mol / L iodine acetone solution was added as a charging agent to 1,000 parts by weight of acetone.

【0042】これらの混合溶媒を5分超音波分散を行い
充分に分散した後、溶液槽2内に貯留した。電極31、
32は集電体の両側に10mmの距離をおいて設置し
た。電気泳動条件として、印加電圧は400Vであり、
電気泳動を行う時間は集電体の送り速度を調節して集電
体10が電極31、32間に存在する時間(電気泳動時
間)を1分間とした。
These mixed solvents were sufficiently dispersed by ultrasonic dispersion for 5 minutes and stored in the solution tank 2. Electrode 31,
No. 32 was installed at a distance of 10 mm on both sides of the current collector. As the electrophoresis conditions, the applied voltage was 400 V,
The time during which the electrophoresis was performed was adjusted to a feed time of the current collector, and the time during which the current collector 10 was present between the electrodes 31 and 32 (electrophoresis time) was set to 1 minute.

【0043】〔電極の評価〕本製造装置により堆積した
電極(集電体10)を乾燥した後、マイクロメータで厚
みを、水銀圧入法で空隙率を測定した結果、片面44.
1μmで空隙率は48.6%であり電極として十分な接
着強度と可とう性を有していた。また、電極の湾曲度を
測定した結果、1mm/m以下であった。電極のさらに
ロールプレスにて空隙率38.0%までプレスした。そ
の結果、電極が扇形に湾曲し、その電極の湾曲度を測定
した結果、3mm/mであった。湾曲度の測定方法とし
ては、図5に示すように、長さa(今回は1mとし
た。)の電極の両端を結んだ直線から最大に離れた部分
である電極中央部の距離bを測定して算出した。電極に
湾曲が生じる原因としては、電極をプレスするときに、
電極の活物質層が形成された部分Aの厚さが活物質層が
形成されていない部分Bと比較して厚いのでAの部分に
プレスの荷重が集中する。その結果、Aの部分はBの部
分と比較して横方向に大きく伸張して長くなり、扇状に
電極が湾曲変形するのである。湾曲度は小さいほど製造
される電池の歩留まりが良く、さらに高速で巻回するこ
とができる。
[Evaluation of Electrode] After drying the electrode (collector 10) deposited by this manufacturing apparatus, the thickness was measured by a micrometer and the porosity was measured by a mercury intrusion method.
At 1 μm, the porosity was 48.6%, indicating that the electrode had sufficient adhesive strength and flexibility. Further, as a result of measuring the degree of curvature of the electrode, it was 1 mm / m or less. The electrode was further pressed to a porosity of 38.0% by a roll press. As a result, the electrode was curved in a fan shape, and the degree of curvature of the electrode was measured to be 3 mm / m. As a method of measuring the degree of curvature, as shown in FIG. 5, a distance b at the center of the electrode, which is a portion that is the maximum away from a straight line connecting both ends of the electrode having a length a (in this case, 1 m), is measured. Was calculated. The cause of the bending of the electrode is that when pressing the electrode,
Since the thickness of the portion A of the electrode where the active material layer is formed is thicker than that of the portion B where the active material layer is not formed, the pressing load concentrates on the portion A. As a result, the portion A greatly extends in the lateral direction and becomes longer than the portion B, and the electrode is curved and deformed in a fan shape. The smaller the degree of curvature, the better the yield of the manufactured battery, and the higher the winding speed.

【0044】(実施例1−2)本実施は電気泳動時間を
集電体の送り速度を調節して30秒とした以外は実施例
1−1と同じ条件で電極を作製した。その結果、活物質
層の厚さが片面22.6μmで空隙率は48.5%であ
り電極として十分な接着強度と可とう性を有していた。
さらにロールプレスにて空隙率38.1%までプレスし
た電極の湾曲度を測定した結果、1mm/m以下であっ
た。 (実施例1−3)本実施例では溶媒として純水を用い、
帯電剤を使用しなかったこと、および電気泳動の印加電
圧を50Vにした以外は実施例1−1と同じ条件で電極
を作製した。その結果、活物質層の厚さが片面18.8
μmで空隙率は39.6%でありプレスなしで十分に電
池電極として使用できる空隙率であり、電極として十分
な接着強度と可とう性を有していた。 (実施例2−1)本実施例は活物質としてリチウムイオ
ン二次電池の負極活物質であるグラファイトと結着材と
してPVDF(ポリビニリデンフロライド)をアセトン
1000重量部に対してそれぞれ10、0.5重量部で
混合した溶液を用い、集電体10として厚さ10μmの
Cu箔を用いたこと以外は実施例1−1と同じ条件で電
極を作製した。その結果、活物質層の厚さが片面47.
0μmで空隙率は39.1%であり電極として十分な接
着強度と可とう性を有しでいた。さらにロールプレスに
て空隙率33.8%までプレスした電極の湾曲度を測定
した結果、2mm/mであった。 (実施例2−2)本実施例では電気泳動時間を30秒と
した以外は実施例2−1と同じ条件で電極を作製した。
その結果、活物質層の厚さが片面23.6μmで空隙率
は39.0%であり電極として十分な接着強度を可とう
性を有していた。さらにロールプレスにて空隙率33.
8%までプレスした電極の湾曲度を測定した結果、1m
m/m以下であった。 (実施例2−3)本実施例では溶媒として純水を用いた
こと、および電気泳動の印加電圧を50Vにした以外は
実施例2−1と同じ条件で電極を作製した。その結果、
活物質層の厚さが片面22.3μmで空隙率は35.7
%でありプレスなしで十分に電池電極として使用できる
空隙率であり、電極として十分な接着強度と可とう性を
有していた。 (実施例3)本実施例は活物質としてリチウムイオン二
次電池の負極活物質であるグラファイトと結着材として
高分子電解質であるPPO(ポリプロピレンオキサイ
ド)をアセトン1000重量部に対してそれぞれ10、
1重量部で混合した溶液を用いたこと以外は実施例2−
1と同じ条件で電極を作製した。その結果、活物質層の
厚さが片面46.8μmで空隙率は38.9%であり電
極として十分な接着強度と可とう性を有していた。さら
にロールプレスにて空隙率33.9%までプレスした電
極の湾曲度を測定した結果、1mm/m以下であった。
Example 1-2 In this example, an electrode was produced under the same conditions as in Example 1-1 except that the electrophoresis time was adjusted to 30 seconds by adjusting the feed rate of the current collector. As a result, the thickness of the active material layer was 22.6 μm on one side, the porosity was 48.5%, and the electrode had sufficient adhesive strength and flexibility as an electrode.
Furthermore, as a result of measuring the degree of curvature of the electrode pressed to a porosity of 38.1% by a roll press, it was 1 mm / m or less. (Example 1-3) In this example, pure water was used as a solvent.
An electrode was produced under the same conditions as in Example 1-1, except that no charging agent was used and the applied voltage of electrophoresis was set to 50 V. As a result, the thickness of the active material layer was 18.8 on one side.
At μm, the porosity was 39.6%, which was a porosity that could be sufficiently used as a battery electrode without pressing, and had sufficient adhesive strength and flexibility as an electrode. (Example 2-1) In this example, graphite as a negative electrode active material of a lithium ion secondary battery as an active material and PVDF (polyvinylidene fluoride) as a binder were added to each of 10,000 parts by weight with respect to 1,000 parts by weight of acetone. An electrode was manufactured under the same conditions as in Example 1-1, except that a solution mixed at 0.5 parts by weight was used, and a Cu foil having a thickness of 10 μm was used as the current collector 10. As a result, the thickness of the active material layer is reduced to 47.
At 0 μm, the porosity was 39.1%, indicating that the electrode had sufficient adhesive strength and flexibility. Furthermore, as a result of measuring the degree of curvature of the electrode pressed to a porosity of 33.8% by a roll press, it was 2 mm / m. (Example 2-2) In this example, an electrode was produced under the same conditions as in Example 2-1 except that the electrophoresis time was 30 seconds.
As a result, the thickness of the active material layer was 23.6 μm on one side, the porosity was 39.0%, and the electrode had sufficient adhesive strength for the electrode. Further, the porosity is determined by a roll press.
As a result of measuring the degree of curvature of the electrode pressed to 8%, 1 m
m / m or less. (Example 2-3) In this example, an electrode was produced under the same conditions as in Example 2-1 except that pure water was used as a solvent and the applied voltage of electrophoresis was set to 50 V. as a result,
The active material layer has a thickness of 22.3 μm on one side and a porosity of 35.7.
%, Which is a porosity enough to be used as a battery electrode without pressing, and had sufficient adhesive strength and flexibility as an electrode. (Example 3) In this example, graphite as a negative electrode active material of a lithium ion secondary battery as an active material and PPO (polypropylene oxide) as a polymer electrolyte as a binder were added in amounts of 10 parts by weight to 1,000 parts by weight of acetone.
Example 2 except that a solution mixed at 1 part by weight was used.
An electrode was produced under the same conditions as in Example 1. As a result, the thickness of the active material layer was 46.8 μm on one side and the porosity was 38.9%, indicating that the electrode had sufficient adhesive strength and flexibility. Furthermore, as a result of measuring the degree of curvature of the electrode pressed to a porosity of 33.9% by a roll press, it was 1 mm / m or less.

【0045】また、結着材としてPPOを用いることに
より、安全性の高い固体電解質電池やゲル電解質電池の
電極としての使用ができる。 (比較例)本比較例は従来の作製方法である塗布方法で
作製した。まず、塗布ペーストとしてNMP溶媒100
重量部に対して実施例2−1と同じ負極活物質であるグ
ラファイトと結着材であるPVDFをそれぞれ93、7
重量部の割合で混合攪拌したペーストを作製した。この
ペーストを用いてコンマコーターで活物質のつまり等で
塗布筋が発生するのを防止できる最小のギャップ幅に調
節して塗布した。120℃乾燥後の厚みは片面112.
2μmで空隙率は52.0%であった。この塗布電極は
巻回電極として十分な接着強度を有しておらず巻回工程
で電極合剤がはがれた。接着強度を増すためロールプレ
スにて空隙率38.3%までプレスした電極の湾曲度を
測定した結果、10mm/mであった。
Further, by using PPO as a binder, it can be used as an electrode of a highly safe solid electrolyte battery or gel electrolyte battery. (Comparative Example) This comparative example was manufactured by a coating method which is a conventional manufacturing method. First, an NMP solvent 100
Graphite as the negative electrode active material and PVDF as the binder were 93 and 7 parts by weight, respectively, as in Example 2-1.
A paste was prepared by mixing and stirring in parts by weight. Using this paste, a comma coater was applied to adjust the gap width to a minimum value that can prevent generation of coating streaks due to clogging of the active material. The thickness after drying at 120 ° C is 112.
At 2 μm, the porosity was 52.0%. This coated electrode did not have sufficient adhesive strength as a wound electrode, and the electrode mixture was peeled off in the winding step. As a result of measuring the degree of curvature of the electrode pressed to a porosity of 38.3% by a roll press in order to increase the adhesive strength, it was 10 mm / m.

【0046】(評価)堆積させる活物質層の厚さ、組成
は上記印加電圧や混合溶液の分散質の混合比を調整する
ことにより所望の厚さ、組成で堆積することができた。
また、電気泳動法を用いることにより従来のコンマコー
ター、ダイコーター等の塗布方法で作製できないような
薄膜電極が可能になった。さらに高密度に堆積すること
ができるので空隙率は塗布方法で作製した電極をプレス
した従来の電極と同等以上であった。そして、接着性、
可とう性においても従来品と同等であった。この電気泳
動法で作製した電極はプレスする必要がないか、または
従来の塗布法で作製した電極より低圧力で所望の密度、
空隙率に加工できるため、プレスに伴う活物質層と集電
体端部の伸びの差による電極の湾曲が抑制され、巻回電
極を作製するのに生産性の優れた長尺電極を提供するこ
とができる。
(Evaluation) The thickness and composition of the active material layer to be deposited could be deposited to a desired thickness and composition by adjusting the applied voltage and the mixing ratio of the dispersoid of the mixed solution.
Further, by using the electrophoresis method, a thin film electrode which cannot be produced by a conventional coating method such as a comma coater or a die coater has become possible. The porosity was equal to or higher than that of a conventional electrode obtained by pressing an electrode manufactured by a coating method because the electrode can be deposited at a higher density. And adhesiveness,
The flexibility was the same as the conventional product. Electrodes produced by this electrophoresis method do not need to be pressed, or have a desired density, at a lower pressure than electrodes produced by a conventional coating method.
Since it can be processed to a porosity, the bending of the electrode due to the difference in elongation between the active material layer and the end of the current collector due to pressing is suppressed, and a long electrode having excellent productivity for producing a wound electrode is provided. be able to.

【0047】[0047]

【発明の効果】以上のように本発明の電池用電極の製造
方法は、電気泳動法により活物質層を形成する電池用電
極を製造方法において、容易に活物質層が形成されてい
ない部分を形成することができる電池用電極の製造方法
を提供することができるという効果を有する。
As described above, the method for manufacturing a battery electrode according to the present invention is directed to a method for manufacturing a battery electrode in which an active material layer is formed by electrophoresis. There is an effect that a method for manufacturing a battery electrode that can be formed can be provided.

【0048】また、本発明の電池用電極の製造装置は、
電気泳動法により活物質層を形成する電池用電極を製造
する装置において、容易に活物質層が形成されていない
部分を形成することができる電池用電極の製造装置を提
供することも解決すべき課題とする。
Further, the apparatus for manufacturing a battery electrode of the present invention comprises:
In an apparatus for manufacturing a battery electrode in which an active material layer is formed by an electrophoresis method, it is also necessary to solve the problem of providing an apparatus for manufacturing a battery electrode in which a portion where an active material layer is not formed can be easily formed. Make it an issue.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いた電極製造装置の概略図である。FIG. 1 is a schematic diagram of an electrode manufacturing apparatus used in Examples.

【図2】実施例で用いた電極製造装置の電極板と遮蔽部
材との配置の様子を示した図である。
FIG. 2 is a diagram showing an arrangement of an electrode plate and a shielding member of an electrode manufacturing apparatus used in an example.

【図3】実施例で示した他の電極製造装置の概略図であ
る。
FIG. 3 is a schematic view of another electrode manufacturing apparatus shown in the embodiment.

【図4】実施例で示した他の電極製造装置の電極板と遮
蔽部材との配置の様子を示した図である。
FIG. 4 is a view showing a state of arrangement of an electrode plate and a shielding member of another electrode manufacturing apparatus shown in the embodiment.

【図5】電極板の湾曲の測定方法を示した図である。FIG. 5 is a diagram showing a method for measuring the curvature of an electrode plate.

【図6】集電リードが設けられた従来の電極板を示した
図である。
FIG. 6 is a view showing a conventional electrode plate provided with a current collecting lead.

【符号の説明】[Explanation of symbols]

1、1’…集電体送出手段 10…集電体 A…集
電体(活物質層形成部) B…集電体(活物質層未形
成部) 11…集電リード 2、2’…溶液槽
31、32、31’、32’…電極板 4、4’…集
電体取込手段 51、52…遮蔽部材(金属製) 61、62…遮蔽
部材(絶縁材料製) 6、7、8、9、6’、7’、8’、9’…ガイド
90…直流電源
1, 1 ': current collector sending means 10: current collector A: current collector (active material layer forming portion) B: current collector (active material layer non-forming portion) 11: current collecting lead 2, 2' ... Solution tank
31, 32, 31 ', 32' ... electrode plate 4, 4 '... collector taking-in means 51, 52 ... shielding member (made of metal) 61, 62 ... shielding member (made of insulating material) 6, 7, 8, 9, 6 ', 7', 8 ', 9' ... guide
90 DC power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大木島 俊 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 山田 学 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 金村 聖志 東京都八王子市上柚木3丁目10番地3− 506 (72)発明者 濱上 寿一 東京都八王子市上柚木3丁目7番地6− 404 Fターム(参考) 5H029 AJ14 AK03 AL07 CJ11 CJ13 CJ22 CJ28 CJ30 DJ01 DJ07 HJ04 5H050 AA19 BA17 CA08 CB08 DA04 GA11 GA13 GA22 GA27 GA29 HA04 HA18  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Shun Okishima 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. Inside Denso Corporation (72) Inventor Manabu Yamada 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. Inside DENSO (72) Inventor Satoshi Kanamura 3--10-3, Kamiyuzuki, Hachioji-shi, Tokyo 3-506 (72) Inventor Juichi Hamakami 3-7-1, Kamiyuzuki, 7-404, Hachioji-shi, Tokyo F-term (reference) 5H029 AJ14 AK03 AL07 CJ11 CJ13 CJ22 CJ28 CJ30 DJ01 DJ07 HJ04 5H050 AA19 BA17 CA08 CB08 DA04 GA11 GA13 GA22 GA27 GA29 HA04 HA18

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 活物質を溶媒中に分散させた溶液中に集
電体を浸漬する浸漬工程と、 前記溶液内に電位勾配を発生させることで前記活物質を
該溶液内で電気泳動させて該活物質を活物質層として前
記集電体表面に付着させる電気泳動工程とを有する電池
用電極の製造方法において、 前記電気泳動工程では、前記集電体表面の所定部位への
前記活物質の電気泳動を阻害する、該集電体と独立して
配設された遮蔽部材を用いることを特徴とする電池用電
極の製造方法。
1. An immersion step in which a current collector is immersed in a solution in which an active material is dispersed in a solvent; and an electrophoresis of the active material in the solution by generating a potential gradient in the solution. An electrophoresis step of attaching the active material as an active material layer to the surface of the current collector, wherein the electrophoresis step includes the step of applying the active material to a predetermined site on the surface of the current collector. A method for producing a battery electrode, comprising using a shielding member that is arranged independently of the current collector and that inhibits electrophoresis.
【請求項2】 前記電気泳動工程において少なくとも正
極、負極からなる2種類の電極によって前記電位勾配を
発生させており、該正極および該負極のいずれか一方は
前記集電体が兼ねる請求項1に記載の電池用電極の製造
方法。
2. The method according to claim 1, wherein in the electrophoresis step, the potential gradient is generated by at least two types of electrodes including a positive electrode and a negative electrode, and one of the positive electrode and the negative electrode also serves as the current collector. A method for producing the battery electrode according to the above.
【請求項3】 前記電気泳動工程において少なくとも正
極、負極からなる2種類の電極によって前記電位勾配を
発生させており、該正極および該負極のいずれか一方は
前記集電体が兼ね、他方は前記集電体の両面側にそれぞ
れ1つずつ設けられる請求項1に記載の電池用電極の製
造方法。
3. In the electrophoresis step, the potential gradient is generated by at least two types of electrodes including a positive electrode and a negative electrode, and one of the positive electrode and the negative electrode also serves as the current collector, and the other is the current collector. The method for manufacturing a battery electrode according to claim 1, wherein one electrode is provided on each side of the current collector.
【請求項4】 前記遮蔽部材は、前記集電体と同電位に
調節される請求項1に記載の電池用電極の製造方法。
4. The method according to claim 1, wherein the shielding member is adjusted to the same potential as the current collector.
【請求項5】 前記遮蔽部材は、絶縁体である請求項1
に記載の電池用電極の製造方法。
5. The shielding member is an insulator.
3. The method for producing a battery electrode according to item 1.
【請求項6】 前記電気泳動工程は、前記集電体の表面
に前記活物質層の厚さが50μm以下となるように調節
して付着させる工程である請求項1に記載の電池用電極
の製造方法。
6. The battery electrode according to claim 1, wherein the electrophoresis step is a step of adjusting and attaching the active material layer to a surface of the current collector so that the thickness of the active material layer becomes 50 μm or less. Production method.
【請求項7】 前記活物質層の厚さが25μm以下とな
るように調節する請求項6に記載の電池用電極の製造方
法。
7. The method according to claim 6, wherein the thickness of the active material layer is adjusted to be 25 μm or less.
【請求項8】 前記溶液中には、前記活物質の表面を帯
電させる帯電剤を含む請求項1に記載の電池用電極の製
造方法。
8. The method according to claim 1, wherein the solution contains a charging agent for charging a surface of the active material.
【請求項9】 集電体と該集電体の表面に形成された活
物質層とからなる電池用電極の製造装置であって、 前記集電体を送り出す集電体送出手段と、 前記電極活物質層を構成する活物質を溶媒中に分散させ
た溶液を保持し、該溶液内に前記集電体を通過させる溶
液槽と、 前記溶液槽内に電位勾配を発生させ、前記活物質を前記
集電体上に電気泳動させて付着させる電圧印加手段と、 前記集電体と独立して配設された部材であって、前記溶
液槽内で前記集電体の所定部位を遮蔽する遮蔽部材と、 前記活物質が付着した前記集電体を取り込む集電体取込
手段とを有することを特徴とする電池用電極の製造装
置。
9. An apparatus for manufacturing a battery electrode comprising a current collector and an active material layer formed on a surface of the current collector, wherein: a current collector sending means for sending the current collector; and the electrode A solution tank in which an active material constituting an active material layer is dispersed in a solvent is held, and a current tank is passed through the solution, and a potential gradient is generated in the solution tank. Voltage applying means for electrophoretically attaching the current collector, and a member provided independently of the current collector, for shielding a predetermined portion of the current collector in the solution tank A device for manufacturing a battery electrode, comprising: a member; and a current collector intake unit that captures the current collector to which the active material has adhered.
【請求項10】 前記電圧印加手段は、少なくとも正
極、負極からなる2種類の電極によって前記電位勾配を
発生させており、該正極および該負極のいずれか一方は
前記集電体が兼ねる請求項9に記載の電池用電極の製造
装置。
10. The voltage applying means generates the potential gradient by at least two types of electrodes, a positive electrode and a negative electrode, and one of the positive electrode and the negative electrode also serves as the current collector. 3. The apparatus for manufacturing a battery electrode according to claim 1.
【請求項11】 前記電圧印加手段は、少なくとも正
極、負極からなる2種類の電極によって前記電位勾配を
発生させており、該正極および該負極のいずれか一方は
前記集電体が兼ね、他方は前記集電体の両面側にそれぞ
れ1つずつ設けられる請求項9に記載の電池用電極の製
造装置。
11. The voltage applying means generates the potential gradient by at least two types of electrodes, a positive electrode and a negative electrode, and one of the positive electrode and the negative electrode also serves as the current collector, and The apparatus for manufacturing a battery electrode according to claim 9, wherein one is provided on each of both sides of the current collector.
【請求項12】 前記遮蔽部材は、前記集電体と同電位
に調節される請求項9に記載の電池用電極の製造装置。
12. The apparatus according to claim 9, wherein the shielding member is adjusted to the same potential as the current collector.
【請求項13】 前記遮蔽部材は、絶縁体である請求項
9に記載の電池用電極の製造装置。
13. The apparatus according to claim 9, wherein the shielding member is an insulator.
【請求項14】 前記溶液中には、前記活物質の表面を
帯電させる帯電剤を含む請求項9に記載の電池用電極の
製造装置。
14. The apparatus for manufacturing a battery electrode according to claim 9, wherein the solution contains a charging agent for charging the surface of the active material.
JP2000226629A 2000-07-27 2000-07-27 Battery electrode manufacturing method and battery electrode manufacturing apparatus Expired - Fee Related JP4501247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226629A JP4501247B2 (en) 2000-07-27 2000-07-27 Battery electrode manufacturing method and battery electrode manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000226629A JP4501247B2 (en) 2000-07-27 2000-07-27 Battery electrode manufacturing method and battery electrode manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2002042790A true JP2002042790A (en) 2002-02-08
JP4501247B2 JP4501247B2 (en) 2010-07-14

Family

ID=18720213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226629A Expired - Fee Related JP4501247B2 (en) 2000-07-27 2000-07-27 Battery electrode manufacturing method and battery electrode manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4501247B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313679A (en) * 2005-05-09 2006-11-16 Matsushita Electric Ind Co Ltd Application method and device of electrode mixture paste
JP2010245017A (en) * 2009-03-19 2010-10-28 Equos Research Co Ltd Manufacturing method of electrode for lithium ion battery, and electrode for lithium ion battery
FR2982082A1 (en) * 2011-11-02 2013-05-03 Fabien Gaben PROCESS FOR PRODUCING THIN-FILT THIN-FILTER BATTERIES
FR2982086A1 (en) * 2011-11-02 2013-05-03 Fabien Gaben METHOD FOR MANUFACTURING MICRO-BATTERIES IN THIN LITHIUM ION LAYERS, AND MICRO-BATTERIES OBTAINED THEREBY
CN104011905A (en) * 2011-11-02 2014-08-27 I-Ten公司 Method for the production of electrodes for fully solid batteries
US20150333376A1 (en) * 2012-12-31 2015-11-19 I-Ten Method for manufacturing all-solid-state batteries in a multilayer structure
JP2021522661A (en) * 2018-05-07 2021-08-30 アイ テン Solid electrolytes for electrochemical devices
JP2021523514A (en) * 2018-05-07 2021-09-02 アイ テン Porous electrodes for electrochemical devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2981952B1 (en) 2011-11-02 2015-01-02 Fabien Gaben PROCESS FOR MAKING THIN FILMS DENSED BY ELECTROPHORESIS

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362456A (en) * 1989-07-28 1991-03-18 Yuasa Battery Co Ltd Battery
JPH0371555A (en) * 1989-08-08 1991-03-27 Yuasa Battery Co Ltd Battery
JPH0594821A (en) * 1990-04-04 1993-04-16 Gould Inc Manufacture of electrodeposited electrode for chemical battery
JPH05135761A (en) * 1991-11-15 1993-06-01 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH0610362U (en) * 1992-04-27 1994-02-08 株式会社アルメックス Surface treatment tank for flat work
JPH0974052A (en) * 1995-09-06 1997-03-18 Matsushita Electric Ind Co Ltd Method for manufacturing polarizable electrode
JPH09184099A (en) * 1996-01-05 1997-07-15 Murata Mfg Co Ltd Electroplating device for hoop material for metallic terminal
JP2000160389A (en) * 1998-12-01 2000-06-13 Fujitsu Ltd Plating and production of magnetic head

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362456A (en) * 1989-07-28 1991-03-18 Yuasa Battery Co Ltd Battery
JPH0371555A (en) * 1989-08-08 1991-03-27 Yuasa Battery Co Ltd Battery
JPH0594821A (en) * 1990-04-04 1993-04-16 Gould Inc Manufacture of electrodeposited electrode for chemical battery
JPH05135761A (en) * 1991-11-15 1993-06-01 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH0610362U (en) * 1992-04-27 1994-02-08 株式会社アルメックス Surface treatment tank for flat work
JPH0974052A (en) * 1995-09-06 1997-03-18 Matsushita Electric Ind Co Ltd Method for manufacturing polarizable electrode
JPH09184099A (en) * 1996-01-05 1997-07-15 Murata Mfg Co Ltd Electroplating device for hoop material for metallic terminal
JP2000160389A (en) * 1998-12-01 2000-06-13 Fujitsu Ltd Plating and production of magnetic head

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313679A (en) * 2005-05-09 2006-11-16 Matsushita Electric Ind Co Ltd Application method and device of electrode mixture paste
JP2010245017A (en) * 2009-03-19 2010-10-28 Equos Research Co Ltd Manufacturing method of electrode for lithium ion battery, and electrode for lithium ion battery
JP2014534592A (en) * 2011-11-02 2014-12-18 アイ テン Manufacturing method of all-solid-state thin film battery
US10340555B2 (en) 2011-11-02 2019-07-02 I-Ten Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
FR2982082A1 (en) * 2011-11-02 2013-05-03 Fabien Gaben PROCESS FOR PRODUCING THIN-FILT THIN-FILTER BATTERIES
WO2013064777A1 (en) * 2011-11-02 2013-05-10 Fabien Gaben Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
WO2013064781A1 (en) * 2011-11-02 2013-05-10 Fabien Gaben Fully solid thin-film batteries and method for producing fully solid thin-film batteries
KR20140096333A (en) * 2011-11-02 2014-08-05 이-뗀 Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
KR20140096332A (en) * 2011-11-02 2014-08-05 이-뗀 Method for manufacturing all-solid-state thin-film batteries
CN104011905A (en) * 2011-11-02 2014-08-27 I-Ten公司 Method for the production of electrodes for fully solid batteries
JP2014534590A (en) * 2011-11-02 2014-12-18 アイ テン Method for producing all solid state battery electrode
US10749206B2 (en) * 2011-11-02 2020-08-18 I-Ten Method for manufacturing all-solid-state thin-film batteries
WO2013064779A1 (en) * 2011-11-02 2013-05-10 Fabien Gaben Method for manufacturing all-solid-state thin-film batteries
KR102052521B1 (en) * 2011-11-02 2019-12-05 이-뗀 Method for manufacturing all-solid-state thin-film batteries
JP2014534591A (en) * 2011-11-02 2014-12-18 アイ テン Thin film lithium ion micro battery manufacturing method and micro battery obtained by the method
JP2018073840A (en) * 2011-11-02 2018-05-10 アイ テン Method for the production of electrode for fully solid battery
US10047451B2 (en) 2011-11-02 2018-08-14 I-Ten Method for manufacturing all-solid-state thin-film batteries
JP2018186099A (en) * 2011-11-02 2018-11-22 アイ テン Method for production of thin film lithium ion micro-battery, and micro-battery obtained by the same
FR2982086A1 (en) * 2011-11-02 2013-05-03 Fabien Gaben METHOD FOR MANUFACTURING MICRO-BATTERIES IN THIN LITHIUM ION LAYERS, AND MICRO-BATTERIES OBTAINED THEREBY
KR102018096B1 (en) * 2011-11-02 2019-09-04 이-뗀 Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
US10454092B2 (en) * 2012-12-31 2019-10-22 I-Ten Method for manufacturing all-solid-state batteries in a multilayer structure
JP2016507865A (en) * 2012-12-31 2016-03-10 アイ テン Method for manufacturing all-solid battery with laminated structure
US20150333376A1 (en) * 2012-12-31 2015-11-19 I-Ten Method for manufacturing all-solid-state batteries in a multilayer structure
JP2021523514A (en) * 2018-05-07 2021-09-02 アイ テン Porous electrodes for electrochemical devices
JP2021522661A (en) * 2018-05-07 2021-08-30 アイ テン Solid electrolytes for electrochemical devices

Also Published As

Publication number Publication date
JP4501247B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
TWI469428B (en) Current collector, electrochemical cell electrode and electrochemical cell
CN102969480B (en) The manufacture method of electrode and electrode
JP5284896B2 (en) Electrode for lithium non-aqueous electrolyte battery, positive electrode current collector for lithium non-aqueous electrolyte battery, and method for producing the same
CN111009679A (en) Three-electrode battery cell, three-electrode soft package battery and preparation method thereof
JP5281706B2 (en) Current collector, current collector manufacturing method, electrode, and secondary battery
CN111162246A (en) Continuous controllable effective pre-lithiation system and lithium supplementing method
CN107978732A (en) Pole piece and battery
JP2015118870A (en) Method of manufacturing all-solid battery
CN109638357A (en) A kind of integrated preparation method of electrodes of lithium-ion batteries/diaphragm
Vangapally et al. Na2EDTA chelating agent as an electrolyte additive for high performance lead-acid batteries
JP2003109666A (en) Structure of whole solid polymer battery, whole solid polymer battery and its manufacturing method
JP2007234806A (en) Electrode manufacturing device, electrode manufacturing method, electrode, and electrochemical element
JP2002042790A (en) Method for manufacturing battery electrode and device for manufacturing battery electrode
CN108808097A (en) Layer-built battery
CN111900337A (en) Lithium ion battery pole piece and preparation method thereof
JP2003249223A (en) Lithium ion secondary battery and its manufacturing method
JP2002042791A (en) Method for manufacturing battery electrode with separator
JP4686825B2 (en) Method for producing battery electrode with solid electrolyte layer
Park et al. Facile synthesis of highly efficient V 2 O 5@ NiCo 2 O 4 as battery-type electrode material for high-performance electrochemical supercapacitors
CN109037560B (en) Lithium metal graphene battery and graphene battery
JP5325326B2 (en) Current collector, electrode, secondary battery, and method of manufacturing secondary battery
JP2009231189A (en) Voltage distribution evaluation method of electric storage device, and its evaluation tool
CN104795540A (en) Making method of flexibly packaged coiled battery with high specific energy
CN108039290A (en) A kind of method that electrode of super capacitor is prepared based on volume to volume printing technology
JP3680883B2 (en) Electric double layer capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees