JPS63158836A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS63158836A
JPS63158836A JP30704286A JP30704286A JPS63158836A JP S63158836 A JPS63158836 A JP S63158836A JP 30704286 A JP30704286 A JP 30704286A JP 30704286 A JP30704286 A JP 30704286A JP S63158836 A JPS63158836 A JP S63158836A
Authority
JP
Japan
Prior art keywords
layer
ain
wafer
aln
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30704286A
Other languages
Japanese (ja)
Inventor
Naotaka Iwata
直高 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30704286A priority Critical patent/JPS63158836A/en
Publication of JPS63158836A publication Critical patent/JPS63158836A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a novel active layer effective for substantially decreasing the number of processes, by heat treating a wafer on which AlN is deposited by the CVD process at different depositing temperature according to various regions on the surface of III-V compound semiconductor crystals doped with amphoteric dopant ions. CONSTITUTION:Si ions are implanted into the surface of an insulating GaAs substrate 21 to form an ion implanted layer 211. In order to provided a protection film on the layer 211 for preventing GaAs from being thermally decomposed by a heat treatment, 900 Angstrom AlN layer 22 is deposited all over the surface of the substrate at 400 deg.C for example and then a resist mask is provided on a region where the AlN layer 22 is to be left unetched. The unrequired part of the AlN layer 22 is removed by etching and then the mask is also removed. After that, an AlN layer 23 having a thickness of 900 Angstrom is formed by the MOCVD process at 600 deg.C for example. When the wafer is heat treated at 950 deg.C for 20 minutes, it can be observed at an electron concentration of 3.6X10<12>cm<-2> that the part of the ion implanted layer 211 covered with the AlN layer 22 has been converted into an N-type conducting layer 212 while the part of the layer 211 covered with the AlN layer 23 has been converted into a P-type layer 213. In this manner, types of conductivity and concentrations of active carriers of the ion implanted layer can be controlled as required.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体素子の製造方法、特に半導体の伝導形
制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for controlling conduction type of a semiconductor.

(従来の技術) 従来より能動層を形成する方法としては、半導体結晶に
不純物を注入し、その後肢結晶に熱処理を施すことによ
り能動層を形成するいわゆるイオン注入法、ドナーやア
クセプタとして働く不純物を拡散にて半導体結晶中に導
入する拡散法及び能動層を形成する領域を選択的にエツ
チングし、その後肢領域に不純物を添加した能動層を成
長する選択成長法などがあり、広く半導体素子の製造に
利用されている。ところで、従来の技術であるところの
イオン注入法や拡散法によって、伝導形やキャリア濃度
の異なる能動層を同一ウェハ上に形成する場合には、そ
の能動層の種類だけのプロセスを必要とした。
(Prior art) Conventional methods for forming an active layer include the so-called ion implantation method, in which an impurity is implanted into a semiconductor crystal, and the active layer is formed by heat-treating the hindlimb crystal; There is a diffusion method in which the active layer is introduced into the semiconductor crystal by diffusion, and a selective growth method in which the region where the active layer is to be formed is selectively etched and an active layer is grown with impurities added to the rear region.These methods are widely used in the manufacturing of semiconductor devices. It is used for. By the way, when active layers with different conductivity types and carrier concentrations are formed on the same wafer using conventional techniques such as ion implantation and diffusion, processes are required for each type of active layer.

(発明が解決しようとする間組点) 即ち従来法によれば、能動層を形成するウェハ部分には
マスクを設けず、能動層としたくない部分にはマスクを
設けた後に、不純物を結晶中に導大したり能動層を直接
形成する一連のプロセスを能動層の種類だけ必要とした
。この為、実際の半導体素子の製造工程は複雑になり、
小さな回路変更を行なう場合でも膨大な労力を必要とし
た。本発明の目的は、工数の大幅な削減に有効で、かつ
新規な能動層の形成法を提供することにある。
(Interset point to be solved by the invention) In other words, according to the conventional method, a mask is not provided on the wafer portion where the active layer is to be formed, and after a mask is provided on the portion that is not to be used as the active layer, impurities are introduced into the crystal. A series of processes for enlarging and directly forming the active layer were required only for each type of active layer. For this reason, the actual manufacturing process of semiconductor devices becomes complicated.
Even small circuit changes required enormous effort. An object of the present invention is to provide a novel method for forming an active layer that is effective in significantly reducing the number of man-hours.

(問題点を解決するための手段) 本発明は、両性不純物をイオン注入したIII + V
化合物半導体結晶表面の領域に応じてCVD法により異
なる堆積温度でAINを形成したウェハを熱処理するこ
とを特徴する半導体素子の製造方法及び、■−■化合物
半導体結晶表面の領域に応じてCVD法により異なる堆
積温度でAINを形成したウェハ上方より両性不純物を
イオン注入し、その後熱処理することを特徴する半導体
素子の製造方法及び、両性不純物を添加したIILV化
合物半導体結晶表面の領域に応じてCVD法により異な
る堆積温度でAINを形成したウェハを熱処理すること
を特徴する半導体素子の製造方法である。
(Means for Solving the Problems) The present invention provides III + V ions in which amphoteric impurities are ion-implanted.
A method for manufacturing a semiconductor device characterized by heat-treating a wafer on which AIN has been formed by CVD at different deposition temperatures depending on the region of the compound semiconductor crystal surface; A semiconductor device manufacturing method characterized by ion implanting an amphoteric impurity from above a wafer on which AIN has been formed at different deposition temperatures, followed by heat treatment, and a CVD method according to the surface area of an IILV compound semiconductor crystal added with an amphoteric impurity. This method of manufacturing a semiconductor device is characterized in that a wafer on which AIN is formed at different deposition temperatures is heat-treated.

(作用) 111−V化合物半導体結晶中で■族元素は、両性不純
物として振る舞い、III族サイトを占めた場合には、
n形不純物となり、またV族すイトを占めた場合には、
p形不純物となることが知られている。
(Function) In the 111-V compound semiconductor crystal, the group III element behaves as an amphoteric impurity, and when it occupies the group III site,
When it becomes an n-type impurity and occupies the V group,
It is known to become a p-type impurity.

従って、■族元素の占めるサイトが制御できれば、伝導
形やキャリア濃度を制御することができる。GaAs中
での両性不純物であるSiを例にとり、成膜温度の異な
るCVD AINを熱処理保護膜として用いることによ
り、イオン注入層の伝導形を制御できる理由を以下に示
す。
Therefore, if the sites occupied by the group Ⅰ elements can be controlled, the conductivity type and carrier concentration can be controlled. Taking Si, which is an amphoteric impurity in GaAs, as an example, the reason why the conductivity type of the ion implantation layer can be controlled by using CVD AIN with different film formation temperatures as a heat treatment protective film will be explained below.

第2図は、絶縁性GaAs基板にSiを100KeVに
て5X1012cm−2イオン注入し、その上にMOC
VD法により400,500,600,700°CでA
INを900人成膜したウェハを20分間、800°C
から900°Cの間で熱処理したときに活性化した電子
濃度と熱処理温度の関係を示した図である。400,5
00°Cで成膜したAINは、熱処理温度800°Cか
ら950°Cの間で高いドナーの活性化を示しているが
、これは従来法による熱処理保護膜では見られなかった
特徴である。従来よりイオン注入後の熱処理保護膜とし
ては一般に5i02やSiO工Nyを熱処理保護膜とし
て用いたが、それらとGaAsとでは熱膨張係数が大き
く異なる為、熱処理時には界面に大きなストレスが生じ
ていた。そのストレスは、熱処理保護膜の成膜温度より
高温になるにしたがって大きくなる為、両性不純物のサ
イト置換に影響を与えキャリア活性化率の低下やGaA
s表面の損傷をひきおこしていた。以上の欠点を解決す
る為、GaAsと熱膨張係数がほぼ等しいAINを熱処
理保護膜として用いた例が提案された。
Figure 2 shows that 5X1012 cm-2 of Si is ion-implanted at 100 KeV into an insulating GaAs substrate, and a MOC is placed on top of it.
A at 400, 500, 600, 700°C by VD method
Wafers with 900 IN films were heated at 800°C for 20 minutes.
9 is a diagram showing the relationship between the concentration of activated electrons and the heat treatment temperature when heat treatment is performed between 900°C and 900°C. 400,5
The AIN film formed at 00°C shows high donor activation at heat treatment temperatures between 800°C and 950°C, a feature not seen in heat-treated protective films formed by conventional methods. Conventionally, 5i02 and SiO-Ny have been generally used as a heat treatment protective film after ion implantation, but because these and GaAs have a large coefficient of thermal expansion, large stress was generated at the interface during heat treatment. The stress increases as the temperature rises higher than the film formation temperature of the heat-treated protective film, which affects the site substitution of amphoteric impurities, resulting in a decrease in the carrier activation rate and a decrease in the GaA
s surface damage. In order to solve the above-mentioned drawbacks, an example has been proposed in which AIN, which has a coefficient of thermal expansion almost equal to that of GaAs, is used as a heat treatment protective film.

(アプライド・フィジクスルタ−(Appl、Phys
、 Lett。
(Applied Physics
, Lett.

40(1982)689)) Lかしながら、この報告
におけるAINは反応性スパッタ法により成膜したもの
であり、成膜時にGaAsの表面は損傷を受けている。
40 (1982) 689)) However, the AIN in this report was formed by a reactive sputtering method, and the GaAs surface was damaged during film formation.

損傷したGaAs表面では結晶の質が低下し、移動度が
低下するばかりではなく、乱れたAINとの界面ではス
トレスも生じた。従って、熱処理保護膜として5i02
や5iO1Nyを使用した場合の欠点は、解決されなか
った。本発明のAINは成長ガスを熱分解し、堆積させ
るMOCVD法によるものであり、従来のスパッタ法で
は避けられなかった成膜時のGaAs表面の損傷を防ぐ
ことができたと考えられる。加えて400.500°C
で成膜したAINについては、GaAsの分解温度より
低い温度で成膜したことにより、極めて損傷の少ない界
面が得られたと考えられる。一方、600,700°C
で成膜したAINについては、GaAs表面を損傷させ
ないMOCVD法によったとは言え、GaAsの分解温
度程度以上で成膜したことにより、GaAs表面より蒸
気圧の高いAsの蒸発が生じるなど、GaAsが熱劣化
していると考えられる。GaAsの熱劣化は表面に近い
程進んでいると考えられる。
Not only did the crystal quality deteriorate on the damaged GaAs surface, resulting in lower mobility, but stress also occurred at the disordered interface with AIN. Therefore, as a heat treatment protective film, 5i02
The disadvantages of using 5iO1Ny and 5iO1Ny were not resolved. The AIN of the present invention is based on the MOCVD method in which growth gas is thermally decomposed and deposited, and it is believed that damage to the GaAs surface during film formation, which could not be avoided with conventional sputtering methods, can be prevented. In addition 400.500°C
It is thought that the AIN film formed in the above method was formed at a temperature lower than the decomposition temperature of GaAs, resulting in an interface with extremely little damage. On the other hand, 600,700°C
Although the AIN film was formed using the MOCVD method, which does not damage the GaAs surface, the film was formed at temperatures above the decomposition temperature of GaAs, resulting in evaporation of As, which has a higher vapor pressure than the GaAs surface. It is thought that it has deteriorated due to heat. It is thought that thermal deterioration of GaAs progresses closer to the surface.

従ってGaAs表面付近の結晶性の劣化などが、900
°C以上で熱処理した場合にキャリア活性化の低下をも
たらすと考えられる。以上の理由により、両性不純物を
イオン注入したGaAs結晶上にMOCVD法により少
なくとも2種類の温度でAINを成膜した部分を有する
半導体結晶を、熱処理することによりイオン注入層の伝
導の形や活性キャリア濃度を制御することができる。
Therefore, deterioration of crystallinity near the GaAs surface, etc.
It is thought that heat treatment at a temperature of .degree. C. or higher causes a decrease in carrier activation. For the above reasons, by heat-treating a semiconductor crystal having a portion in which AIN is deposited at at least two different temperatures by MOCVD on a GaAs crystal into which amphoteric impurities have been ion-implanted, the conduction shape of the ion-implanted layer can be improved. Concentration can be controlled.

(実施例) 以下、本発明の実施例について図面を用いて詳細に説明
する。
(Example) Hereinafter, an example of the present invention will be described in detail using the drawings.

特許請求の範囲の第1項に示した発明の第1の実施例を
以下に示す。第1図で(a)は、絶縁性GaAs基板2
1の表面にSiを注入したイオン注入層211を形成し
、その上に熱処理によるGaAsの熱分解を防ぐ熱処理
保護膜としてMOCVD法により400°Cで成膜した
AIN層22と600°Cで成膜したAIN層23の断
面図である。そのウェハに950°Cで20分間の熱処
理を施すと、第1図(b)で示す様に、AIN層22を
施した部分は回当たりの電子濃度で3.6 X 101
2cm−2のn形伝導層212となり、AIN層23を
施した部分においてはp形への反転が認められ、p形層
213が得られた。これは「作用」の欄で示したところ
の理由により良好な界面を有するAIN層22を施した
部分においてはSiはIII族サイトを占め、従ってイ
オン注入層はn形伝導層212となるか、熱劣化が生じ
たGaAs表面をAINとの界面に有するAIN層23
を施した部分においてはSiは両性不純物としての性質
を示しイオン注入層はp形へ反転したと考えられる。
A first embodiment of the invention set forth in claim 1 will be described below. In FIG. 1, (a) shows an insulating GaAs substrate 2.
An ion-implanted layer 211 in which Si is implanted is formed on the surface of the ion-implanted layer 211, and an AIN layer 22 formed at 400°C by MOCVD and an AIN layer 22 formed at 600°C as a heat treatment protective film to prevent thermal decomposition of GaAs due to heat treatment. FIG. 2 is a cross-sectional view of a deposited AIN layer 23. When the wafer is subjected to heat treatment at 950°C for 20 minutes, the portion where the AIN layer 22 is applied has an electron concentration of 3.6 x 101 per treatment, as shown in Fig.
An n-type conductive layer 212 with a thickness of 2 cm −2 was obtained, and inversion to p-type was observed in the portion where the AIN layer 23 was applied, and a p-type layer 213 was obtained. This is because Si occupies group III sites in the portion where the AIN layer 22 with a good interface is formed, and therefore the ion implantation layer becomes the n-type conductive layer 212 for the reason shown in the "effect" column. AIN layer 23 having a thermally degraded GaAs surface at the interface with AIN
It is considered that in the portion where Si was subjected to the ion implantation, Si exhibited properties as an amphoteric impurity, and the ion implantation layer was inverted to p-type.

特許請求の範囲の第1項に示した発明の第2の実施例を
以下に示す。第3図は、本発明による能動層形成の例で
ある。第3図で(a)は、熱処理前のウェハの外観図で
あり、第3図(b)はA−A’ での断面図であ  ・
る。ウェハは、絶縁性GaAs基板31にSiを100
KeVにて5 X 1012cm−2イオン注入し、イ
オン注入層311を形成し、その上にMOCVD法によ
り500’CテAIN層32及び700°CでAIN層
33を900人成膜したものである。そのウェハを20
分間、950°Cで熱処理することにより、第3図(c
)に示した約3.5X1012cm−”の電子濃度を有
するn型伝導層312と高抵抗層313を得た。
A second embodiment of the invention set forth in claim 1 will be described below. FIG. 3 is an example of active layer formation according to the present invention. In FIG. 3, (a) is an external view of the wafer before heat treatment, and FIG. 3(b) is a cross-sectional view taken along line A-A'.
Ru. The wafer is an insulating GaAs substrate 31 with 100% Si.
5 x 1012 cm-2 ions were implanted at KeV to form an ion-implanted layer 311, and on top of that, an AIN layer 32 at 500'C and an AIN layer 33 at 700°C were formed by 900 people by MOCVD. . 20 of those wafers
By heat-treating at 950°C for
), an n-type conductive layer 312 and a high-resistance layer 313 having an electron concentration of about 3.5×10 12 cm −” were obtained.

n型伝導層312は、絶縁性Gムs基板31と高抵抗を
示す層313により絶縁されており、本発明が素子の電
気的な分離に有効であることは明らかである。
The n-type conductive layer 312 is insulated from the insulating GMS substrate 31 by the layer 313 exhibiting high resistance, and it is clear that the present invention is effective for electrically isolating elements.

特許請求の範囲の第2項に示した発明の実施例を以下に
示す。第4図は、本発明による能動層形成の例である。
Examples of the invention set forth in claim 2 are shown below. FIG. 4 is an example of active layer formation according to the present invention.

第4図で(a)は、熱処理前のウェハの外観図であり、
第4図(b)はA−A’ での断面図である。ウェハは
、絶縁性GaAs基板41上にMOCVD法により40
0°CでAIN層42及び600°CでAIN層43を
500人成膜し、その後ウェハの上方よりSiを150
KeVにて5X1012cm−2イオン注入し、イオン
注入層411を形成したものである。そのウェハを20
分間、950°Cで熱処理することにより、第4図(C
)に示した約3 X 1012cm−2の電子濃度を有
するn型伝導層412と高抵抗層413を得た。n型伝
導層412は、絶縁性GaAs基板41と高抵抗を示す
層413により絶縁することができた。
In FIG. 4, (a) is an external view of the wafer before heat treatment,
FIG. 4(b) is a sectional view taken along line AA'. The wafer is formed on an insulating GaAs substrate 41 using the MOCVD method.
500 layers of AIN layer 42 were formed at 0°C and AIN layer 43 was formed at 600°C, and then 150 layers of Si were formed from above the wafer.
An ion implantation layer 411 is formed by implanting 5×10 12 cm −2 ions at KeV. 20 of those wafers
Figure 4 (C
), an n-type conductive layer 412 and a high-resistance layer 413 having an electron concentration of about 3×10 12 cm −2 were obtained. The n-type conductive layer 412 could be insulated from the insulating GaAs substrate 41 by the layer 413 exhibiting high resistance.

特許請求の範囲の第3項に示した発明の実施例を以下に
示す。第5図は、本発明による能動層形成の例である。
Examples of the invention set forth in claim 3 are shown below. FIG. 5 is an example of active layer formation according to the present invention.

第5図で(a)は、熱処理前のウェハの外観図であり、
第5図(b)はA−A’ での断面図である。ウェハは
、絶縁性GaAs基板51上にMOCVD法によりSi
をI×1018cm−3ドープした成長層511を約1
000人形成し、ソノ上4Z MOCVD法により40
0°CテAIN層52及び600°C1′AIN層53
を900人成膜したものである。そのウェハを20分間
、950°Cで熱処理した。本実施例では最初に能動層
が形成されており、従って本発明の結果としては、能動
層として使用する部分のキャリア濃度は初期の値のまま
であるか又は能動層として使用できる値である必要があ
り、能動層として使用しない部分のキャリア濃度は低い
必要がある。第5図(C)に熱処理後のウェハの断面図
を示す。AIN層5層上2した部分では約9X1017
cm−3の電子濃度を有するn型伝導層512が得られ
た。一方、AIN層5層上3成した部分では高抵抗層5
13を得た。AIN層5層上3成した部分では高抵抗層
513を得た理由は、作用で示したとうりである。
In FIG. 5, (a) is an external view of the wafer before heat treatment,
FIG. 5(b) is a sectional view taken along line AA'. The wafer is made of Si on an insulating GaAs substrate 51 by MOCVD.
The growth layer 511 doped with I×1018 cm−3 is about 1
000 people were formed and 40
0°C AIN layer 52 and 600°C AIN layer 53
The film was formed by 900 people. The wafer was heat treated at 950°C for 20 minutes. In this example, the active layer is formed first, and therefore, as a result of the present invention, the carrier concentration in the portion used as the active layer must remain at its initial value or be at a value that can be used as the active layer. Therefore, the carrier concentration in the portion not used as an active layer must be low. FIG. 5(C) shows a cross-sectional view of the wafer after heat treatment. Approximately 9X1017 in the 2nd part above the AIN layer 5
An n-type conductive layer 512 with an electron concentration of cm-3 was obtained. On the other hand, the high resistance layer 5 is formed on the AIN layer 5.
I got 13. The reason why a high resistance layer 513 was obtained in the portion where three AIN layers were formed is as shown in the operation.

即ち、AIN層5層上3動層511の間に存在するスト
レスなどが8iに作用し、約半数のSi原子のIII族
サイトからV族すイトへのサイト置換を生じさせたと考
えられる。また本実施例においては、絶縁性GaAs基
板51上にMOCVD法によりSiをドープした成長層
511を形成した例において示したが、本発明は、層5
11の製法を限定するものではない。層511は、絶縁
性GaAs基板51への一様なSiの熱拡散によっても
形成することができる。
That is, it is considered that stress existing between the three dynamic layers 511 above the five AIN layers acted on 8i, causing about half of the Si atoms to undergo site substitution from group III sites to group V sites. Further, in this embodiment, an example was shown in which the Si-doped growth layer 511 was formed on the insulating GaAs substrate 51 by the MOCVD method.
It is not limited to the 11 manufacturing methods. Layer 511 can also be formed by uniform thermal diffusion of Si into insulating GaAs substrate 51.

以上の実施例においてはGaAs中の両性不純物Siを
例に挙げて示したが、本発明による半導体素子の製造方
法は、GaAs中のその他の両性不純物、例えば、Ge
などにも適用できるばかりではなく、他の■−■化合物
半導体材料、たとえばInP系などにも適用できること
は明らかである。
In the above embodiments, the amphoteric impurity Si in GaAs was given as an example, but the method for manufacturing a semiconductor device according to the present invention can also be applied to other amphoteric impurities in GaAs, such as Ge.
It is obvious that the present invention can be applied not only to the above, but also to other 1-2 compound semiconductor materials, such as InP-based materials.

(発明の効果) 以上の様に、本発明によれば、従来の技術の様に複雑な
工程が必要でないばかりではなく、回路変更などを行な
う場合でも膨大な労力を必要とせず、イオン注入層の伝
導の形や活性するキャリア濃度を制御することができる
(Effects of the Invention) As described above, according to the present invention, not only is there no need for a complicated process unlike the conventional technology, but there is also no need for a huge amount of labor even when changing the circuit, and the ion-implanted layer The conduction shape and active carrier concentration can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は、特許請求の範囲の第1項に示
した発明の第1の実施例を示す断面図、第2図は、AI
N層をGaAs基板の熱処理保護膜として用いた場合の
活性化電子濃度と熱処理温度の関係を示した図、第3図
は、特許請求の範囲の第1項に示した発明の第2の実施
例を示す図、第4図は、特許請求の範囲の第2項に示し
た発明の実施例で示した結果を基にした本発明の実施例
、第5図は、特許請求の範囲の第3項に示した発明の実
施例を示す図である。 21・・・絶縁性GaAs基板、211・・・イオン注
入層、212・n型伝導層、213・p形層、22・A
IN膜、23−・・AIN膜、31−・・絶縁性GaA
s基板、311−・・イオン注入層、312−n型伝導
層、313・・・高抵抗層、32・・・AIN膜、33
−AIN層、41・・・絶縁性GaAs基板、411−
・・イオン注入層、412・・・n型伝導層、413・
・・高抵抗層、42、−AIN膜、43−AIN膜、5
1・・・絶縁性GaAs基板、511・・・成長層、5
12・・・n型伝導層、513.・、高抵抗層、第1図 第2図 熱処理温度(’C) 1000/熱処理温度 (1/K) 第3図 第4図 第5図 5フ 手続補正書(自発)
FIGS. 1(a) and 1(b) are cross-sectional views showing the first embodiment of the invention set forth in claim 1, and FIG. 2 is an AI
FIG. 3 is a diagram showing the relationship between the activated electron concentration and the heat treatment temperature when the N layer is used as a heat treatment protective film for a GaAs substrate. FIG. 4 is an example of the present invention based on the results shown in the embodiment of the invention set forth in claim 2, and FIG. 5 is a diagram showing an example. 3 is a diagram showing an embodiment of the invention shown in Section 3. FIG. 21: Insulating GaAs substrate, 211: Ion implantation layer, 212: N-type conductive layer, 213: P-type layer, 22: A
IN film, 23--AIN film, 31--insulating GaA
s substrate, 311--ion implantation layer, 312-n-type conduction layer, 313--high resistance layer, 32--AIN film, 33
-AIN layer, 41... insulating GaAs substrate, 411-
...Ion implantation layer, 412...n-type conduction layer, 413.
...High resistance layer, 42, -AIN film, 43-AIN film, 5
1... Insulating GaAs substrate, 511... Growth layer, 5
12... n-type conductive layer, 513.・High resistance layer, Figure 1 Figure 2 Heat treatment temperature ('C) 1000/Heat treatment temperature (1/K) Figure 3 Figure 4 Figure 5 Figure 5 Procedural amendment (voluntary)

Claims (3)

【特許請求の範囲】[Claims] (1)両性不純物をイオン注入したIII−V化合物半導
体結晶表面の領域に応じてCVD法により異なる堆積温
度でAINを形成したウェハを熱処理することを特徴す
る半導体素子の製造方法。
(1) A method for manufacturing a semiconductor device, which comprises heat-treating a wafer on which AIN has been formed by CVD at different deposition temperatures depending on the region of the III-V compound semiconductor crystal surface into which amphoteric impurities have been ion-implanted.
(2)III−V化合物半導体結晶表面の領域に応じてC
VD法により異なる堆積温度でAINを形成したウェハ
上方より両性不純物をイオン注入し、その後熱処理する
ことを特徴する半導体素子の製造方法。
(2) Depending on the surface area of the III-V compound semiconductor crystal, C
A method for manufacturing a semiconductor device, comprising ion-implanting an amphoteric impurity from above a wafer on which AIN has been formed at different deposition temperatures by a VD method, and then heat-treating the wafer.
(3)両性不純物を添加したIII−V化合物半導体結晶
表面の領域に応じてCVD法により異なる堆積温度でA
INを形成したウェハを熱処理することを特徴とする半
導体素子の製造方法。
(3) III-V compound semiconductor crystals doped with amphoteric impurities At different deposition temperatures depending on the region of the crystal surface
A method for manufacturing a semiconductor device, comprising heat-treating a wafer on which an IN has been formed.
JP30704286A 1986-12-22 1986-12-22 Manufacture of semiconductor element Pending JPS63158836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30704286A JPS63158836A (en) 1986-12-22 1986-12-22 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30704286A JPS63158836A (en) 1986-12-22 1986-12-22 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPS63158836A true JPS63158836A (en) 1988-07-01

Family

ID=17964345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30704286A Pending JPS63158836A (en) 1986-12-22 1986-12-22 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS63158836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106035A (en) * 1988-10-14 1990-04-18 Sanyo Electric Co Ltd Manufacture of semiconductor element
US5849620A (en) * 1995-10-18 1998-12-15 Abb Research Ltd. Method for producing a semiconductor device comprising an implantation step
JP6070846B2 (en) * 2013-07-31 2017-02-01 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106035A (en) * 1988-10-14 1990-04-18 Sanyo Electric Co Ltd Manufacture of semiconductor element
US5849620A (en) * 1995-10-18 1998-12-15 Abb Research Ltd. Method for producing a semiconductor device comprising an implantation step
JP6070846B2 (en) * 2013-07-31 2017-02-01 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device

Similar Documents

Publication Publication Date Title
US5360986A (en) Carbon doped silicon semiconductor device having a narrowed bandgap characteristic and method
KR0142191B1 (en) Heteroepitaxial structure and fabrication method thereof
US4717681A (en) Method of making a heterojunction bipolar transistor with SIPOS
JPS62177909A (en) Manufacture of semiconductor device
JPH08191140A (en) Manufacture of soi substrate
JPH0787187B2 (en) Method for manufacturing GaAs compound semiconductor substrate
US5232862A (en) Method of fabricating a transistor having a cubic boron nitride layer
JPS63158836A (en) Manufacture of semiconductor element
US5382549A (en) Method of manufacturing polycrystalline silicon having columnar orientation
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device
JPH05175536A (en) Manufacture of semiconductor device
JP3023189B2 (en) Method for manufacturing semiconductor device
JPH02210820A (en) Manufacture of bipolar transistor
JPS61185923A (en) Formation of semiconductor low resistance layer
JPH0212875A (en) Manufacture of semiconductor device
JP2691571B2 (en) Method for manufacturing compound semiconductor device
JP3168310B2 (en) Method for manufacturing semiconductor device
JP2650972B2 (en) Method for manufacturing semiconductor device
JPS63148616A (en) Manufacture of semiconductor device
JPS59191329A (en) Manufacture of ion-implanted gaas element
JPS63158837A (en) Manufacture of semiconductor element
Donahue et al. Low Temperature Silicon Epitaxy Deposited by Very Low Pressure Chemical Vapor Deposition: III. Pattern Transfer
JPH01286308A (en) Manufacture of gallium arsenide field effect transistor
JPH04107918A (en) Manufacture of semiconductor device
JPS58103123A (en) Manufacture of compound semiconductor device