JPH02106035A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH02106035A
JPH02106035A JP25983988A JP25983988A JPH02106035A JP H02106035 A JPH02106035 A JP H02106035A JP 25983988 A JP25983988 A JP 25983988A JP 25983988 A JP25983988 A JP 25983988A JP H02106035 A JPH02106035 A JP H02106035A
Authority
JP
Japan
Prior art keywords
film
annealing
activation
uniformity
reproducibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25983988A
Other languages
Japanese (ja)
Other versions
JP2771553B2 (en
Inventor
Daijiro Inoue
大二朗 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63259839A priority Critical patent/JP2771553B2/en
Publication of JPH02106035A publication Critical patent/JPH02106035A/en
Application granted granted Critical
Publication of JP2771553B2 publication Critical patent/JP2771553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration in the uniformity and the reproducibility of element characteristics by arranging two kinds of protective films for annealing so as to be laminated, selectively activating implantation ion, and electrically isolating elements. CONSTITUTION:Two kinds of protecting films 3, 5, whose film properties are mutually different, are arranged on a GaAs substrate 1 so as to be laminated, and an annealing process for activation is contained. At the time of activation annealing, the evaporation of As atom is little, implantated impurity is easy to enter a Ga site, and the activity ratio is high, in a region where the film 3 having high blocking activity for As atom diffusion is formed. On the other hand, the implanted impurity enters also the As site, the activity ratio decreases, and elements are isolated by the generation of a depletion layer, in the region where a film 5 having a low blocking ratio is formed. Thereby, the decrease in electric characteristics, uniformity and reproducibility caused by element isolation can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイオン注入技術を用いて各種の砒化ガリウム半
導体素子を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing various gallium arsenide semiconductor devices using ion implantation technology.

〔従来の技術〕[Conventional technology]

砒化ガリウムへのイオン注入技術の進歩により近年Ga
As Icの開発が進められている。
Due to advances in ion implantation technology for gallium arsenide, Ga
Development of As Ic is progressing.

イオン注入技術を用いてGaAs Ic等を製造する場
合、近年にあっては素子群間の電気的分離はレジストを
用いた選択イオン注入によって行なわれている。
When manufacturing GaAs Ic or the like using ion implantation technology, in recent years electrical isolation between element groups has been achieved by selective ion implantation using a resist.

第3図は従来における選択イオン注入による素子間分離
の過程を示す工程図であり、先ず第3図(イ)に示す如
く半絶縁性GaAs基板21上にレジスト24を塗布し
、これに第3図(ロ)に示す如くバターニングを施した
後、第3図(ハ)に示す如く例えば硅素等のn型不純物
をイオン注入し、その後レジスト24を除去し、活性化
アニールを行ってイオン注入領域27間をレジスト24
にてイオン注入がなされていない領域によって分離する
、所謂素子間分離を行っている。
FIG. 3 is a process diagram showing the process of isolation between elements by conventional selective ion implantation. First, as shown in FIG. 3(A), a resist 24 is applied on a semi-insulating GaAs substrate 21, and a After buttering as shown in Figure (B), ions of n-type impurities such as silicon are implanted as shown in Figure 3 (C), after which the resist 24 is removed, activation annealing is performed, and ions are implanted. Resist 24 between areas 27
So-called isolation between elements is performed by separating the elements by regions where ions are not implanted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところでこのような従来の方法ではGaAs基板上にレ
ジスト24を塗布し、動作層形成部分が露出する態様に
パターニングを施した後、イオン注入を行っているため
、レジスト24から構成される装置原子等によって動作
層形成部分の表面が汚染され易いが、動作層が薄い場合
には動作層の電気特性は基板表面状態の影響を受は易く
、表面の汚染は特性、均一性、再現性を損う結果となる
By the way, in such a conventional method, the resist 24 is coated on the GaAs substrate, patterned to expose the active layer formation portion, and then ion implantation is performed. However, when the active layer is thin, the electrical characteristics of the active layer are easily affected by the substrate surface condition, and surface contamination impairs the characteristics, uniformity, and reproducibility. result.

このようなレジストによる基板表面の汚染防止対策とし
て従来絶縁膜を用いたスルー注入法がある。この方法は
基板上に例えばSiN膜等の薄い絶縁膜を形成した後、
レジストの塗布、パターニングを行い、絶縁膜を通して
イオンのスルー注入を行う方法である。
As a measure to prevent contamination of the substrate surface by such a resist, there is a conventional through-injection method using an insulating film. In this method, after forming a thin insulating film such as a SiN film on a substrate,
This method involves coating and patterning a resist, and then injecting ions through the insulating film.

この方法は基板表面が絶縁膜で覆われる結果、基板表面
の汚染を回避することが出来るが、動作層の特性は絶縁
膜の膜厚、膜質に直接的に影響され、動作層が薄い場合
には電気特性、均一性、再現性をIc (特にディジタ
ルIc)製造に要求されているレベルに保つことは非常
に困難である。
This method avoids contamination of the substrate surface by covering the substrate surface with an insulating film, but the characteristics of the active layer are directly affected by the thickness and quality of the insulating film, and when the active layer is thin, It is extremely difficult to maintain electrical characteristics, uniformity, and reproducibility at the level required for IC (particularly digital IC) manufacturing.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは素子間分離のために生じる電気特性
、均一性、再現性の低下を防止し得るようにした半導体
素子の製造方法を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a method for manufacturing semiconductor devices that can prevent deterioration in electrical characteristics, uniformity, and reproducibility caused by separation between devices. It is on offer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る半導体素子の製造方法はGaAs基板上に
膜質が異なる2種の保護膜を積層配置して活性化アニー
ルを行う工程を含む。
The method for manufacturing a semiconductor device according to the present invention includes a step of laminating two types of protective films having different film qualities on a GaAs substrate and performing activation annealing.

またGaAs基板上に積層配置した膜質が異なる2種の
保護膜の活性化率の差により素子間分離を行う工程を含
む。
It also includes a step of performing isolation between elements based on the difference in activation rate between two types of protective films of different film quality stacked on the GaAs substrate.

〔作用〕[Effect]

本発明にあってはこれによって活性化アニールを行った
ときAs原子の拡散に対する阻止能が高い膜を設けた領
域ではAs原子の蒸発が少なく、注入不純物はGaサイ
トに入りやすく、活性化率が高く、一方阻止能が低い膜
を設けた領域では注入不純物はAsサイトにも入り、活
性化率が低下し、空乏化されて素子間分離が達成される
In the present invention, when activation annealing is performed, As atoms evaporate less in regions where a film with a high blocking ability for As atoms is provided, implanted impurities easily enter Ga sites, and the activation rate decreases. In a region where a film with a high stopping power and a low stopping power is provided, the implanted impurity also enters the As site, the activation rate decreases, depletion occurs, and isolation between elements is achieved.

〔実施例1〕 以下本発明を図面に基づき具体的に説明する。[Example 1] The present invention will be specifically explained below based on the drawings.

第1図は本発明方法を導電型がn型の動作層のみを有す
るMESFETに適用した場合の主要工程図である。先
ず第1図(イ)に示す如く半絶縁性GaAs基板1の全
面にSt”イオンを注入して注入層2を形成した後、そ
の表面に、例えばSjN等のAs原子の拡散に対する阻
止能が高い保護膜3を100人の厚さに形成する。
FIG. 1 is a diagram showing the main steps when the method of the present invention is applied to a MESFET having only an n-type active layer. First, as shown in FIG. 1(a), St" ions are implanted into the entire surface of a semi-insulating GaAs substrate 1 to form an implanted layer 2, and then a layer 2 is formed on the surface of the semi-insulating GaAs substrate 1, which has a blocking ability against the diffusion of As atoms, such as SjN. A high protective film 3 is formed to a thickness of 100 mm.

St”イオンのイオン注入条件は15KeV、?ffi
度:IXIO13cm−”である。保護膜3の形成は例
えばECR(Electoron Cyclo tro
n Re5onance)プラズマCVD(Chemi
cal Vapor Deposition)法を用い
て下記の条件で行った。
The ion implantation conditions for St” ions are 15KeV, ?ffi
degree: IXIO 13 cm-''. The protective film 3 is formed by, for example, ECR (Electron Cyclotro
n Re5onance) Plasma CVD (Chemi
Cal Vapor Deposition) method under the following conditions.

SiH4ガス流量: 13secM N2ガス流量: 305CCM マイクロ被電カニ600切 基  板  温  度:室温 次に第1図(ロ)に示す如く保護膜3の表面にレジスト
4をパターニングした後、第2図(ハ)に示す如くレジ
スト4で覆われた動作層部分を除いて保護膜3をエツチ
ング除去する。
SiH4 gas flow rate: 13 secM N2 gas flow rate: 305 CCM Micro-electrified crab 600 cut substrate Temperature: room temperature Next, after patterning the resist 4 on the surface of the protective film 3 as shown in Fig. 1 (b), the resist 4 was patterned as shown in Fig. 2 (b). As shown in c), the protective film 3 is removed by etching except for the active layer portion covered with the resist 4.

第1図(ニ)に示す如く保護膜3の表面及び露出させた
注入層2の表面にわたってSiN等にてAs原子に対す
る阻止能の低い保護膜5を厚さ50人で、また同じ< 
SiN等にてAs原子に対する阻止能の高い保護膜6を
厚さ500人積層形成する。
As shown in FIG. 1(d), a protective film 5 made of SiN or the like having a low stopping power against As atoms is coated over the surface of the protective film 3 and the exposed surface of the injection layer 2 with a thickness of 50% and the same <
A protective film 6 made of SiN or the like and having a high blocking ability against As atoms is formed in a thickness of 500 layers.

この保護膜5,6の形成もECRプラズマCVD法等を
用いて行う。
The formation of the protective films 5 and 6 is also performed using the ECR plasma CVD method or the like.

(保護膜5の作製条件) SiH4ガス流量: 40SCCM N2ガス流量: 25SCCM マイクロ波型カニ 300W 基  板  温  度:室温 この保護膜5は硅素含有量、水素含有量が多く、活性化
アニール時のAs原子の拡散に対して阻止能の低い膜で
ある。
(Preparation conditions for protective film 5) SiH4 gas flow rate: 40SCCM N2 gas flow rate: 25SCCM Microwave type crab 300W substrate Temperature: room temperature This protective film 5 has a high silicon content and high hydrogen content, and has a high As content during activation annealing. This film has a low stopping power against atomic diffusion.

(保護)l! 6の作製条件) 保護膜3と同じである。(protection)l! (Production conditions in 6) This is the same as the protective film 3.

次にランプアニール装置等を用いて850℃で5秒間の
活性化アニールを施すことにより、第2図(ホ)に示す
如(n型動作領域7及びその間に位置する空乏化領域8
が形成され、素子間分離が達成される。
Next, by performing activation annealing at 850° C. for 5 seconds using a lamp annealing device or the like, as shown in FIG.
is formed, and isolation between elements is achieved.

なお、活性化アニール後において^S原子の膜中への拡
散はオージェ電子分光法による分析では測定限界以下で
あった。
Note that after activation annealing, the diffusion of ^S atoms into the film was below the measurement limit when analyzed by Auger electron spectroscopy.

〔実施例2〕 第2図は本発明方法をn型動作層及び深いn゛型動作層
を有するMESFETに適用した他の例を示す主要工程
図である。
[Embodiment 2] FIG. 2 is a main process diagram showing another example in which the method of the present invention is applied to a MESFET having an n-type operating layer and a deep n-type operating layer.

先ず第2図(イ)に示す如く半絶縁性GaAs基板1の
表面にSt”イオンを所定深さに注入して注入層2を形
成し、表面にSiN等にて阻止能の高い保護膜3を10
0人程積重厚さに形成する。
First, as shown in FIG. 2(a), St'' ions are implanted to a predetermined depth into the surface of a semi-insulating GaAs substrate 1 to form an implantation layer 2, and a protective film 3 of high stopping power such as SiN is formed on the surface. 10
Form to a thickness of about 0 people.

その後第2図(ロ)に示す如くレジストをパタニングし
て動作層部分以外の保護膜3をエツチング除去し、次い
で第2図(ハ)に示す如(As原子の拡散に対する阻止
能の低い保護膜5を400人程積重厚さに、続いてSi
N等にて^S原子の拡散に対する阻止能の高い保護膜6
を500人程積重厚さに積層形成する。
Thereafter, as shown in FIG. 2(B), the resist is patterned and the protective film 3 other than the active layer portion is removed by etching. 5 to about 400 people, followed by Si
Protective film 6 with high blocking ability against diffusion of S atoms in N etc.
About 500 people stacked it to form a layer.

第2図(ニ)に示す如くレジスト9をパターニングし、
第2図(ホ)に示す如< FETのソース。
Patterning the resist 9 as shown in FIG. 2(d),
Source of FET as shown in Figure 2 (e).

ドレイン領域とすべき部分2a、2bに保護膜3,5.
6を通してSt”イオンをスルー注入する。
Protective films 3, 5 .
Through-implanting St'' ions through 6.

注入条件は150KeV、  5 Xl013c+n−
”である。
The implantation conditions are 150KeV, 5Xl013c+n-
” is.

レジスト9を除去し、活性化アニールを行う。The resist 9 is removed and activation annealing is performed.

これによって、第2図(へ)に示す如く動作層であるソ
ース11.ドレイン12及び相隣する素子間に空乏化領
域8が形成され、阻止量分離が達成される。
As a result, as shown in FIG. 2(f), the source 11. A depletion region 8 is formed between the drain 12 and adjacent devices to achieve blocking isolation.

〔効果〕〔effect〕

以上の如く本発明方法にあっては2種のアニール用保護
膜を積層配置することによって注入イオンを選択活性化
して素子間の電気的分離を行うことが出来、しかも動作
層の表面汚染を防止することもでき、素子特性の均一性
、再現性が劣化することがない等本発明は優れた効果を
奏するものである。
As described above, in the method of the present invention, by stacking two types of annealing protective films, implanted ions can be selectively activated and electrical isolation between elements can be achieved, and surface contamination of the active layer can be prevented. The present invention has excellent effects such as uniformity of device characteristics and reproducibility without deterioration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の工程図、第2図は本発明の他の実
施例を示す工程図、第3図は従来方法の工程図である。 1・・・GaAs基板 2・・・注入層 3・・・As
原子の拡散に対する阻止能の高い保護膜 4・・・レジ
スト 5・・・As原子の拡散に対する阻止能の低い保
護膜 6・・・As原子の拡散に対する阻止能の高い保
護膜 7・・・動作層 8・・・空乏化領域 特許 出願人 三洋電機株式会社 代理人弁理士 河 野  登 夫 弔 図
FIG. 1 is a process diagram of the method of the present invention, FIG. 2 is a process diagram showing another embodiment of the invention, and FIG. 3 is a process diagram of the conventional method. 1... GaAs substrate 2... Injection layer 3... As
Protective film with high blocking ability against diffusion of atoms 4...Resist 5...Protective film with low blocking ability against diffusion of As atoms 6...Protective film with high blocking ability against diffusion of As atoms 7...Operation Layer 8: Depletion area patent Applicant: Sanyo Electric Co., Ltd. Representative patent attorney Noboru Kawano Funeral map

Claims (1)

【特許請求の範囲】 1、イオン注入法を利用してGaAs半導体素子を製造
する方法において、 GaAs基板上に膜質が異なる2種の保護膜を積層配置
して活性化アニールを行う工程を含むことを特徴とする
半導体素子の製造方法。 2、イオン注入法を利用してGaAs半導体素子を製造
する方法において、 GaAs基板上に積層配置した膜質が異なる2種の保護
膜の活性化率の差により素子間分離を行う工程を含むこ
とを特徴とする半導体素子の製造方法。
[Claims] 1. A method for manufacturing a GaAs semiconductor device using an ion implantation method, including the step of laminating and arranging two types of protective films of different film quality on a GaAs substrate and performing activation annealing. A method for manufacturing a semiconductor device, characterized by: 2. A method for manufacturing GaAs semiconductor devices using ion implantation includes a step of separating devices based on the difference in activation rate between two types of protective films of different film quality stacked on a GaAs substrate. Features: A method for manufacturing semiconductor devices.
JP63259839A 1988-10-14 1988-10-14 Method for manufacturing semiconductor device Expired - Fee Related JP2771553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63259839A JP2771553B2 (en) 1988-10-14 1988-10-14 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63259839A JP2771553B2 (en) 1988-10-14 1988-10-14 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02106035A true JPH02106035A (en) 1990-04-18
JP2771553B2 JP2771553B2 (en) 1998-07-02

Family

ID=17339703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63259839A Expired - Fee Related JP2771553B2 (en) 1988-10-14 1988-10-14 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2771553B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992525A (en) * 1982-11-18 1984-05-28 Nec Corp Formation of semiconductor p-n junction
JPS60153168A (en) * 1984-01-20 1985-08-12 Nec Corp Formation of semiconductor active layer
JPS62213131A (en) * 1986-03-13 1987-09-19 Nec Corp Manufacture of iii-v semiconductor device
JPS63158836A (en) * 1986-12-22 1988-07-01 Nec Corp Manufacture of semiconductor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992525A (en) * 1982-11-18 1984-05-28 Nec Corp Formation of semiconductor p-n junction
JPS60153168A (en) * 1984-01-20 1985-08-12 Nec Corp Formation of semiconductor active layer
JPS62213131A (en) * 1986-03-13 1987-09-19 Nec Corp Manufacture of iii-v semiconductor device
JPS63158836A (en) * 1986-12-22 1988-07-01 Nec Corp Manufacture of semiconductor element

Also Published As

Publication number Publication date
JP2771553B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
US4717681A (en) Method of making a heterojunction bipolar transistor with SIPOS
US6033998A (en) Method of forming variable thickness gate dielectrics
JPH0282629A (en) Self-aligning gallium arsenide (gaas) field effect transistor making use of multilayer resist
US5296386A (en) Method of providing lower contact resistance in MOS transistor structures
US6635938B1 (en) Semiconductor device and manufacturing method thereof
FR2606212A1 (en) METHOD FOR MANUFACTURING A BICMOS COMPONENT
JPH02106035A (en) Manufacture of semiconductor element
JPS6257255A (en) Manufacture of compound semiconductor device
GB1572819A (en) Semiconductor device
JPH02130961A (en) Field-effect transistor
JPS6292327A (en) Semiconductor device and manufacture thereof
US3825455A (en) Method of producing insulated-gate field-effect semiconductor device having a channel stopper region
JPH1098187A (en) Manufacture of semiconductor device
JPH01251669A (en) Manufacture of field effect transistor
KR940010540B1 (en) Isolating area forming method having gettering function and their structure
JPS6273673A (en) Manufacture of field-effect transistor
JPH11135727A (en) Semiconductor and its manufacture
JPH07221302A (en) Manufacture of semiconductor device
JPS62299049A (en) Manufacture semiconductor device
JP3022629B2 (en) Semiconductor device and manufacturing method thereof
JPS60133755A (en) Manufacture of semiconductor device
JPS61171141A (en) Semiconductor device and manufacture thereof
JPH077767B2 (en) Heat treatment method for compound semiconductor
JPH0922892A (en) Manufacture of compound semiconductor device
JPS60217645A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees