JPS62213131A - Manufacture of iii-v semiconductor device - Google Patents

Manufacture of iii-v semiconductor device

Info

Publication number
JPS62213131A
JPS62213131A JP5616986A JP5616986A JPS62213131A JP S62213131 A JPS62213131 A JP S62213131A JP 5616986 A JP5616986 A JP 5616986A JP 5616986 A JP5616986 A JP 5616986A JP S62213131 A JPS62213131 A JP S62213131A
Authority
JP
Japan
Prior art keywords
field effect
semiconductor
channel
electron trap
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5616986A
Other languages
Japanese (ja)
Inventor
Masaaki Kuzuhara
正明 葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5616986A priority Critical patent/JPS62213131A/en
Publication of JPS62213131A publication Critical patent/JPS62213131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable the attainment of the insulative isolation between field effect transistors without impairing the surface smoothness of a semiconductor substrate, by a method wherein the surface of a P-type III-V semiconductor layer is covered with silicon oxynitride film except for a region for forming the field effect transistors having an N-channel and a P-channel, and infrared short-time annealing is applied thereto. CONSTITUTION:When a deep electron trap is introduced from outside into a P-type conductor layer 2, the level of electrons caught so far by the electron trap lowers to a shallow acceptor level, and therefore the emission of free holes into a valence band is hindered. When a shallow acceptor level concentration is denoted by N, and a deep electron trap concentration by NDD, a free hole concentration (p) is expressed by p=NA-NDD. If NDD is introduced in a more quantity than NA, accordingly, (p) turns less than 0, and a semiconductor 1 turns to be of high resistance. When infrared short-time annealing is applied to a P-type III-V semiconductor whose surface is covered with a silicon oxynitride film 8, the deep electron trap is formed, and consequently high resistance is attained. By this method, the insulative isolation between field effect transistors can be attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、I−V族半導体装置の製造方法に関し、特に
イオン注入法による■−V族半導体装置の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an IV group semiconductor device, and particularly to a method for manufacturing a IV group semiconductor device using an ion implantation method.

I′従来の技術〕 近年、半導体集積回路の高速化を目的として、砒化ガリ
ウム(以下GaAsと記す)半導体を動作層に用いるG
aAs集積回路の開発が活発に進められている。GaA
s集積回路の基本素子としては電界効果トランジスタが
一般に用いられている。電界効果トランジスタの動作層
としてはエピタキシャル法あるいはイオン注入法により
形成されたn型層が広く用いられているが、近年はGa
As1l積回路においても低消費電力化を目的として相
補形回路が注目されている(例えば、第45回応用物理
学会学術講演会予稿集の第551頁に中山等の論文が記
載されている)、相補形回路では、従来からのn型動作
層に加えてn型動作層を同一基板、Eに制御性良く形成
する必要がある。同一基板上に製作されたnチャネル電
界効果トランジスタとpチャネル電界効果トランジスト
をそれぞれ独立の素子として動作させるためには、前記
2種の電界効果トランジスタ間を電気的に絶縁する必要
がある。2つの導電性領域を電気的に絶縁する方法とし
ては、メサエ・・Iチングを用いる方法がよく知られて
いる。第3図に従来の■−v族半導体装置の一例を示す
半導体チップの断面図を示す。メサエッチング法では、
エツチング液あるいはエツチング気体により導電層であ
るp型GaAs層2の一部を選択的に除去して2種の電
界効果トランジスタ間を電気的に絶縁する。
I'Prior art] In recent years, with the aim of increasing the speed of semiconductor integrated circuits, G
Development of aAs integrated circuits is actively underway. GaA
A field effect transistor is generally used as a basic element of an integrated circuit. N-type layers formed by epitaxial or ion implantation methods are widely used as active layers in field-effect transistors, but in recent years Ga
Complementary circuits are also attracting attention for the purpose of reducing power consumption in As1l product circuits (for example, a paper by Nakayama et al. is listed on page 551 of the proceedings of the 45th Annual Conference of the Japan Society of Applied Physics). In the complementary circuit, in addition to the conventional n-type operation layer, it is necessary to form an n-type operation layer on the same substrate, E, with good controllability. In order to operate the n-channel field effect transistor and the p-channel field effect transistor manufactured on the same substrate as independent elements, it is necessary to electrically insulate the two types of field effect transistors. As a method of electrically insulating two conductive regions, a method using mesae...I trenching is well known. FIG. 3 shows a cross-sectional view of a semiconductor chip showing an example of a conventional ■-v group semiconductor device. In the mesa etching method,
A part of the p-type GaAs layer 2, which is a conductive layer, is selectively removed using an etching liquid or an etching gas to electrically insulate the two types of field effect transistors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述したメサエ・・lチング法により導電層を選択的に
除去する従来の■−v族半導体装置の製造方法は、手法
が容易で絶縁分離が確実に行える利点を有する。しかし
、エツチングにより形成された分ili!溝は半導体基
板の平坦性を著しく悪化させるため、電極配線の段切れ
を発生し易い欠点がある。したがって、このようなメサ
エッチング分離法を大規模集積回路の製造プロセスとし
て用いるのは、歩留りの観点から好ましくない。
The conventional method of manufacturing a 1-V group semiconductor device in which the conductive layer is selectively removed by the above-mentioned mesa-etching method has the advantage of being simple and ensuring reliable isolation. However, the portion ili formed by etching! Since the groove significantly deteriorates the flatness of the semiconductor substrate, it has the disadvantage that it tends to cause disconnection of the electrode wiring. Therefore, from the viewpoint of yield, it is not preferable to use such a mesa etching separation method as a manufacturing process for large-scale integrated circuits.

本発明の目的は、半導体基板の平坦性を損なうことなく
素子間の絶縁分離を行うことの可能な■−V族半導体装
置の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a 1-V group semiconductor device, which enables isolation between elements without impairing the flatness of a semiconductor substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の■−v族半導体装置の製造方法は、半絶縁性基
板1にエピタキシャル成長したp型1[1−V族半導体
層上にイオン注入法を用いてnチャネルおよびpチャネ
ルをそれぞれ有する電界効果トランジスタを形成する工
程と、少なくとも前記電界効果トランジスタ形成領域以
外の前記p型111−V族半導体層の表面をオキシ窒化
ケイ素膜で覆ったのち、赤外線短時間アニールを行う工
程とを少なくとも有するものである。
The manufacturing method of the ■-V group semiconductor device of the present invention is based on the method of manufacturing a p-type 1 [1-V group semiconductor layer epitaxially grown on a semi-insulating substrate 1] by using an ion implantation method on a field-effect semiconductor layer having an n-channel and a p-channel, respectively. A method comprising at least a step of forming a transistor, and a step of covering the surface of the p-type 111-V group semiconductor layer other than at least the field effect transistor forming region with a silicon oxynitride film, and then performing short-time infrared annealing. be.

〔作用〕[Effect]

本発明は、p型半導体中の浅いアクセプタ準位を深い電
子トラ・ンプで補償することにより半導体が高抵抗化す
る原理に基づく。I[[−V族半導体においては、Be
、Ml、Zn等がアクセプタ不純物として知られている
が、これらの不純物はいずれも浅いアクセプタ準位を形
成し、自由正孔を価電子帯に放出してp型導電性を示す
。ここで、このp型導電層中に外部から深い電子トラッ
プが導入されると、電子トラップに捕捉されていた電子
が浅いアクセプタ準位に落ちるため、自由正孔の価電子
帯への放出が妨げられる。いま、浅いアクセプタ準位濃
度を1、深い電子I・ラップ濃度を1Jooで表わすと
自由正孔濃度pはp=N^−NDDで表わされる。した
がって1looをN^より多量に導入すればp〈0とな
り半導体は高抵抗化する。
The present invention is based on the principle that a shallow acceptor level in a p-type semiconductor is compensated for by a deep electron trap, thereby increasing the resistance of the semiconductor. I[[-In group V semiconductors, Be
, Ml, Zn, etc. are known as acceptor impurities, and all of these impurities form a shallow acceptor level, emit free holes to the valence band, and exhibit p-type conductivity. When a deep electron trap is introduced from the outside into this p-type conductive layer, the electrons trapped in the electron trap fall to the shallow acceptor level, which prevents free holes from being released into the valence band. It will be done. Now, if the shallow acceptor level concentration is expressed as 1 and the deep electron I/wrap concentration as 1 Joo, then the free hole concentration p is expressed as p=N^-NDD. Therefore, if a larger amount of 1loo than N^ is introduced, p<0 and the semiconductor becomes highly resistive.

オキシ窒化ケイ素膜で表面を覆われたp型■−■族半導
体に赤外Il短時間アニールを施すと深い電子トラップ
が形成されて高抵抗化するので電界効果トランジスタ間
の絶縁分離を行うことができる。
When a p-type ■-■ group semiconductor whose surface is covered with a silicon oxynitride film is subjected to short-time infrared Il annealing, deep electron traps are formed and the resistance increases, making it possible to perform insulation separation between field-effect transistors. can.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(f)は本発明の一実施例を説明するた
めの製造工程順に配置した半導体チップの断面図である
FIGS. 1(a) to 1(f) are cross-sectional views of semiconductor chips arranged in the order of manufacturing steps for explaining one embodiment of the present invention.

第1図(a)に示すように、面方位<100>のLEC
(リキッド エンキャプシュレイテッドチョクラルスキ
イ(Liquid t!neapsulated Cz
ochralski)法によるアンドーグ半絶縁性Ga
As基板1の上に有機金属化合物による気相成長法(M
O−CVD法)を用イテ正孔濃度I X 1017ct
s−3,qさ150nmのp型GaAs層2をエピタキ
シャル成長する。MO−CVD法以外に液相成長法、気
相成長法、分子線エピタキシャル成長法等を用いてもよ
い。
As shown in Figure 1(a), LEC with surface orientation <100>
(Liquid t! neapsulated Cz
Andog semi-insulating Ga by the ochralski method
A vapor phase growth method (M
(O-CVD method) hole concentration I x 1017ct
A p-type GaAs layer 2 with a thickness of 150 nm is epitaxially grown. In addition to the MO-CVD method, a liquid phase growth method, a vapor phase growth method, a molecular beam epitaxial growth method, etc. may be used.

次に、第1図(b)に示すように、Siイオンを30 
keVで3 X 10 ”C11−2選択的に注入して
n型チャネル領域3を形成する。
Next, as shown in FIG. 1(b), 30% Si ions were added.
N-type channel region 3 is formed by selectively implanting 3×10” C11-2 at keV.

次に、第1図(C)に示すように、ゲート金属として耐
熱性金属(例えばWSix)を500 n rnスパッ
タ蒸着し、SF6ガスによるドライ・エツチングにより
n型チャネル領域3上とp型GaAs層2上にそれぞれ
ゲート長1μmのゲート電極4を選択的に形成する。ゲ
ート電極4と接触しているp型GaAs層2はp型チャ
ネル領域となるものである4次に第1図(d)に示すよ
うに、p型およびp型の各チャネルを有する電界効果ト
ランジスタのソースおよびドレイン領域のコンタクト層
として、nチャネルに対してはSiイオンを、pチャネ
ルに対してはMgイオンをそれぞれ選択的に120ke
Vで3 X 10 ”am−2注入して、n4コンタク
ト層5およびp1コ〉・タクト層6をそれぞれセルファ
ラインで形成する。
Next, as shown in FIG. 1(C), 500 nrn of a heat-resistant metal (for example, WSix) is sputter-deposited as a gate metal, and dry etching is performed using SF6 gas to form a layer on the n-type channel region 3 and the p-type GaAs layer. A gate electrode 4 having a gate length of 1 μm is selectively formed on each of the gate electrodes 2 and 2 . The p-type GaAs layer 2 in contact with the gate electrode 4 serves as a p-type channel region.As shown in FIG. 1(d), a field effect transistor having p-type and p-type channels is formed. As the contact layer for the source and drain regions of
The n4 contact layer 5 and the p1 contact layer 6 are each formed in a self-lined manner by implanting 3.times.10" am@-2 at VV.

次に、第1図(e)に示すように、イオン注入層のアニ
ール保護膜として、pチャネル領域およびp+コンタク
ト層6に対しては5fJ4膜7を、その他の領域に対し
ては屈折率1.75をもつオキシ窒化ケイ素(SiOx
Ny)膜8をそれぞれ1100n堆積する。この5iO
XN、の堆積方法は任意の公知の方法を用いればよいが
、例えば、特開昭60−39837号公報に記載されて
いるように、温度700℃において・、5iH4(流i
8me/ff1in )。
Next, as shown in FIG. 1(e), as an annealing protective film for the ion implantation layer, a 5fJ4 film 7 is applied to the p channel region and the p+ contact layer 6, and a refractive index 1 film 7 is applied to the other regions. Silicon oxynitride (SiOx
Ny) films 8 are each deposited to a thickness of 1100 nm. This 5iO
Any known method may be used to deposit XN, but for example, as described in Japanese Patent Application Laid-Open No. 60-39837,
8me/ff1in).

NH3(流量400 m e /win)に02(流量
20mf/sin>を間歇的に導入する気相成長法を用
いてもよい、この方法によるときは、1秒間の02ガス
導入を15秒間隔で周期的に行うと屈折率1.75のS
iO,N、膜(実際には窒素組成の大きい層と小さな層
の積層絶縁JI!>が得られる。
A vapor phase growth method may be used in which 02 (flow rate 20 mf/sin) is intermittently introduced into NH3 (flow rate 400 m e /win). When using this method, 02 gas is introduced for 1 second at intervals of 15 seconds. When performed periodically, S with a refractive index of 1.75
An iO,N, film (actually, a laminated insulation JI of a layer with a high nitrogen composition and a layer with a low nitrogen composition!) is obtained.

次に、タングステン・ハロゲンランプを用いて、950
℃、3秒の赤外線短時間アニールを行う、ここで赤外線
短時間アニールというのは、ラビッド・サーマル・アニ
ール(「よpid Lhcr■alao−oeilio
g)又はトランジェント・アニール(traosi−c
nt annealing)とも呼ばれているところの
ものである。これにより、イオン注入を行った領域では
、注入したイオンの種類に応じてそれぞれp型およびp
型の導電層が形成されるが、イオン注入を行わなかった
領域では、赤外線短時間アニールにより多量の電子トラ
ップ(EL2)が導入され、その結果、抵抗率が5X1
06〜1×1o7Ω・1をもつ高抵抗GaAs層9が形
成される。
Next, using a tungsten halogen lamp,
Infrared short-time annealing is performed at ℃ for 3 seconds.
g) or transient annealing (traosi-c)
This is also called nt annealing. As a result, in the ion-implanted region, p-type and p-type
A type conductive layer is formed, but in the areas where ion implantation was not performed, a large amount of electron traps (EL2) are introduced by infrared short-time annealing, resulting in a resistivity of 5X1.
A high resistance GaAs layer 9 having a resistance of 06 to 1.times.10.sup.7 .OMEGA..multidot.1 is formed.

第1図(f)は、5iJ4膜7とSiO,N、膜8を除
去したときの状態を示している。
FIG. 1(f) shows the state when the 5iJ4 film 7, SiO, N, and film 8 are removed.

GaAs半導体における深い電子トラップとしては、導
電帯の底から約0.8eVの活性化エネルギをもつEL
2準位が良く知られている。このEL2準位の正体につ
いては未だ不明な部分が多いが、熱処理によってその濃
度がしばしば変化する。
A deep electron trap in a GaAs semiconductor is an EL with an activation energy of about 0.8 eV from the bottom of the conduction band.
The 2nd level is well known. Although there are still many unknowns about the identity of this EL2 level, its concentration often changes with heat treatment.

第2図はEL2準位を含まないn型GaAs基板表面に
種々のSiO,N、からなる保護膜を被着した後、95
0℃、3秒の赤外線短時間アニールを施したときに発生
するEL2濃度の保護膜屈折率依存性を示したものであ
る。屈折率1.7〜1.8のSiO,N。
Figure 2 shows the surface of an n-type GaAs substrate that does not contain the EL2 level after being coated with various protective films made of SiO and N.
This figure shows the dependence of the EL2 concentration on the refractive index of the protective film when short-time infrared annealing is performed at 0° C. for 3 seconds. SiO, N with a refractive index of 1.7 to 1.8.

保護膜を用いてアニールしたとき、EL2準位の発生が
最大となる。これは、p型GaAsに対しSin。
When annealing is performed using a protective film, the generation of the EL2 level is maximized. This is Sin for p-type GaAs.

N、i護膜を用いた赤外線短時間アニールを行うことに
よりp型GaAs層の高抵抗化を行うことができること
を示している。
This shows that it is possible to increase the resistance of a p-type GaAs layer by performing short-time infrared annealing using a N,I protective film.

このようにして、イオン注入層のアニール工程により、
イオン注入領域では導電層を、非イオン注入領域では高
抵抗層を同時に形成することができ、しかもnチャネル
およびpチャネルを有する各電界効果トランジスタ間の
素子間分離をプレーナ状態で実現することが可能となる
。このような方法で試作した相補形電界効果トランジス
タの相互コンダクタンスは、n型チャネルで200 t
n S/層■(しきい電圧: −0,I V) 、 p
型チャネルで30m5/m5(Lきい電圧ニー0.AV
)の特性を示した。また、同一導電型をもつ2つの電界
効果トランジスタ間の耐圧はIOV以上と良好であり、
本発明の有用性を立証するに足る結果が得られた。
In this way, through the annealing process of the ion implanted layer,
A conductive layer can be formed in the ion-implanted region and a high-resistance layer can be formed in the non-ion-implanted region at the same time, and device isolation between each field effect transistor having an n-channel and a p-channel can be achieved in a planar state. becomes. The mutual conductance of the complementary field effect transistor prototyped using this method is 200 t in the n-type channel.
n S/layer ■ (threshold voltage: -0, IV), p
30m5/m5 (L threshold voltage knee 0.AV
) showed the characteristics of In addition, the withstand voltage between two field effect transistors having the same conductivity type is good at more than IOV,
Results sufficient to prove the usefulness of the present invention were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を用いることにより、nチャネルおよびρ
チャネルをそれぞれ有する2種類の電界効果トランジス
タ間の素子分離を半導体基板の表面平坦性を損なうこと
なく実現するうことかできるという効果がある。
By using the method of the present invention, n-channel and ρ
This has the advantage that element isolation between two types of field effect transistors each having a channel can be achieved without impairing the surface flatness of the semiconductor substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の一実施例を説明するた
めの製造工程順に配置した半導体チップの断面図、第2
図は本発明の詳細な説明するための特性図、第3図は従
来のnI−V族半導体装置の一例を示す半導体チップの
断面図である。 1・・・半絶縁性GaAs基板、2・・・p型GaAs
層、3・・・n型チャネル領域、4・・・ゲート電極、
5・・・n+コンタクト層、6・・・p+コンタクト層
、7・・・Si3N4膜、8−5iO,N、層、9・・
・高抵抗GaAs層。 第 1 図 /、4     /、7    1J    2.θS
i乙−八ダへ5!のS軒奉 第 2 回 $31!l
1(a) to 1(f) are cross-sectional views of semiconductor chips arranged in the order of manufacturing steps for explaining one embodiment of the present invention;
The figure is a characteristic diagram for explaining the present invention in detail, and FIG. 3 is a sectional view of a semiconductor chip showing an example of a conventional nI-V group semiconductor device. 1...Semi-insulating GaAs substrate, 2...p-type GaAs
layer, 3... n-type channel region, 4... gate electrode,
5...n+ contact layer, 6...p+ contact layer, 7...Si3N4 film, 8-5iO,N layer, 9...
・High resistance GaAs layer. Figure 1/, 4/, 7 1J 2. θS
i Otsu-Yada to 5! S Kenho 2nd episode $31! l

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性基板上にエピタキシャル成長したp型III−V
族半導体層上にイオン注入法を用いてnチャネルおよび
pチャネルをそれぞれ有する電界効果トランジスタを形
成する工程と、少なくとも前記電界効果トランジスタ形
成領域以外の前記p型III−V族半導体層の表面をオキ
シ窒化ケイ素膜で覆つたのち、赤外線短時間アニールを
行う工程とを少なくとも有することを特徴とするIII−
V族半導体装置の製造方法。
p-type III-V epitaxially grown on a semi-insulating substrate
forming a field effect transistor having an n-channel and a p-channel on the group semiconductor layer using ion implantation; and oxidizing at least the surface of the p-type III-V group semiconductor layer other than the field effect transistor formation region. III- characterized by having at least a step of performing short-time infrared annealing after covering with a silicon nitride film.
A method for manufacturing a group V semiconductor device.
JP5616986A 1986-03-13 1986-03-13 Manufacture of iii-v semiconductor device Pending JPS62213131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5616986A JPS62213131A (en) 1986-03-13 1986-03-13 Manufacture of iii-v semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5616986A JPS62213131A (en) 1986-03-13 1986-03-13 Manufacture of iii-v semiconductor device

Publications (1)

Publication Number Publication Date
JPS62213131A true JPS62213131A (en) 1987-09-19

Family

ID=13019595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5616986A Pending JPS62213131A (en) 1986-03-13 1986-03-13 Manufacture of iii-v semiconductor device

Country Status (1)

Country Link
JP (1) JPS62213131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106035A (en) * 1988-10-14 1990-04-18 Sanyo Electric Co Ltd Manufacture of semiconductor element
GB2429331A (en) * 2005-08-15 2007-02-21 Agilent Technologies Inc Isolation region for a laser-modulator device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106035A (en) * 1988-10-14 1990-04-18 Sanyo Electric Co Ltd Manufacture of semiconductor element
GB2429331A (en) * 2005-08-15 2007-02-21 Agilent Technologies Inc Isolation region for a laser-modulator device
US7498613B2 (en) 2005-08-15 2009-03-03 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Method of providing electrical separation in integrated devices and related device
US7867792B2 (en) 2005-08-15 2011-01-11 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Method of providing electrical separation in integrated devices and related devices
GB2429331B (en) * 2005-08-15 2011-05-11 Agilent Technologies Inc A method of providing electrical separation in integrated devices and related device

Similar Documents

Publication Publication Date Title
JPS5856409A (en) Production of semiconductor device
US4396930A (en) Compact MOSFET device with reduced plurality of wire contacts
JPH03775B2 (en)
JPH0260063B2 (en)
US4837178A (en) Method for producing a semiconductor integrated circuit having an improved isolation structure
JPS5891682A (en) Semiconductor device
JPS5932174A (en) Manufacture of field effect transistor
JPS62213131A (en) Manufacture of iii-v semiconductor device
JP2688678B2 (en) Field effect transistor and method of manufacturing the same
JPH01264265A (en) Semiconductor device and its manufacture
JPH0575041A (en) Cmos semiconductor device
KR910006751B1 (en) Semiconductor integrated circuit device and its manufacturing method
JP2000031469A (en) Semiconductor device and production method thereof
JPH0467338B2 (en)
JPH0260060B2 (en)
JPS6157714B2 (en)
KR940004258B1 (en) Manufacturing method of soi structure device
JP3191930B2 (en) Compound semiconductor integrated circuit
JPS61274370A (en) Junction type field effect transistor
JPS62123726A (en) Method for forming iii-v semiconductor high resistance layer
JPH02125433A (en) Mos type transistor and manufacture thereof
JPS63283126A (en) Manufacture of semiconductor device
JPS61158181A (en) Manufacture of mis-type semiconductor device
JPS62283672A (en) Field-effect transistor and manufacture thereof
JPS63226967A (en) Compound semiconductor junction type field-effect transistor and its manufacture