JPS62123726A - Method for forming iii-v semiconductor high resistance layer - Google Patents

Method for forming iii-v semiconductor high resistance layer

Info

Publication number
JPS62123726A
JPS62123726A JP26435185A JP26435185A JPS62123726A JP S62123726 A JPS62123726 A JP S62123726A JP 26435185 A JP26435185 A JP 26435185A JP 26435185 A JP26435185 A JP 26435185A JP S62123726 A JPS62123726 A JP S62123726A
Authority
JP
Japan
Prior art keywords
gaas layer
sioxny
layer
type
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26435185A
Other languages
Japanese (ja)
Inventor
Masaaki Kuzuhara
正明 葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26435185A priority Critical patent/JPS62123726A/en
Publication of JPS62123726A publication Critical patent/JPS62123726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide a P-type GaAs layer with a high resistance feature by a method wherein the P-type GaAs layer is exposed to a short duration infrared annealing using an SiOxNy layer serving as a protecting film. CONSTITUTION:An SiOxNy film 3 is deposited by CVD on the entire surface of a P-type GaAs layer 2 installed on a semi-insulating GaAs substrate 1. After a process wherein the SiOxNy film 3 is removed from a square region with a photoresist 4 serving as a mask, the photoresist 4 is removed, and then a three-second infrared annealing is accomplished at 950 deg.C for the development of the remaining portion covered by the SiOxNy of the P-type GaAs layer 2 into a high resistance GaAs layer 5. After the annealing, the SiOxNy is removed, a 150nm-thick AuZn/Ni electrode 6 is built by evaporation and converted into an alloy at a temperature of 420 deg.C to serve as a P-type ohmic electrode in the square region. In this way, a P-type GaAs layer may be augmented in resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、m−v族半導体高抵抗層全形成する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a complete high resistance layer of an m-v group semiconductor.

〔従来の技術〕[Conventional technology]

近年、半導体集積回路の高速化を目的として、ガリウム
砒素(GaAsと記す)半導体を動作層に用いるGaA
s集積回路の開発が活発に進められている。
In recent years, with the aim of increasing the speed of semiconductor integrated circuits, GaA, which uses gallium arsenide (abbreviated as GaAs) semiconductor in the active layer, has been developed.
s Integrated circuits are being actively developed.

GaAs集積回路の基本素子としては電界効果トランジ
スタが一般に用いられている。電界効果トランジスタの
動作層としてはエピタキシャル法あるいはイオン注入法
により形成され7’Cn型層が広く用いられているが、
近年はGaAs集積回路においても低消費電力化を目的
として相補形回路が注目されている(申出等、第45回
応用物理学会学術講演会予稿集p551 )。相補形回
路では、従来からのn型動作層に加えてp型動作層を同
一基板上に制御性良く形成する必要がある。同一基板上
に形成されたp型層をいくつかのそれぞれ電気的に絶縁
された導電性領域に分離する方法としては、第2図の断
面構造図に示すようなメサエッチングを用いる方法がよ
く知られている。メサエッチング法では、エツチング液
あるいはエツチング気体によりp型溝電層の一部を選択
的に除去して2つの導電性領域間を電気的に絶縁する。
Field effect transistors are generally used as the basic elements of GaAs integrated circuits. As the active layer of a field effect transistor, a 7'Cn type layer formed by an epitaxial method or an ion implantation method is widely used.
In recent years, complementary circuits have been attracting attention in GaAs integrated circuits for the purpose of lowering power consumption (Sake et al., Proceedings of the 45th Annual Conference of the Japan Society of Applied Physics, p. 551). In complementary circuits, it is necessary to form a p-type operation layer on the same substrate with good controllability in addition to the conventional n-type operation layer. A well-known method for separating a p-type layer formed on the same substrate into several electrically insulated conductive regions is to use mesa etching as shown in the cross-sectional structure diagram in Figure 2. It is being In the mesa etching method, a portion of the p-type trench conductive layer is selectively removed using an etching solution or an etching gas to electrically insulate two conductive regions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

導電層の絶縁分離法として前述したメサエッチング法は
手法が容易で絶縁分離が確実に行える利点を有する。し
かし、エツチングにより形成された分離溝は半導体基板
の平坦性を著しく悪化させるため、電極配線の段切れ全
発生し易い欠点がある。したがって、メサエッチング分
離法を大規模集積回路の製造プロセスとして用いるのは
、回路の歩留りの観点から好ましくない。本発明の目的
は、半導体基板の平坦性を損々うこと々くp型溝電層の
絶縁分離を行う方法を提供することにある。
The mesa etching method described above as a method for insulation separation of a conductive layer has the advantage that it is easy to perform and insulation separation can be performed reliably. However, the separation groove formed by etching significantly deteriorates the flatness of the semiconductor substrate, and therefore has the drawback that it is easy to cause a complete disconnection of the electrode wiring. Therefore, it is not preferable to use the mesa etching separation method as a manufacturing process for large-scale integrated circuits from the viewpoint of circuit yield. An object of the present invention is to provide a method for insulating and separating a p-type trench conductor layer without impairing the flatness of a semiconductor substrate.

〔問題点を解決する几めの手段〕[Elaborate means to solve problems]

本発明によれば、p型導電性III−v族半導体基板の
表面をシリコンオキシナイトライド膜で覆ったのち、赤
外線短時間アニールを行うことを特徴とする111− 
V族半導体高抵抗層の形成方法が得られる。
According to the present invention, after covering the surface of the p-type conductive III-V group semiconductor substrate with a silicon oxynitride film, short-time infrared annealing is performed.
A method for forming a group V semiconductor high resistance layer is obtained.

〔作用〕[Effect]

本発明は、p型半導体中の浅いアクセプタ準位1〜 を深い電♀ツツプで補償することにより半導体が高抵抗
化する原理に基づく。
The present invention is based on the principle that the semiconductor has a high resistance by compensating for the shallow acceptor levels 1 to 1 in a p-type semiconductor with a deep electric potential.

■−V族半導体においてはBe、Mg、Zn等がアクセ
プタ不純物として知られているが、これらの不純物はい
ずれも浅いアクセプタ準位を形成し、自由正孔を価電子
帯に放出してp型溝電性を示す。ここで、このp型導電
層中に外部から深い電子トラップが導入されると、電子
トラップに捕捉されていfC電子が浅いアクセプタ準位
に落ちるため、自由正孔の価電子帯への放出が妨げられ
る。いま、浅いアクセプタ準位濃度iN人、深い電子ト
ラップ濃度t NDDで表わすと自由正孔濃度p¥1p
=NA−NDDで表わされる。したがって、NDDヲN
Aより多量に導入すればproと彦り半導体は高抵抗化
する。
-Be, Mg, Zn, etc. are known as acceptor impurities in -V group semiconductors, but all of these impurities form shallow acceptor levels and release free holes into the valence band, resulting in p-type Shows groove conductivity. Here, when a deep electron trap is introduced into this p-type conductive layer from the outside, the fC electrons captured in the electron trap fall to the shallow acceptor level, which prevents free holes from being released into the valence band. It will be done. Now, the shallow acceptor level concentration iN, the deep electron trap concentration t, and the free hole concentration p¥1p expressed in NDD.
=NA-NDD. Therefore, NDDwon
If a larger amount than A is introduced, it becomes pro and the resistance of the semiconductor increases.

GaAs半導体における深い電子トラップとしては導電
帯の底から約0.8eVの活性化エネルギをもつEL2
準位が良く知られている。このEL2準位の正体につい
ては未だ不明な部分が多いが、熱処理によってその濃度
がしばしば変化する。第3図FiEL2準位を含ま力い
n型GaAs基板表面に種々のシリコンオキシナイトラ
イド(S + 0xNy )保護膜を被着した後、95
0℃、3秒の赤外線短時間アニールを施し友ときに発生
するEL2濃度の保護膜屈折率依存性を示したものであ
る。屈折率1.7〜1.8の8 r 0xNy保護膜全
用いてアニールしたとき、トラップgL2の発生が最大
となる。この結果よりp型GaAsに対しS s 0x
Ny保護膜を用いた赤外線短時間アニールを行うことに
よりp型GaAs層の高抵抗化を図ることが可能となる
As a deep electron trap in a GaAs semiconductor, EL2 has an activation energy of about 0.8 eV from the bottom of the conduction band.
Level is well known. Although there are still many unknowns about the identity of this EL2 level, its concentration often changes with heat treatment. Figure 3 After depositing various silicon oxynitride (S + 0xNy) protective films on the surface of a strong n-type GaAs substrate containing the FiEL2 level,
This figure shows the dependence of the EL2 concentration on the refractive index of the protective film when short-time infrared annealing is performed at 0° C. for 3 seconds. When annealing is performed using the entire 8r0xNy protective film with a refractive index of 1.7 to 1.8, the generation of trap gL2 is maximized. From this result, S s 0x for p-type GaAs
By performing short-time infrared annealing using a Ny protective film, it is possible to increase the resistance of the p-type GaAs layer.

〔実施例〕〔Example〕

以下に本発明の一実施例について金弟1図(a)〜(f
)の断面構造図音用いて説明する。面方位<100>L
 E C(Liquid Encapsulated 
Czochralski)法アンドープ半絶縁性GaA
s基板1の上にMOCVD(Metalorganic
 Chemical Vapor Depositio
n)法を用いて厚さ1μmのMg添添加製型GaAs 
p =I X10′7l−3)層2をエピタキシャル成
長する(第1図(a))。次にGaAs基板全面にCV
D法を用いて屈折率1.75”iもつS i 0xNy
膜3を1100n堆積しく第1図(b))、ホトレジス
ト4を用いて、200X200μm2の多数の正方形の
開口をそれぞれ20μm間隔で形成する(第1図(C)
)。ホトレジスト4をマスクに正方形領域の5IoxN
y膜3を除去した後ホトレジスト4全除去しく第1図(
d))、950℃、3沙の赤外線短時間アニールを行い
、5IOXNY膜3で覆わね、た領域のp型GaAs層
を高抵抗GaAs層5に変化させる(第1図(e))。
One embodiment of the present invention will be described below in Figures 1 (a) to (f).
) will be explained using the cross-sectional structure figure and sound. Surface orientation <100>L
E C (Liquid Encapsulated)
Czochralski method undoped semi-insulating GaA
MOCVD (Metalorganic
Chemical Vapor Depositio
n) Mg-added mold GaAs with a thickness of 1 μm using the method
p = I X10'7l-3) Layer 2 is epitaxially grown (FIG. 1(a)). Next, CV is applied to the entire surface of the GaAs substrate.
S i 0xNy with refractive index 1.75”i using D method
1100 nm of film 3 is deposited (FIG. 1(b)), and a large number of square openings of 200×200 μm2 are formed at intervals of 20 μm using photoresist 4 (FIG. 1(C)).
). 5IoxN in a square area using photoresist 4 as a mask
After removing the Y film 3, the photoresist 4 is completely removed as shown in Figure 1 (
d)) Short-time infrared annealing is performed at 950° C. and 300° C. to transform the p-type GaAs layer in the region not covered with the 5IOXNY film 3 into a high-resistance GaAs layer 5 (FIG. 1(e)).

アニール後、S + 0xNy膜3金除去し、正方形領
域にp型オーム性電極としてAuZφi電極6を150
 nm真空蒸着し、420°Cでアロイする(第1図(
f))。得られた正方形のオーム性電極間の抵抗測定か
ら求め友高抵抗GaAs層5の抵抗率は5×106〜l
X107Ω・αであった。一方、8+0xNy膜3で覆
われ々かったp型領域の抵抗率は変化しなかった。この
様に本発明の方法により形成した高抵抗層がpチャネル
を有するGaAs デバイスの素子間分離法として有効
であることが実証された。
After annealing, the gold of the S+0xNy film 3 is removed, and an AuZφi electrode 6 with a diameter of 150 mm is placed as a p-type ohmic electrode in the square area.
nm vacuum evaporated and alloyed at 420°C (Fig. 1 (
f)). The resistivity of the high-resistance GaAs layer 5 determined from the resistance measurement between the obtained square ohmic electrodes is 5 x 106 ~ l.
It was X107Ω·α. On the other hand, the resistivity of the p-type region that was not completely covered with the 8+0xNy film 3 did not change. In this manner, it has been demonstrated that the high resistance layer formed by the method of the present invention is effective as an element isolation method for GaAs devices having p-channels.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を用いることてより、pチャネルを有する
GaAsデバイス間の素子分離を半導体基板の表面平坦
性を損なうこと力く実現することができる。したがって
、本手法はG aAsデバイスを用い友大規模集積回路
の製造プロセスとして有望である。
By using the method of the present invention, element isolation between GaAs devices having p-channels can be realized without impairing the surface flatness of the semiconductor substrate. Therefore, this method is promising as a manufacturing process for large-scale integrated circuits using GaAs devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(flは本発明の実施例を工程順に示す
tめの断面図、第2図は従来例による素子間分離法を示
す図、第3図は本発明の詳細な説明するための図である
。 1・・・半絶縁性GaAs基板 2・・・p型GaAs
層3・−・S i 0xNy膜      4・・・ホ
トレジスト5・・・高抵抗GaAs層   6・・・A
uZnハi電極第1図 N          電− 第3図 1.4  1.6   +、8  2.0SiOxN、
膜屈折率
FIGS. 1(a) to (fl) are t-th cross-sectional views showing embodiments of the present invention in the order of steps; FIG. 2 is a diagram showing a conventional isolation method; FIG. 3 is a detailed explanation of the present invention. 1... Semi-insulating GaAs substrate 2... P-type GaAs
Layer 3...S i 0xNy film 4... Photoresist 5... High resistance GaAs layer 6... A
uZn high electrode Figure 1 N Electrode Figure 3 1.4 1.6 +, 8 2.0SiOxN,
Film refractive index

Claims (1)

【特許請求の範囲】[Claims] p型導電性III−V族半導体基板の表面をシリコンオキ
シナイトライド膜で覆ったのち、赤外線短時間アニール
を行うことを特徴とするIII−V族半導体高抵抗層の形
成方法。
A method for forming a III-V group semiconductor high-resistance layer, which comprises covering the surface of a p-type conductive III-V group semiconductor substrate with a silicon oxynitride film and then performing short-time infrared annealing.
JP26435185A 1985-11-22 1985-11-22 Method for forming iii-v semiconductor high resistance layer Pending JPS62123726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26435185A JPS62123726A (en) 1985-11-22 1985-11-22 Method for forming iii-v semiconductor high resistance layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26435185A JPS62123726A (en) 1985-11-22 1985-11-22 Method for forming iii-v semiconductor high resistance layer

Publications (1)

Publication Number Publication Date
JPS62123726A true JPS62123726A (en) 1987-06-05

Family

ID=17401946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26435185A Pending JPS62123726A (en) 1985-11-22 1985-11-22 Method for forming iii-v semiconductor high resistance layer

Country Status (1)

Country Link
JP (1) JPS62123726A (en)

Similar Documents

Publication Publication Date Title
US4644637A (en) Method of making an insulated-gate semiconductor device with improved shorting region
JPS6276555A (en) Planar hetero junction bipolar device and manufacturing thereof
EP0180457B1 (en) Semiconductor integrated circuit device and method for producing same
JP2004200445A (en) Semiconductor device and its manufacturing method
JPS63148624A (en) Manufacture of p+nn+ diode in semiconductor substrate composed of 3-5 group material and manufacture of bipolar transistor containing the diode
JPS62123726A (en) Method for forming iii-v semiconductor high resistance layer
JPH11145155A (en) Method for manufacturing power semiconductor device using semi-insulating polysilicon (sipos) film
JPS5954271A (en) Semiconductor integrated circuit device
JPH0523497B2 (en)
JP2904545B2 (en) High breakdown voltage planar semiconductor device and method of manufacturing the same
JP3859149B2 (en) Method for manufacturing heterojunction bipolar transistor
JPS62213131A (en) Manufacture of iii-v semiconductor device
JP2963120B2 (en) Semiconductor device and manufacturing method thereof
KR890003416B1 (en) Semiconductor device
JP2819673B2 (en) Field effect transistor
JPH0249012B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPH0810705B2 (en) Integrated circuit device
JPS6310541A (en) Semiconductor device and manufacture thereof
JP3191930B2 (en) Compound semiconductor integrated circuit
JPH0770706B2 (en) High-speed semiconductor device
JPH1140576A (en) Schottky junction type fet
JPH0467338B2 (en)
JPS6122872B2 (en)
JPH0810704B2 (en) Method for manufacturing semiconductor device
JPH0618271B2 (en) Shutter-barrier barrier semiconductor device