JPH0260060B2 - - Google Patents

Info

Publication number
JPH0260060B2
JPH0260060B2 JP23605484A JP23605484A JPH0260060B2 JP H0260060 B2 JPH0260060 B2 JP H0260060B2 JP 23605484 A JP23605484 A JP 23605484A JP 23605484 A JP23605484 A JP 23605484A JP H0260060 B2 JPH0260060 B2 JP H0260060B2
Authority
JP
Japan
Prior art keywords
value
threshold voltage
film
channel layer
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23605484A
Other languages
Japanese (ja)
Other versions
JPS61123187A (en
Inventor
Shoichi Suzuki
Toyokazu Oonishi
Tsukasa Onodera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23605484A priority Critical patent/JPS61123187A/en
Publication of JPS61123187A publication Critical patent/JPS61123187A/en
Publication of JPH0260060B2 publication Critical patent/JPH0260060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法、特に化合物半
導体電界効果トランジスタのK値及び閾値電圧の
新しい制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a new method for controlling the K value and threshold voltage of a compound semiconductor field effect transistor.

マイクロエレクトロニクスは現代産業進展の基
盤となり、また社会生活に大きい影響を与えてい
る。現在このマイクロエレクトロニクスの主役は
シリコン(Si)半導体装置であつて、バイポーラ
ートランジスタ素子及びMOS電界効果トランジ
スタ素子による集積回路装置が大きい進展を見せ
ている。
Microelectronics has become the foundation of modern industrial progress and has had a major impact on social life. Currently, silicon (Si) semiconductor devices are the mainstay of microelectronics, and integrated circuit devices using bipolar transistor elements and MOS field effect transistor elements are making great progress.

更にシリコンの物性に基づく限界を超える動作
速度の向上などを実現するために、キヤリアの移
動度がシリコンより遥かに大きい砒化ガリウム
(GaAs)などの化合物半導体を用いる半導体装
置が開発されている。
Furthermore, in order to achieve improvements in operating speed that exceed the limits based on the physical properties of silicon, semiconductor devices using compound semiconductors such as gallium arsenide (GaAs), whose carrier mobility is much higher than that of silicon, have been developed.

化合物半導体を用いるトランジスタとしては、
その製造工程が簡単であるなどの理由によつて電
界効果トランジスタ、特にシヨツトキバリア形電
界効果トランジスタの開発が先行しており、この
素子による集積回路装置の実用化への努力が重ね
られている。
As a transistor using a compound semiconductor,
Field effect transistors, particularly shot-barrier field effect transistors, have been developed in advance because of their simple manufacturing process, and efforts are being made to put these devices to practical use in integrated circuit devices.

〔従来の技術〕[Conventional technology]

シヨツトキバリア形電界効果トランジスタ(以
下MES FETと略称する)は現在化合物半導体、
特にGaAsを半導体材料とする例が多いが、その
構造の一例を第3図の模式側断面図に示す。
Schottky barrier field effect transistors (hereinafter abbreviated as MES FETs) are currently made of compound semiconductors.
In particular, there are many examples in which GaAs is used as the semiconductor material, and an example of its structure is shown in the schematic side sectional view of FIG.

図に示す従来例においては、半絶縁性GaAs基
板11に、例えばイオン注入法によつて或いは不
純物をドープしたGaAsエピタキシヤル成長層に
よつて、n形チヤネル層12が形成され、このn
形チヤネル層12上にシヨツトキ接触するゲート
電極13が配設される。
In the conventional example shown in the figure, an n-type channel layer 12 is formed on a semi-insulating GaAs substrate 11, for example, by ion implantation or by a GaAs epitaxial growth layer doped with impurities.
A gate electrode 13 is disposed on the shaped channel layer 12 and in contact therewith.

このゲート電極13をマスクとするイオン注入
法によつて不純物が導入されて、n形チヤネル層
12より高不純物濃度のn+形ソース及びドレイ
ン領域14が形成され、絶縁膜15が被着され
て、n+形ソース及びドレイン領域14にオーミ
ツク接触するソース及びドレイン電極16が配設
される。
Impurities are introduced by an ion implantation method using the gate electrode 13 as a mask to form n + type source and drain regions 14 with a higher impurity concentration than the n type channel layer 12, and an insulating film 15 is deposited. , n + type source and drain regions 14 are provided with source and drain electrodes 16 in ohmic contact with them.

上述の如きMES FETを素子として集積回路装
置を構成する場合に必要な素子特性を規定する主
要なパラメータとして、閾値電圧Vth並びに伝達
コンダクタンスgnもしくはgnの電圧に依存しな
い因子であるK値(K=εμWg/2aLg;aはチヤ
ネル層の深さ、εはチヤネル層の誘電率、μはキ
ヤリアの移動度、Wgはゲート幅、Lgはゲート長)
がある。
When configuring an integrated circuit device using the MES FET as described above, the main parameters that define the device characteristics required are the threshold voltage V th and the K value, which is a voltage-independent factor of the transconductance g n or g n . (K=εμW g /2aL g ; a is the depth of the channel layer, ε is the dielectric constant of the channel layer, μ is the carrier mobility, W g is the gate width, and L g is the gate length)
There is.

前記従来例ではこの閾値電圧Vth及びK値の制
御を、イオン注入条件によりn形チヤネル層12
の深さa、キヤリア濃度を選択することにより実
施している。
In the conventional example, the threshold voltage V th and the K value are controlled by controlling the n-type channel layer 12 depending on the ion implantation conditions.
This is carried out by selecting the depth a and the carrier concentration.

集積回路装置の高速化、高集積化のために
MES FET素子の微細化が進められそのゲート長
が短縮されるに伴つて、閾値電圧Vth及びK値等
の特性の期待される値からの変動幅が次第に大き
くなり、かつこの変動はMOS半導体基体の晶帯
軸に対するゲートの方向によつて異なる。
For higher speed and higher integration of integrated circuit devices
As the miniaturization of MES FET elements progresses and their gate lengths are shortened, the range of fluctuations in characteristics such as threshold voltage V th and K value from the expected values gradually increases, and this fluctuation also occurs in MOS semiconductors. It depends on the direction of the gate with respect to the crystal zone axis of the substrate.

この所謂シヨートチヤネル効果の原因として、
ソース及びドレイン領域14に導入された高濃度
の不純物のチヤネル層12への侵入と、主として
絶縁膜15によつて半導体基体に生ずる圧電分極
の効果が注目されている。
The cause of this so-called short channel effect is
Attention has been focused on the penetration of highly concentrated impurities introduced into the source and drain regions 14 into the channel layer 12 and the effect of piezoelectric polarization produced in the semiconductor substrate mainly by the insulating film 15.

この圧電分極による特性の変動は、MES FET
素子の半導体基体に接して設けられる絶縁膜1
5、ゲート電極13などが半導体基体に及ぼす応
力によつて、化合物半導体基体にその晶帯軸に対
するゲート方向に固有の極性を持つ圧電分極を生
じ、チヤネル層12におけるキヤリアの分布が変
化してシヨツトキ空乏層が伸縮するために、化合
物半導体基体の晶帯軸に対するゲート方向に対応
して異なる方向に、閾値電圧Vthが変動すると考
えられている。
Changes in characteristics due to this piezoelectric polarization are caused by MES FET
Insulating film 1 provided in contact with the semiconductor substrate of the element
5. Due to the stress exerted on the semiconductor substrate by the gate electrode 13, etc., piezoelectric polarization having a unique polarity in the gate direction with respect to the crystal zone axis is generated in the compound semiconductor substrate, and the distribution of carriers in the channel layer 12 changes, resulting in shot torque. It is believed that because the depletion layer expands and contracts, the threshold voltage V th fluctuates in different directions corresponding to the gate direction with respect to the crystal zone axis of the compound semiconductor substrate.

(例えばP.M.Asbeck et al.;IEEE
Transactionson Electron Devices、Vol.ED−
31、No.10、Oct.1984参照) またK値についても同様に、圧電分極で生じた
電荷によるチヤネル層の深さaの変化によつてそ
の変動が現れる。
(e.g. PMAsbeck et al.; IEEE
Transactionson Electron Devices, Vol.ED−
31, No. 10, Oct. 1984) Similarly, the K value also fluctuates due to changes in the depth a of the channel layer due to charges generated by piezoelectric polarization.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明したMES FET素子の閾値電圧、K値
などの特性変動は、これを用いる半導体回路の完
全動作の妨げとなり、化合物半導体集積回路装置
の素子の微細化、高集積化等の進歩を大きく制約
する。
The above-described variations in the characteristics of the MES FET element, such as threshold voltage and K value, impede the perfect operation of semiconductor circuits that use it, and greatly restrict progress in miniaturization and higher integration of elements in compound semiconductor integrated circuit devices. do.

しかるに従来の製造方法ではチヤネル層のイオ
ン注入後にはこれらの特性の効果的な制御手段を
持たず、製造工程中においてこれらの特性を補正
する手段が強く要望されている。
However, conventional manufacturing methods do not have effective means for controlling these characteristics after ion implantation of the channel layer, and there is a strong demand for means for correcting these characteristics during the manufacturing process.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、電界効果トランジスタ素子が形
成された化合物半導体基体上に絶縁膜を設けて、
該化合物半導体基体内の圧電分極を該絶縁膜が及
ぼす応力により制御し、該電界効果トランジスタ
素子のK値及び閾値電圧少なくとも一つを補正す
る本発明による半導体装置の製造方法により解決
される。
The above problem can be solved by providing an insulating film on a compound semiconductor substrate on which a field effect transistor element is formed.
This problem is solved by the method of manufacturing a semiconductor device according to the present invention, which controls piezoelectric polarization in the compound semiconductor substrate by stress exerted by the insulating film and corrects at least one of the K value and the threshold voltage of the field effect transistor element.

〔作用〕[Effect]

先に述べた圧電分極による化合物半導体電界効
果トランジスタの特性変動に関連して、本発明者
等は例えばGaAs化合物半導体基体に生ずる応力
と絶縁膜の材料及び厚さ、半導体基体の結晶面、
晶帯軸とこの応力による圧電分極の状態、電界効
果トランジスタのK値及び閾値電圧と圧電分極の
状態などの相関関係を研究し、例えば第1図に例
示する如き相関関係が得られた。
In connection with the above-mentioned variation in characteristics of compound semiconductor field effect transistors due to piezoelectric polarization, the present inventors have investigated, for example, the stress generated in the GaAs compound semiconductor substrate, the material and thickness of the insulating film, the crystal plane of the semiconductor substrate,
The correlation between the crystal zone axis and the state of piezoelectric polarization due to this stress, the K value of a field effect transistor, the threshold voltage, and the state of piezoelectric polarization was studied, and a correlation as illustrated in FIG. 1, for example, was obtained.

同図はGaAs単結晶の(100)面上に、n形チ
ヤネル層をシリコン(Si)イオンのエネルギー
59keV、ドーズ量0.9×1012cm-2又は1.8×1012cm-2
の注入によつて形成し、MES FETのLg=0.6μ
m、Wg=20μmのゲート電極を、ゲート幅方向を
〔011〕及び〔011〕方向として、タングステンシ
リサイド(WSi)を用いて設けて、その上に二酸
化シリコン(SiO2)膜を厚さ0〜1200nmに形成
した場合の閾値電圧Vth及びK値を表し、 〇はドーズ量0.9×1012cm-2の〔011〕方向、 ●はドーズ量1.8×1012cm-2の〔011〕方向、 △はドーズ量0.9×1012cm-2の〔001〕方向、 ▲はドーズ量1.8×1012cm-2の〔011〕方向の場
合について、SiO2膜が図中に示す厚さであると
きの閾値電圧Vth及びK値を示す。
The figure shows an n-type channel layer formed on the (100) plane of a GaAs single crystal using the energy of silicon (Si) ions.
59keV, dose 0.9×10 12 cm -2 or 1.8×10 12 cm -2
formed by implantation of MES FET L g =0.6μ
A gate electrode with m, W g = 20 μm is provided using tungsten silicide (WSi) with the gate width direction in the [011] and [011] directions, and a silicon dioxide (SiO 2 ) film is deposited on it to a thickness of 0. Represents the threshold voltage V th and K value when formed at ~1200 nm, 〇 is the [011] direction with a dose of 0.9 × 10 12 cm -2 , and ● is the [011] direction with a dose of 1.8 × 10 12 cm -2 , △ is the [001] direction with a dose of 0.9×10 12 cm -2 ▲ is the thickness of the SiO 2 film shown in the figure for the case of the [011] direction with a dose of 1.8×10 12 cm -2 The threshold voltage V th and K value at the time are shown.

同図からゲート幅方向が〔011〕方向である場
合に、ドーズ量0.9×1012cm-2と1.8×1012cm-2とを
比較して、例えばSiO2膜の厚さが0mmのとき、
K値の増加的0.6mA/V2、閾値電圧Vthの変化量
約0.9Vであるのに対して、ドーズ量0.9×1012cm-2
でSiO2膜を0nmから1200nmに堆積すれば、閾値
電圧Vthの変化量は0.6V弱でK値の増加は2倍の
約1.5mA/V2となることが知られている。この
様に例えばSiO2膜の厚さによりK値を大きく増
加することが可能であり、かつK値を広い範囲内
で選択して、閾値電圧Vthは狭い変化範囲内に止
めることが可能である。
From the same figure, when the gate width direction is [011] direction, comparing the dose amount of 0.9×10 12 cm -2 and 1.8×10 12 cm -2 , for example, when the thickness of the SiO 2 film is 0 mm. ,
The K value increases by 0.6 mA/V 2 and the threshold voltage V th changes by about 0.9 V, while the dose amount is 0.9×10 12 cm -2
It is known that if a SiO 2 film is deposited from 0 nm to 1200 nm, the amount of change in the threshold voltage V th will be a little less than 0.6 V, and the increase in the K value will be doubled to about 1.5 mA/V 2 . In this way, for example, it is possible to greatly increase the K value depending on the thickness of the SiO 2 film, and by selecting the K value within a wide range, it is possible to keep the threshold voltage V th within a narrow variation range. be.

前記SiO2膜はチヤネル層には引張応力を与え
て、ゲート幅方向が〔011〕方向である場合にチ
ヤネル層に実効的にプラスの電荷、〔011〕方向で
ある場合にチヤネル層に実効的にマイナスの電荷
を生じて、前記の効果が現れているが、絶縁膜に
例えば窒化シリコン(Si3N4)を用いれば、チヤ
ネル層には圧縮応力が加わつて圧電分極は反対の
極性となり、前記第1図のゲート幅方向を反転し
た類似の相関関係が得られる。
The SiO 2 film applies tensile stress to the channel layer, and when the gate width direction is in the [011] direction, there is an effective positive charge on the channel layer, and when the gate width direction is in the [011] direction, there is an effective charge on the channel layer. A negative charge is generated in the insulating film, producing the above effect. However, if silicon nitride (Si 3 N 4 ), for example, is used as the insulating film, compressive stress is applied to the channel layer, and the piezoelectric polarization becomes the opposite polarity. A similar correlation can be obtained by reversing the gate width direction of FIG.

更に、例えば絶縁膜材料に組成x、yが選択さ
れたシリコン窒化酸化物(SiNxOy)を用い、或
いは組成の異なる絶縁膜を積層すれば、圧電分極
の強さ、従つてK値及び閾値電圧Vthの補正量を
制御する自由度が増加する。
Furthermore, for example, if silicon nitride oxide (SiN x O y ) with selected compositions x and y is used as the insulating film material, or if insulating films with different compositions are stacked, the strength of piezoelectric polarization, and therefore the K value and The degree of freedom in controlling the amount of correction of the threshold voltage V th increases.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。
第2図はGaAs MES FETにかかる本発明の実
施例を示す工程順模式側断面図である。
The present invention will be specifically explained below using examples.
FIG. 2 is a schematic side sectional view showing the process order of an embodiment of the present invention relating to a GaAs MES FET.

第2図a参照 半絶縁性GaAs基板1に、例えばSiをエネルギ
ー59keVで、ドーズ量0.9×1012cm-2程度にイオン
注入し、基板1面上に窒化アルミニウム(AIN)
等の保護膜(図示されない)を設けて、例えば温
度850℃、時間10分間程度の活性化熱処理を行い、
不純物濃度が約1.5×1017cm-3程度のn形チヤネル
層2を形成する。
Refer to Figure 2a. For example, Si is ion-implanted into the semi-insulating GaAs substrate 1 at an energy of 59 keV and a dose of about 0.9×10 12 cm -2 , and aluminum nitride (AIN) is implanted onto the surface of the substrate 1.
A protective film (not shown) is provided, and activation heat treatment is performed at a temperature of 850°C for about 10 minutes, for example.
An n-type channel layer 2 having an impurity concentration of approximately 1.5×10 17 cm −3 is formed.

スパツタ法等によりGaAs基板1面上に、例え
ばW5Si3を厚さ400nm程度に被着し、これをパタ
ーニングしてゲート電極3を形成する。本実施例
ではゲート長を約0.6μmとしている。
For example, W 5 Si 3 is deposited to a thickness of about 400 nm on one surface of the GaAs substrate by sputtering or the like, and this is patterned to form the gate electrode 3 . In this embodiment, the gate length is approximately 0.6 μm.

ゲート電極3をマスクとして、基板1に例えば
Siをエネルギー175keVで、ドーズ量1.7×1013cm
-2程度にイオン注入し、例えば温度750℃、時間
15分間程度の活性化熱処理を行い、不純物濃度が
1×1018cm-3程度のn+形ソース、ドレイン領域4
を形成する。
For example, on the substrate 1 using the gate electrode 3 as a mask,
Si at energy 175keV, dose 1.7×10 13 cm
Ion implantation is performed at a temperature of about -2 , for example at a temperature of 750°C for a period of time.
After performing activation heat treatment for about 15 minutes, the n + type source and drain regions 4 with an impurity concentration of about 1×10 18 cm -3 were formed.
form.

第2図b参照 例えばプラズマ化学気相成長方法(P−CVD
法)により、SiO2膜5を厚さ例えば300nm程度
に、基板1及びゲート電極3上に被着する。
See Figure 2b. For example, plasma chemical vapor deposition (P-CVD)
A SiO 2 film 5 is deposited on the substrate 1 and the gate electrode 3 to a thickness of about 300 nm, for example.

n+形ソース、ドレイン領域4上でSiO2膜5に
開口を設け、例えば蒸着法により金ゲルマニウ
ム/金(AuGe/Au)などを用いて、ソース、
ドレイン電極6を形成する。
Openings are formed in the SiO 2 film 5 on the n + type source and drain regions 4, and the source and
A drain electrode 6 is formed.

第2図c参照 形成されたMES FET素子のK値、閾値電圧
Vthを測定し、その目的値を実現するために必要
なSiO2膜厚の差を前記第1図等のデータに基づ
いて求め、この膜厚差だけSiO2膜7を堆積する。
前記実施例においては、最初にSiO2膜5を例え
ば300nmと薄く形成し特性測定後にSiO2膜7を
追加しているが、最初のSiO2膜5を十分に厚く
形成して特性測定後にこれをエツチングしてもよ
い。
See Figure 2c K value and threshold voltage of the formed MES FET element
V th is measured, the difference in SiO 2 film thickness required to realize the target value is determined based on the data shown in FIG. 1, etc., and the SiO 2 film 7 is deposited by this film thickness difference.
In the above embodiment, the SiO 2 film 5 is first formed as thin as, for example, 300 nm, and the SiO 2 film 7 is added after the characteristics are measured. may be etched.

また前記実施例では前後2回の絶縁膜形成に同
一材料を用いているが、組成の異なる絶縁膜を積
層してもよい。
Further, in the embodiment described above, the same material is used for forming the insulating films twice, but insulating films having different compositions may be stacked.

なお以上の説明はGaAs MES FETを対象と
しているが、GaAs以外の化合物半導体材料、例
えばインジウム燐(InP)、インジウムガリウム
砒素(InGaAs)等を用いた場合にも本発明の効
果を得ることができる。更に、pn接合ゲート形
及び絶縁ゲート形電界効果トランジスタ、或いは
ヘテロ接合を備えた高電子移動度電界効果トラン
ジスタ等についても、本発明の方法により同様の
効果が得られる。
Although the above explanation is directed to GaAs MES FETs, the effects of the present invention can also be obtained when using compound semiconductor materials other than GaAs, such as indium phosphide (InP), indium gallium arsenide (InGaAs), etc. . Furthermore, similar effects can be obtained by the method of the present invention for pn junction gate type and insulated gate type field effect transistors, high electron mobility field effect transistors with heterojunctions, and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、化合物半導
体電界効果トランジスタのK値、閾値電圧を容易
に、かつ的確に補正することが可能となる。これ
により電界効果トランジスタの特性が改善され、
化合物半導体集積回路装置の実用化に大きい効果
が得られる。
As described above, according to the present invention, it is possible to easily and accurately correct the K value and threshold voltage of a compound semiconductor field effect transistor. This improves the characteristics of field effect transistors,
A great effect can be obtained on the practical application of compound semiconductor integrated circuit devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMES FETの絶縁膜厚等をパラメータ
としK値、閾値電圧の相関の例を示す図、第2図
はMES FETにかかる本発明の実施例を示す工程
順模式側断面図、第3図はMES FETの従来例を
示す模式側断面図である。図において、 1は半絶縁性GaAs基板、2はn形チヤネル
層、3はW5Si3よりなるゲート電極、4はn+形ソ
ース、ドレイン領域、5は第1のSiO2膜、6は
ソース、ドレイン電極、7は第2のSiO2膜を示
す。
Fig. 1 is a diagram showing an example of the correlation between K value and threshold voltage using parameters such as insulating film thickness of MES FET, Fig. 2 is a schematic side sectional view of the process order showing an embodiment of the present invention related to MES FET, Figure 3 is a schematic side sectional view showing a conventional example of an MES FET. In the figure, 1 is a semi-insulating GaAs substrate, 2 is an n-type channel layer, 3 is a gate electrode made of W 5 Si 3 , 4 is an n + type source and drain region, 5 is the first SiO 2 film, and 6 is the The source and drain electrodes, 7, indicate the second SiO 2 film.

Claims (1)

【特許請求の範囲】[Claims] 1 電界効果トランジスタ素子が形成された化合
物半導体基体上に絶縁膜を設けて、該化合物半導
体基体内の圧電分極を該絶縁膜が及ぼす応力によ
り制御し、該電界効果トランジスタ素子のK値及
び閾値電圧の少なくとも一つを補正することを特
徴とする半導体装置の製造方法。
1. An insulating film is provided on a compound semiconductor substrate on which a field effect transistor element is formed, and piezoelectric polarization within the compound semiconductor substrate is controlled by stress exerted by the insulating film, and the K value and threshold voltage of the field effect transistor element are controlled. A method for manufacturing a semiconductor device, comprising correcting at least one of the following.
JP23605484A 1984-11-09 1984-11-09 Manufacture of semiconductor device Granted JPS61123187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23605484A JPS61123187A (en) 1984-11-09 1984-11-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23605484A JPS61123187A (en) 1984-11-09 1984-11-09 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS61123187A JPS61123187A (en) 1986-06-11
JPH0260060B2 true JPH0260060B2 (en) 1990-12-14

Family

ID=16995055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23605484A Granted JPS61123187A (en) 1984-11-09 1984-11-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61123187A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635571A (en) * 1986-06-25 1988-01-11 Nec Corp Compound semiconductor device
JPS63240074A (en) * 1987-03-27 1988-10-05 Nec Corp Semiconductor device
JPH06232170A (en) * 1993-01-29 1994-08-19 Mitsubishi Electric Corp Field effect transistor and its manufacture

Also Published As

Publication number Publication date
JPS61123187A (en) 1986-06-11

Similar Documents

Publication Publication Date Title
US5420048A (en) Manufacturing method for SOI-type thin film transistor
US4055884A (en) Fabrication of power field effect transistors and the resulting structures
JP2929291B2 (en) Method of manufacturing insulated gate field effect transistor
JPH0260063B2 (en)
JP2644028B2 (en) Silicon carbide MOSFET
EP0178133B1 (en) Semiconductor integrated circuit device
JP2633873B2 (en) Method for manufacturing semiconductor BiCMOS device
US4350991A (en) Narrow channel length MOS field effect transistor with field protection region for reduced source-to-substrate capacitance
JPH0260060B2 (en)
JP2629995B2 (en) Thin film transistor
US5107314A (en) Gallium antimonide field-effect transistor
GB2074374A (en) Method of making field effect transistors
JPS61129878A (en) Semiconductor device
JPH0328062B2 (en)
JP3277910B2 (en) Field effect transistor and method of manufacturing the same
JPS6292327A (en) Semiconductor device and manufacture thereof
JPS58145168A (en) Semiconductor device
JPH0328060B2 (en)
JPS6146990B2 (en)
JPS6332273B2 (en)
JPS61114583A (en) Semiconductor device
JPS61114582A (en) Semiconductor device
KR950003947B1 (en) Making method of gaas transistor using metal gaas reaction
JPS6157714B2 (en)
JPS62213131A (en) Manufacture of iii-v semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term