JPS61123187A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61123187A
JPS61123187A JP23605484A JP23605484A JPS61123187A JP S61123187 A JPS61123187 A JP S61123187A JP 23605484 A JP23605484 A JP 23605484A JP 23605484 A JP23605484 A JP 23605484A JP S61123187 A JPS61123187 A JP S61123187A
Authority
JP
Japan
Prior art keywords
value
threshold voltage
fet
film
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23605484A
Other languages
Japanese (ja)
Other versions
JPH0260060B2 (en
Inventor
Shoichi Suzuki
正一 鈴木
Toyokazu Onishi
豊和 大西
Tsukasa Onodera
司 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23605484A priority Critical patent/JPS61123187A/en
Publication of JPS61123187A publication Critical patent/JPS61123187A/en
Publication of JPH0260060B2 publication Critical patent/JPH0260060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To improve the characteristics of a FET b forming an insulating film onto a compound semiconductor base body, to which a FET element is shaped, controlling piezoelectric polarization in the base body by stress from the insulating film and correcting the K value of the FET element and at least one of threshold voltage. CONSTITUTION:Si ions are implanted to a semi-insulating GaAs substrate 1, and activated and thermally treated to form an N type channel layer 2, and a gate electrode 3 is shaped. Si ions are implanted while using the gate electrode 3 as a mask, and activated and thermally treated to form N<+> type source-drain regions 4. An SiO2 film 5 is applied to the substrate 1 and the gate electrode 3, openings are shaped onto the regions 4, and source-drain electrodes 6 are formed. The K value of a FET element shaped and threshold voltage are measured, a difference between SiO2 film thickness required for realizing a target value is obtained, and an SiO2 film 7 is deposited only by the difference between the film thickness. Accordingly, the K value and threshold voltage are corrected easily, thus improving the characteristics of a FET.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法、特に化合物半導体電界
効果トランジスタのに値及び閾値電圧の新しい制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a new method for controlling the voltage value and threshold voltage of a compound semiconductor field effect transistor.

マイクロエレクトロニクスは現代産業進展の基盤となり
、また社会生活に大きい影響を与えている。現在このマ
イクロエレクトロニクスの主役はシリコン(Si)半導
体装置であって、バイポーラ−トランジスタ素子及びl
’lOs電界効果トランジスタ素子による集積回路装置
が大きい進展を見せている。
Microelectronics has become the foundation of modern industrial progress and has had a major impact on social life. Currently, the mainstay of microelectronics is silicon (Si) semiconductor devices, including bipolar transistor elements and
Integrated circuit devices using 'lOs field effect transistor elements are making great progress.

更にシリコンの物性に基づく限界を超える動作速度の向
上などを実現するために、キャリアの移動度がシリコン
より温かに大きい砒化ガリウム(GaAs)などの化合
物半導体を用いる半導体装置が開発されている。
Furthermore, in order to improve operating speed beyond the limits based on the physical properties of silicon, semiconductor devices using compound semiconductors such as gallium arsenide (GaAs), which have carrier mobility that is warmer and higher than that of silicon, have been developed.

化合物半導体を用いるトランジスタとしては、その製造
工程が簡単であるなどの理由によって電界効果トランジ
スタ、特にショットキバリア形電界効果トランジスタの
開発が先行しており、この素子による集積回路装置の実
用化への努力か重ねられている。
Among transistors using compound semiconductors, field effect transistors, especially Schottky barrier field effect transistors, are being developed first due to their simple manufacturing process, and efforts are being made to put these devices to practical use in integrated circuit devices. or are overlapped.

〔従来の技術〕[Conventional technology]

ショットキバリア形電界効果トランジスタ(以下MES
 FETと略称する)は現在化合物半導体、特にGaA
sを半導体材料とする例が多いが、その構造の一例を第
3図の模式側断面図に示す。
Schottky barrier field effect transistor (MES)
(abbreviated as FET) is currently a compound semiconductor, especially GaA
In many cases, s is a semiconductor material, and an example of its structure is shown in the schematic side sectional view of FIG.

図に示す従来例においては、半絶縁性G a A s基
板11に、例えばイオン注入法によって或いは不純物を
トープしたGaAsエピタキシャル成長層によって、n
形チャネル層12が形成され、このn形チャネル層12
上にショットキ接触するゲート電極13が配設される。
In the conventional example shown in the figure, n is injected into a semi-insulating GaAs substrate 11 by, for example, ion implantation or by an impurity-doped GaAs epitaxial growth layer.
An n-type channel layer 12 is formed, and this n-type channel layer 12
A gate electrode 13 in Schottky contact is disposed thereon.

このゲート電極13をマスクとするイオン注入法によっ
て不純物が導入されて、n形チャネル層12より高不純
物濃度のヤ形ソース及びドレイン領域14が形成され、
絶縁膜15が被着されて、♂形ソース及びドレイン領域
14にオーミック接触するソース及びドレイン電極16
が配設される。
Impurities are introduced by an ion implantation method using this gate electrode 13 as a mask, and a diamond-shaped source and drain region 14 having a higher impurity concentration than the n-type channel layer 12 is formed.
Source and drain electrodes 16 are coated with an insulating film 15 and are in ohmic contact with the male-shaped source and drain regions 14.
will be placed.

上述の如きMES PUTを素子として集積回路装置を
構成する場合に必要な素子特性を規定する主要なパラメ
ータとして、閾値電圧Vth並びに伝達コンダクタンス
g1もしくはg、の電圧に依存しない因子であるに値(
K=εμWg/2aL9; aはチャネル層の深さ、ε
はチャネル層の誘電率、μはキャリアの移動度、Wgは
ゲート幅、L9はゲート長)がある。
When configuring an integrated circuit device using the above-mentioned MES PUT as an element, the main parameters that define the element characteristics required are the threshold voltage Vth and the transconductance g1 or g, which are voltage-independent factors.
K=εμWg/2aL9; a is the depth of the channel layer, ε
is the dielectric constant of the channel layer, μ is the carrier mobility, Wg is the gate width, and L9 is the gate length).

前記従来例ではこの閾値電圧■い及びに値の制御を、イ
オン注入条件によりn形チャネル層12の深さa、キャ
リア濃度を選択することにより実施している。
In the conventional example, the threshold voltage and its value are controlled by selecting the depth a of the n-type channel layer 12 and the carrier concentration depending on the ion implantation conditions.

集積回路装置の高速化、高集積化のためにMESFET
素子の微細化が進められそのゲート長が短縮されるに伴
って、閾値電圧■い及びに値等の特性の期待される値か
らの変動幅が次第に大きくなり、かつこの変動はGaA
s半導体基体の晶帯軸に対するゲートの方向によって異
なる。
MESFET for higher speed and higher integration of integrated circuit devices
As device miniaturization progresses and gate lengths are shortened, the range of variation in characteristics such as threshold voltage and value from expected values gradually increases, and this variation
s It depends on the direction of the gate with respect to the crystal zone axis of the semiconductor substrate.

この所謂ショートチャネル効果の原因として、ソース及
びドレイン領域14に導入された高濃度の不純物のチャ
ネル層12への侵入と、主として絶縁膜15によって半
導体基体に生ずる圧電分極の効果が注目されている。
As causes of this so-called short channel effect, attention has been focused on the penetration of highly concentrated impurities introduced into the source and drain regions 14 into the channel layer 12 and the effect of piezoelectric polarization mainly caused in the semiconductor substrate by the insulating film 15.

この圧電分極による特性の変動は、MES FET素子
の半導体基体に接して設けられる絶縁膜15、ゲート電
極13などが半導体基体に及ぼす応力によって、化合物
半導体基体にその晶帯軸に対するゲート方向に固有の極
性を持つ圧電分極を生じ、チャネル層12におけるキャ
リアの分布が変化してショットキ空乏層が伸縮するため
に、化合物半導体基体の晶帯軸に対するゲート方向に対
応して異なる方向に、閾値電圧■いが変動すると考えら
れている。
This variation in characteristics due to piezoelectric polarization is caused by stress exerted on the semiconductor substrate by the insulating film 15, gate electrode 13, etc. provided in contact with the semiconductor substrate of the MES FET element, which causes the compound semiconductor substrate to have an inherent characteristic in the gate direction with respect to its crystal zone axis. Piezoelectric polarization occurs, and the distribution of carriers in the channel layer 12 changes, causing the Schottky depletion layer to expand and contract. is thought to change.

(イ列えばP、M、八5beck et al、; I
EEE Transactionson Electr
on Devices、 Vol、HD−31,No 
lO+  Oct。
(P, M, 85 Beck et al.; I
EEE Transactionson Electr
on Devices, Vol. HD-31, No.
lO+Oct.

1984  参照) またに値についても同様に、圧電分極で生じた電荷によ
るチャネル層の深さaの変化によってその変動が現れる
1984) Similarly, the value also fluctuates due to changes in the depth a of the channel layer due to charges generated by piezoelectric polarization.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明したMES FET素子の閾値電圧、K値など
の特性変動は、これを用いる半導体回路の完全動作の妨
げとなり、化合物半導体集積回路装置の素子の微細化、
高集積化等の進歩を大きく制約する。
The above-described variations in the characteristics of the MES FET element, such as threshold voltage and K value, impede the perfect operation of semiconductor circuits that use it, and lead to miniaturization of elements in compound semiconductor integrated circuit devices.
This greatly limits progress in areas such as higher integration.

しかるに従来の製造方法ではチャネル層のイオン注入後
にはこれらの特性の効果的な制御手段を持たず、製造工
程中においてこれらの特性を補正する手段が強く要望さ
れている。
However, conventional manufacturing methods do not have effective means for controlling these characteristics after ion implantation of the channel layer, and there is a strong demand for means for correcting these characteristics during the manufacturing process.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、電界効果トランジスタ素子が形成された
化合物半導体基体上に絶縁膜を設けて、該化合物半導体
基体内の圧電分極を該絶縁膜が及ぼす応力により制御し
、該電界効果トランジスタ素子のに値及び閾値電圧の少
なくとも一つを補正する本発明による半導体装置の製造
方法により解決される。
The above problem is solved by providing an insulating film on a compound semiconductor substrate on which a field effect transistor element is formed, and controlling the piezoelectric polarization within the compound semiconductor substrate by the stress exerted by the insulating film. This problem is solved by a method for manufacturing a semiconductor device according to the present invention, which corrects at least one of the voltage value and the threshold voltage.

〔作 用〕[For production]

先に述べた圧電分極による化合物半導体電界効果トラン
ジスタの特性変動に関連して、本発明者等は例・えばG
aAs化合物半導体基体に生ずる応力と絶縁膜の材料及
び厚さ、半導体基体の結晶面、晶帯軸とこの応力による
圧電分極の状態、電界効果トランジスタのに値及び閾値
電圧と圧電分極の状態などの相関関係を研究し、例えば
第1図に例示する如き相関関係が得られた。
In connection with the above-mentioned variation in characteristics of compound semiconductor field effect transistors due to piezoelectric polarization, the present inventors have, for example,
The stress generated in the aAs compound semiconductor substrate, the material and thickness of the insulating film, the crystal plane of the semiconductor substrate, the crystal zone axis and the state of piezoelectric polarization due to this stress, the value of field effect transistor, the threshold voltage, and the state of piezoelectric polarization, etc. The correlation was studied and a correlation as illustrated in FIG. 1, for example, was obtained.

同図はGaAs単結晶の(100)面上に、n形チャネ
ル層をシリコン(Si)イオンのエネルギー59keV
、ドーズ量0.9X10”cm−”又は1.8 X 1
0’ ”Cm−”のi主入によって形成し、MES F
HTのり、=Q、5 μ+n、 W。
The figure shows an n-type channel layer formed on the (100) plane of a GaAs single crystal with a silicon (Si) ion energy of 59 keV.
, dose amount 0.9X10"cm-" or 1.8X1
0' formed by the i main character of "Cm-", MES F
HT glue, =Q, 5μ+n, W.

=20−のゲート電極を、ゲート幅方向を(QITI及
び(011)方向として、タングステンシリサイド(−
5i)を用いて設けて、その上に二酸化シリコン(Si
O□)膜を厚さ0〜1200nmに形成した場合の閾値
電圧■い及びに値を表し、 ○はドーズ量0.9X10”elm−”の(OII)方
向、・はドーズ量1.8X10”値−2の(OLり方向
、△はドーズ量0.9X10”cm−”のC0IL)方
向、ムはドーズ量1.8X10Izca+−”の(01
1)方向の場合について、5i01膜が図中に示す厚さ
であるときの閾値電圧Vい及びに値を示す。
=20-, the gate width direction is (QITI and (011) direction), and the gate electrode is made of tungsten silicide (-
5i), and silicon dioxide (Si
O□) represents the threshold voltage (■) and value when the film is formed to a thickness of 0 to 1200 nm, ○ indicates the (OII) direction at a dose of 0.9X10"elm-", . indicates a dose of 1.8X10" The value -2 (OL direction, △ is the C0IL direction with a dose of 0.9X10"cm-"), and Mu is the (01) direction with a dose of 1.8X10Izca+-"
For the case of direction 1), the values of the threshold voltage V and V when the 5i01 film has the thickness shown in the figure are shown.

同図からゲート幅方向が(OII)方向である場合に、
ドーズI (1,9XlO”cm−”と1.8X101
zam−”とを比較して、例えばSiO2膜の厚さがθ
側のとき、K値の増加約0.6@^/vz、閾値電圧v
1.の変化1約0.9■であるのに対して、ドーズ量0
.9X10’ ” (J −”で5ifh膜を0唾から
1200amに堆積すれば、閾値電圧■いの変化量は0
.6 V弱でに値の増加は2倍強の約1.5mA/V”
となることが知られる。
From the figure, when the gate width direction is the (OII) direction,
Dose I (1,9XlO"cm-" and 1.8X101
For example, if the thickness of the SiO2 film is θ
side, the K value increases by approximately 0.6@^/vz, the threshold voltage v
1. The change in 1 is approximately 0.9■, while the dose amount is 0.
.. If a 5ifh film is deposited from 0 to 1200 am with 9X10' (J -), the amount of change in threshold voltage is 0
.. At just under 6 V, the value increases by more than double, to approximately 1.5 mA/V.”
It is known that

この様に例えば5i(h膜の厚さによりK(iiを大き
く増加することが可能であり、かつに埴を広い範囲内で
選択して、閾値電圧Vthは狭い変化範囲内に止めるこ
とが可能である。
In this way, for example, it is possible to greatly increase K(ii) depending on the thickness of the 5i(h film, and it is also possible to keep the threshold voltage Vth within a narrow range of variation by selecting the value within a wide range. It is.

前記5in2膜はチャネル層には引張応力を与えて、ゲ
ート幅方向が(OH)方向である場合にチャネル層に実
効的にプラスの電荷、(Oll)方向である場合にチャ
ネル層に実効的にマイナスの電荷を生じて、前記の効果
が現れているが、絶縁膜に例えば窒化シリコン(SiJ
n)を用いれば、チャネル層には圧縮応力が加わって圧
電分極は反対の極性となり、前記第1図のゲート幅方向
を反転した類似の相関関係が得られる。
The 5in2 film applies tensile stress to the channel layer, and when the gate width direction is in the (OH) direction, there is an effective positive charge on the channel layer, and when the gate width direction is in the (Oll) direction, there is an effective charge on the channel layer. The above effect appears by generating a negative charge, but if the insulating film is made of silicon nitride (SiJ), for example,
If n) is used, compressive stress is applied to the channel layer, and the piezoelectric polarization becomes opposite polarity, and a similar correlation in which the gate width direction of FIG. 1 is reversed is obtained.

更に、例えば絶縁膜材料に組成x、yが選択されたシリ
コン窒化酸化物(SiNXOy)を用い、或いは組成の
異なる絶縁膜を積層すれば、圧電分極の強さ、従ってに
値及び閾値電圧Vいの補正量を制御する自由度が増1o
する。
Furthermore, for example, if silicon nitride oxide (SiNXOy) with selected compositions x and y is used as the insulating film material, or if insulating films with different compositions are stacked, the strength of piezoelectric polarization, and therefore the value and threshold voltage V, can be increased. The degree of freedom to control the amount of correction is increased by 1o.
do.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第2図はGaAs MES FETにかかる本発明の実
施例を示す工程順模式側断面図である。
FIG. 2 is a schematic side sectional view showing the process order of an embodiment of the present invention relating to a GaAs MES FET.

第2図+a)参照 半絶縁性GaAs基板lに、例えばSiをエネルギー5
9keνで、ドーズ量0.9X10”ell−”程度に
イオン注入し、基板1面上に窒化アルミニウム(AIN
)等の保護膜(図示されない)を設けて、例えば温度8
50 ’c、時間10分間程度の活性化熱処理を行い、
不純物濃度が約1.5X10”ca−”程度のn形チャ
ネル層2を形成する。
Fig. 2+a) Refer to semi-insulating GaAs substrate l, for example, Si is applied to it at an energy of 5
Aluminum nitride (AIN
) or the like (not shown), for example, at a temperature of 8.
Activation heat treatment was performed at 50'C for about 10 minutes.
An n-type channel layer 2 having an impurity concentration of about 1.5×10"ca-" is formed.

スパッタ法等によりGaAs基板1面上に、例えばWs
Sizを厚さ400om程度に被着し、これをバターニ
ングしてゲート電極3を形成する。本実施例ではゲート
長を約0.6tnaとしている。
For example, Ws is deposited on one surface of the GaAs substrate by sputtering or the like.
A gate electrode 3 is formed by depositing Siz to a thickness of about 400 om and patterning it. In this embodiment, the gate length is approximately 0.6 tna.

ゲート電極3をマスクとして、基板1に例えばSiをエ
ネルギー175keVで、ドーズ量1.7X10”cm
−2程度にイオン注入し、例えば温度750℃、時間1
5分間程度の活性化熱処理を行い、不純物濃度が1×1
0111c7I+−3程度のヤ形ソース、Fレインfi
i域4を形成する。
Using the gate electrode 3 as a mask, for example, Si is applied to the substrate 1 at an energy of 175 keV and a dose of 1.7×10”cm.
-2, for example, at a temperature of 750°C for 1 hour.
Activation heat treatment is performed for about 5 minutes, and the impurity concentration is reduced to 1×1.
0111c7I+-3 round shaped source, F rain fi
Form i-region 4.

第2図(b)参照 例えばプラズマ化学気相成長方法(P−CVD法)によ
り、SiO□膜5を厚さ例えば3QOnm程度に、基板
1及びゲート電極3上に被着する。
Referring to FIG. 2(b), a SiO□ film 5 is deposited on the substrate 1 and the gate electrode 3 to a thickness of, for example, about 3 QOnm, by, for example, a plasma chemical vapor deposition method (P-CVD method).

♂形ソース、ドレイン領域4上でSiO□膜5に開口を
設け、例えば蒸着法により金ゲルマニウム/金(AuG
e/Au)などを用いて、ソース、ドレイン電極6を形
成する。      □ 第2図(C1参照    ・ 形成されたMES PET素子のに値、閾値電圧VLh
を測定し、その目的値を実現するために必要なSiO□
膜厚の差を前記第1図等のデータに基づいて求め、この
膜厚差だけ5iOz膜7を堆積する。前記実施例におい
ては、最初にSiO□膜5を例えば300nmと薄く形
成し特性測定後にSiO2膜7を追加しているが、最初
のSing膜5を十分に厚く形成して特性測定後にこれ
をエラ示ングしてもよい。
Openings are formed in the SiO□ film 5 above the ♂-type source and drain regions 4, and gold germanium/gold (AuG
The source and drain electrodes 6 are formed using e.g. □ Figure 2 (see C1) Value and threshold voltage VLh of the formed MES PET element
SiO□ required to measure and achieve the target value
The difference in film thickness is determined based on the data shown in FIG. 1, etc., and the 5iOz film 7 is deposited by the difference in film thickness. In the above embodiment, the SiO□ film 5 is first formed as thin as, for example, 300 nm, and the SiO2 film 7 is added after measuring the characteristics. It may be shown.

また前記実施例では前後2回の絶縁膜形成に同一材料を
用いているが、組成の異なる絶縁膜を積層してもよい。
Further, in the embodiment described above, the same material is used for forming the insulating films twice, but insulating films having different compositions may be stacked.

なお以上の説明はGaAs MES FETを対象とし
ているが、他の化合物半導体材料を用い、或いは接合形
、旧S形の電界効果トランジスタについても、本発明の
方法により同様の効果が得られる。
Although the above description is directed to GaAs MES FETs, similar effects can be obtained by the method of the present invention using other compound semiconductor materials, or with junction type and old S type field effect transistors.

(発明の効果〕 以上説明した如く本発明によれば、化合物半導体電界効
果トランジスタのに値、閾値電圧を容易に、かつ的確に
補正するとか可能となる。 これにより電界効果トラン
ジスタの特性が改善され、化合物半導体集積回路装置の
実用化に大きい効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, it becomes possible to easily and accurately correct the value and threshold voltage of a compound semiconductor field effect transistor.Thereby, the characteristics of the field effect transistor are improved. , a great effect can be obtained on the practical application of compound semiconductor integrated circuit devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMES FETの絶縁膜厚等をパラメータとし
に値、閾値電圧の相関の例を示す図、第2図はMES 
FETにかかる本発明の実施例を示す工程順模式側断面
図、 第3図はMUS FETの従来例を示す模式側断面図で
ある。図において、 1は半絶縁性GaAs基板、 2はn形チャネル層、 3は一5Si3よりなるゲート電極、 4はn+形ソース、ドレイン領域、 5は第1の5iOz膜、 6はソース、ドレイン電極、 7は第2のSiO2膜を示す。 τSス、°さ 代理人 弁理士 松岡宏四部i=−,:fう3 に1 “ニー ≠ ZS 第3 図 手続補正書く自発) 1、事件の表示 明相59年特許順第236054号 3、補正をする者 4、代理人 住所 神奈川県用崎市中原区上小田中1015番地5、
亭鉦命令の日付 な  し く1)  本願明細書第1O頁第20行乃至第11頁第
3行が、GaAs以外の化合物半導体材料、例えばイン
ジウム*(InP) 、インジウムガリウム砒素(In
GaAs)等を用いた場合にも本発明の効果を得ること
かできる。更に、pn接合ゲート形及び絶縁ゲート形電
界効果トランジスタ、或いはへテロ接合を備えた一高電
子移動度電界効果トランジスタ等についても、本発明の
方法より同様の効果が得られる。」代理人弁理士松岡宏
四部1..。
Figure 1 is a diagram showing an example of the correlation between values and threshold voltage using parameters such as the insulation film thickness of MES FET, and Figure 2 is a diagram showing an example of the correlation between MES
FIG. 3 is a schematic side sectional view showing the process order of an embodiment of the present invention relating to an FET, and FIG. 3 is a schematic side sectional view showing a conventional example of a MUS FET. In the figure, 1 is a semi-insulating GaAs substrate, 2 is an n-type channel layer, 3 is a gate electrode made of -5Si3, 4 is an n+ type source and drain region, 5 is the first 5iOz film, 6 is the source and drain electrode , 7 indicates the second SiO2 film. τS, °sa agent Patent attorney Hiroshi Matsuoka Department i=-,:f3 に 1 "Nee ≠ ZS Figure 3 Procedural amendment voluntarily) 1. Indication of the case 1959 Patent Order No. 236054 3, Person making amendment 4, agent address: 1015-5 Kamiodanaka, Nakahara-ku, Yozaki City, Kanagawa Prefecture;
1) Page 10, line 20 to page 11, line 3 of the specification of the present application contain compound semiconductor materials other than GaAs, such as indium* (InP) and indium gallium arsenide (InP).
The effects of the present invention can also be obtained when using materials such as GaAs). Furthermore, similar effects can be obtained by the method of the present invention for pn junction gate type and insulated gate type field effect transistors, high electron mobility field effect transistors with heterojunctions, and the like. ”Representative Patent Attorney Hiroshi Matsuoka Department 1. .. .

Claims (1)

【特許請求の範囲】[Claims]  電界効果トランジスタ素子が形成された化合物半導体
基体上に絶縁膜を設けて、該化合物半導体基体内の圧電
分極を該絶縁膜が及ぼす応力により制御し、該電界効果
トランジスタ素子のに値及び閾値電圧の少なくとも一つ
を補正することを特徴とする半導体装置の製造方法。
An insulating film is provided on the compound semiconductor substrate on which the field effect transistor element is formed, and the piezoelectric polarization within the compound semiconductor substrate is controlled by the stress exerted by the insulating film, and the value and threshold voltage of the field effect transistor element are controlled. A method of manufacturing a semiconductor device, comprising correcting at least one of the following.
JP23605484A 1984-11-09 1984-11-09 Manufacture of semiconductor device Granted JPS61123187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23605484A JPS61123187A (en) 1984-11-09 1984-11-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23605484A JPS61123187A (en) 1984-11-09 1984-11-09 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS61123187A true JPS61123187A (en) 1986-06-11
JPH0260060B2 JPH0260060B2 (en) 1990-12-14

Family

ID=16995055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23605484A Granted JPS61123187A (en) 1984-11-09 1984-11-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61123187A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635571A (en) * 1986-06-25 1988-01-11 Nec Corp Compound semiconductor device
JPS63240074A (en) * 1987-03-27 1988-10-05 Nec Corp Semiconductor device
GB2274944A (en) * 1993-01-29 1994-08-10 Mitsubishi Electric Corp Field effect transistor and method for producing the field effect transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635571A (en) * 1986-06-25 1988-01-11 Nec Corp Compound semiconductor device
JPS63240074A (en) * 1987-03-27 1988-10-05 Nec Corp Semiconductor device
GB2274944A (en) * 1993-01-29 1994-08-10 Mitsubishi Electric Corp Field effect transistor and method for producing the field effect transistor
GB2274944B (en) * 1993-01-29 1997-04-23 Mitsubishi Electric Corp Field effect transistor and method for producing the field effect transistor

Also Published As

Publication number Publication date
JPH0260060B2 (en) 1990-12-14

Similar Documents

Publication Publication Date Title
US5512494A (en) Method for manufacturing a thin film transistor having a forward staggered structure
US5420048A (en) Manufacturing method for SOI-type thin film transistor
US4055884A (en) Fabrication of power field effect transistors and the resulting structures
JPH0451071B2 (en)
JPH0260063B2 (en)
JPH03116875A (en) Thin film field effect transistor and method of manufacturing the same
KR900000584B1 (en) Semiconductor integrated circuit device
JPH0329301B2 (en)
JPS61123187A (en) Manufacture of semiconductor device
JP3075831B2 (en) Field effect transistor and method for manufacturing the same
JPS6276772A (en) Manufacture of field effect transistor
JP2629995B2 (en) Thin film transistor
JPS59188978A (en) Manufacture of schottky gate type field effect transistor
JPS6236874A (en) Semiconductor device
JPS61129878A (en) Semiconductor device
JPH0228254B2 (en) DENKAIKOKATORANJISUTAOYOBISONOSEIZOHOHO
JPS61114583A (en) Semiconductor device
JPS6146990B2 (en)
JPS6332273B2 (en)
JPS61114582A (en) Semiconductor device
KR100271034B1 (en) Mosfet and method for fabricating the same
KR960012261B1 (en) Mos-depletion type cut-off transistor
JPS6329420B2 (en)
JP2707436B2 (en) Method for manufacturing field effect transistor
JPS60164365A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term