JPS58103123A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS58103123A
JPS58103123A JP56202854A JP20285481A JPS58103123A JP S58103123 A JPS58103123 A JP S58103123A JP 56202854 A JP56202854 A JP 56202854A JP 20285481 A JP20285481 A JP 20285481A JP S58103123 A JPS58103123 A JP S58103123A
Authority
JP
Japan
Prior art keywords
temperature
substrate
growth
compound semiconductor
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56202854A
Other languages
Japanese (ja)
Inventor
Yuuji Tanaka
優次 田中
Kazutaka Kamitake
一孝 上武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56202854A priority Critical patent/JPS58103123A/en
Publication of JPS58103123A publication Critical patent/JPS58103123A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent the redistribution by the surface deposition of Cr and by heat diffusion caused by the stress of a protective film interface by a method wherein an impurity ion is accelerated at a high electric field and is implanted into a compound semiconductor substrate provided with epitaxial growth and heat treatment (annealing treatment) is applied after forming an insulating protective film on the surface of the substrate. CONSTITUTION:After implanting <28>Si<+> of an N-conductive type impurity ion into the surface of a Cr dope semiinsulating GaAs substrate at an accelerating energy of 100keV, SiH4-NH3-H2 group gas is introduced in the substrate from an infrared heating-type nitride film growth device, and a nitride film with a film thickness of 1,000Angstrom is grown (regionI) with growth speed of 400Angstrom /min at a growth temperature of 700 deg.C. Next, the atmosphere is changed to N2 atmosphere under the present temperature condition, and room temperature is increased up to an annealing temperature of 800 deg.C at a temperature up speed of 100 deg.C/sec. Then, natural cooling is done (region II) by isolating infrared rays after maintaining the nitride film at 800 deg.C for 10min. An impurity conductive layer obtained in this way extremely controls unnecessary heat history as oppose to a conventional method and is superior in reproducibility.

Description

【発明の詳細な説明】 本発明は化合物半導体装置の製造方法に関し、特に化合
物半導体基板又はその上にエピタキシャル成長層を具備
した化合物半導体基体へ不純物イオンを高電界中で加速
して注入し、基体表面に絶縁保護膜を形成したのち、熱
処理(アニール処理)することによりNまた紘P型活性
導電層を形成する工程を具備したる半導体装置の製造方
法に関する。
Detailed Description of the Invention The present invention relates to a method for manufacturing a compound semiconductor device, and in particular, impurity ions are implanted into a compound semiconductor substrate or a compound semiconductor substrate having an epitaxial growth layer thereon by accelerating the impurity ions in a high electric field. The present invention relates to a method of manufacturing a semiconductor device, which comprises a step of forming an insulating protective film on a substrate and then performing a heat treatment (annealing treatment) to form an N or P-type active conductive layer.

一般に化合物半導体、例えばG&ム−やInP *はあ
る程度の高温にさらされると、化合物を構成する一方の
原子が基体から解離し蒸発するため、結晶の化学量論的
組成からのずれが表面で生ずる。
In general, when compound semiconductors such as G&M and InP* are exposed to a certain high temperature, one of the atoms constituting the compound dissociates from the substrate and evaporates, causing a deviation from the stoichiometric composition of the crystal at the surface. .

例えば、半絶縁性GaAs基板の場合、N、雰囲気で8
00℃、30分のアニール処理を行なうと、基体表面が
N導電型になる現象が多く観測される。
For example, in the case of a semi-insulating GaAs substrate, 8
When annealing is performed at 00° C. for 30 minutes, a phenomenon in which the substrate surface becomes N conductivity type is often observed.

Gaムー結晶は結晶の成長時に混入するN導電型不純物
が多いこと、A−の空孔密度が高いことによりN導電型
になるのが昔通である。このため深い\ 単位を形成するOrを故意にドープして半絶縁性の結晶
を得ている。この熱変性の問題は特にOrの熱拡散やA
s空孔密度上昇等で説明されており後述する不純物層の
形成において再現性を乏しくしている原因である。
It has long been known that a Ga Mu crystal becomes an N-conductivity type due to the large amount of N-conductivity type impurities mixed in during crystal growth and the high density of A- vacancies. For this reason, semi-insulating crystals are obtained by intentionally doping Or, which forms deep units. This thermal denaturation problem is especially caused by the thermal diffusion of Or
This is explained as an increase in vacancy density, etc., and is the cause of poor reproducibility in the formation of an impurity layer, which will be described later.

ところで、QaA1結晶基体にN又はP型の不純物導電
層を形成する方法として現在、不純物をドープしたエピ
タキシャル成長技術と、加速イオンを基板表面に物理的
に打込むイオン注入技術とが一般に行なわれている。後
者は、不純物導電層の再現性や基体面内での不純物の均
一性を向上させることが理論的に可能と考えられること
から、最近の10化のプロセスとして注目され多用され
ている技術である。
By the way, as methods for forming an N- or P-type impurity conductive layer on a QaA1 crystal substrate, epitaxial growth techniques doped with impurities and ion implantation techniques in which accelerated ions are physically implanted into the substrate surface are currently used. . The latter is a technology that has recently been attracting attention and being widely used as a 10-concentration process because it is thought to be theoretically possible to improve the reproducibility of impurity conductive layers and the uniformity of impurities within the plane of the substrate. .

しかるに、イオン注入技術の最大の欠点は、注入された
イオンを電気的に活性化させるための高温熱処理が不可
欠で、Gaム纒の場合この処理工程でAsの解離や拡散
係数の非常に大きなOrの再分布が生じてしまうことで
ある。この点を改善する目的で従来はIAIの解離を抑
えるため、注入後基体表面に8101.81.N4 等
の保護膜を設けこの後800〜850℃、N、又はH3
雰囲気で10〜30分のアニール処理を行なうか、ある
いはアルシン(AmH,)ガスを導入してA−気体の陽
分圧を形成した雰囲気中で800〜850℃、10〜3
0分のアニール処理を行なう方法が用いられている。前
者の場合、活性化された不純物層の濃度分布のばらつき
と深さ方向の濃度のだれ、さらには表面での濃度低下が
問題とされている。これはGaA1基板と保護膜との熱
膨張係数の違いによって界面でストレスが発生し、これ
によってOrが界面へ析出すること、およびOrの熱拡
散係数が大きいため表面近傍でOrの再分布が生じるこ
とが原因と考えられている。一方、後者の場合は前者の
問題は小さいがアルシンという非常に猛毒なガスを使用
するため作業者における安全性上の問題があり量産品へ
の適用は難しい。又将来のIO化のためには保護膜とイ
オン注入技術との組合せは不可欠である。
However, the biggest drawback of ion implantation technology is that it requires high-temperature heat treatment to electrically activate the implanted ions. This results in a redistribution of In order to improve this point, in the past, in order to suppress the dissociation of IAI, 8101.81. After applying a protective film such as N4, heat at 800 to 850℃, N, or H3.
Annealing treatment for 10 to 30 minutes in an atmosphere, or annealing at 800 to 850°C for 10 to 30 minutes in an atmosphere in which arsine (AmH,) gas is introduced to form a positive partial pressure of A-gas.
A method of performing annealing treatment for 0 minutes is used. In the former case, problems include variations in the concentration distribution of the activated impurity layer, a drop in the concentration in the depth direction, and a decrease in the concentration at the surface. This is because stress is generated at the interface due to the difference in thermal expansion coefficient between the GaA1 substrate and the protective film, which causes Or to precipitate at the interface, and because the thermal diffusion coefficient of Or is large, redistribution of Or occurs near the surface. This is thought to be the cause. On the other hand, in the case of the latter, although the problem of the former is small, since it uses a highly poisonous gas called arsine, there are safety issues for workers, making it difficult to apply to mass-produced products. Furthermore, for future IO, the combination of a protective film and ion implantation technology is essential.

このような観点から、例としてGaAs基体とイオン注
入技術との組み合わせについて考察するとまず保護膜成
長時のA!Iの解離量は膜の成長条件に依存している。
From this point of view, when we consider the combination of a GaAs substrate and ion implantation technology as an example, we first consider the A! The amount of I dissociated depends on the film growth conditions.

即ち、成長温度が高くなるとその解離量も多くなる。し
かし膜の成長条件として成長速度を上げ短時間に成長を
完了する方法を採用してAsの解離を抑えたとしても、
後に続くアニール処理で受ける熱エネルギー量が多けれ
ばム1の解離は無視できなくなる。又、保護膜とG&ム
鄭界面の熱膨張係数の違いに基づくストレスの影醤も同
様に受ける熱エネルギー量に比例する。更にOrの熱拡
散についても、現在のところ半絶縁性の基板をたやすく
得るにはOr  ドープの基板しかなく、この問題は避
は蝋い。尚、熱拡散を防ぐためには熱処理の温度を低く
シ、又処理時間を短縮すればよいが、イオン注入された
不純物原子を電気的に活性化させるために必要な温度は
800℃以下に下げられない。
That is, as the growth temperature increases, the amount of dissociation also increases. However, even if we adopt a method of increasing the growth rate and completing the growth in a short time as the film growth conditions to suppress the dissociation of As,
If the amount of thermal energy received in the subsequent annealing treatment is large, the dissociation of Mu1 cannot be ignored. Further, the stress effect due to the difference in thermal expansion coefficient between the protective film and the G&M interface is also proportional to the amount of thermal energy received. Furthermore, regarding the thermal diffusion of Or, at present, the only way to easily obtain a semi-insulating substrate is an Or-doped substrate, and this problem is unlikely to be avoided. In order to prevent thermal diffusion, the heat treatment temperature can be lowered and the treatment time can be shortened, but the temperature required to electrically activate the ion-implanted impurity atoms can be lowered to 800°C or less. do not have.

従って本発明の目的はム$の解離、保^膜界面のストレ
スによるOrの表面析出それにOrの熱拡散による再分
布等の問題を、熱処理時に受ける熱履歴を極力小さくし
て、イオン注入技術と保護膜との組合わせを改善した化
合物半導体装置の製造方法を提供することにある〇 次に本発明の一実施例を詳細に説明する。
Therefore, the purpose of the present invention is to solve problems such as dissociation of Mu$, surface precipitation of Or due to stress at the protective film interface, and redistribution due to thermal diffusion of Or by minimizing the thermal history during heat treatment and using ion implantation technology. An object of the present invention is to provide a method for manufacturing a compound semiconductor device that is improved in combination with a protective film. Next, an embodiment of the present invention will be described in detail.

第1図はGaAsについて従来の保護膜を用いたアニー
ル方法を示す温度管理図で、(a)はイオン注入された
基板表面に700℃で窒化膜を成長させるための工程で
の温度遷移の様子を示しており、(b)は別の工程即ち
窒化膜成長条件とは全く切り離された条件、ここでは8
00℃、N、雰囲気中でアニール処理を行ってイオン注
入された不純物層を得るための工程での温度遷移の様子
を示している。この方法では、窒化膜成長完了後常温ま
での冷却し、その後再度常温からアニール温度までの加
熱工程が必要である。これは本来不必要な工程であり、
熱履歴を少なくするにはまずこのことに注目しなければ
ならない。
Figure 1 is a temperature control diagram showing the conventional annealing method using a protective film for GaAs, and (a) shows the temperature transition during the process of growing a nitride film at 700°C on the surface of an ion-implanted substrate. (b) shows a different process, that is, conditions completely separate from the nitride film growth conditions, here 8
It shows the state of temperature transition in a process for obtaining an ion-implanted impurity layer by performing annealing treatment at 00° C. in a N atmosphere. This method requires cooling to room temperature after the nitride film growth is completed, and then heating again from room temperature to annealing temperature. This is an unnecessary process,
In order to reduce thermal history, we must first pay attention to this.

$2図は本発明の一実施例の温度管理図でs Orドー
プの半絶縁性GaAs基体表面にN導電型の不純物イオ
ンの2881+を100 keVの加速エネルギーで、
注入量3 X 1012(m−2)の注入を行ったのち
、本発明の原理を実現させるためにわれわれの開発した
赤外線加熱型の窒化膜成長装置により81Ha  NH
s  Ht系ガスを導入し、700℃の成長温度に対し
て成長速度400 X/mlnで膜厚1000Xの窒化
膜を成長させる(第2図の領域I)。
Figure 2 is a temperature control diagram of an embodiment of the present invention, in which 2881+ impurity ions of N conductivity type are deposited on the surface of an SOr-doped semi-insulating GaAs substrate at an acceleration energy of 100 keV.
After implantation with an implantation amount of 3 x 1012 (m-2), 81Ha NH
s Ht-based gas is introduced, and a nitride film with a thickness of 1000X is grown at a growth rate of 400X/mln at a growth temperature of 700°C (region I in FIG. 2).

次にその時の温度状態で(同じ処理装置内で)Nl雰囲
気に切換え、800℃のアニール温度まで100℃/l
@eの昇温速度で室温を上げ、800℃で10分間保持
したのち赤外線を切って自然冷却する(第2図の領域■
)。
Next, at that temperature state (within the same processing equipment), switch to Nl atmosphere and 100°C/l until the annealing temperature of 800°C.
Raise the room temperature at a heating rate of @e, hold it at 800℃ for 10 minutes, then turn off the infrared rays and let it cool naturally (area ■ in Figure 2).
).

このようにして得られた不純物導電層は従来の方法に比
べ不必要な熱履歴が極力抑制されており再現性に優れ、
かつ工程の短縮の有利さも兼ねそなえたものである。こ
れは窒化膜形成後アニール処理に移る過程で処理温度を
室温まで戻していないからである。
The impurity conductive layer obtained in this way has unnecessary thermal history suppressed as much as possible compared to conventional methods, and has excellent reproducibility.
It also has the advantage of shortening the process. This is because the processing temperature is not returned to room temperature during the annealing process after the nitride film is formed.

本発明の他の実施例として以下のようにしてもよい。即
ち、第2図の領域璽において温度を急峻に上昇させ不純
物゛の電気的な活性化に必要な800〜950℃のピー
ク温度に達したのち10分間の保持を行なうことなく、
直ちに(約数秒で)冷却を關始する方法でもよい。この
場合、長時間高温で保持される方法より高い温度まで基
板の変成がなく同様な効果がある。又エピタキシャル成
長層への不純物イオン注入による不純物導電層の形成に
も上記方法は適用できるだけでなく、選択的な不純物導
電層の形成にも簡単に適用でき、同じ改善効果が期待で
きるものである。
Other embodiments of the present invention may be implemented as follows. That is, without holding the temperature for 10 minutes after rapidly increasing the temperature in the area shown in FIG.
A method of starting cooling immediately (in about a few seconds) may also be used. In this case, the substrate does not undergo metamorphosis even at a higher temperature than the method in which it is held at high temperature for a long time, and the same effect can be obtained. Furthermore, the above method can be applied not only to the formation of an impurity conductive layer by implanting impurity ions into an epitaxially grown layer, but also to the formation of a selective impurity conductive layer, and the same improvement effect can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は夫々従来の製造方法における温度
管理図、第2図は本発明の一実施的を説明するための温
度管理図である。 昨関 → ′$2閉 昨聞→   呼量→ 第f図
FIGS. 1(a) and 1(b) are temperature control charts for conventional manufacturing methods, respectively, and FIG. 2 is a temperature control chart for explaining one embodiment of the present invention. Last check → '$2 closing → Call volume → Figure f

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体基板又はエピタキシャル成長層を具備した
化合物半導体基体にイオン注入法により不純物注入層を
形成する工程と、諌不純物注入層表面に絶縁保頗膜を形
成したのち、この絶縁保護膜形成のなされた温度から直
ちに高温熱処理を連続して行ない、注入不純物の電気的
な活性化層を形成する工程とを含むことを特徴とする化
合物半導体装置の製造方法。
The step of forming an impurity implantation layer by ion implantation on a compound semiconductor substrate or a compound semiconductor substrate having an epitaxial growth layer, and forming an insulating protective film on the surface of the impurity implanting layer, and then the temperature at which this insulating protective film was formed. 1. A method for manufacturing a compound semiconductor device, comprising the steps of: forming an electrically active layer of implanted impurities by immediately and continuously performing high-temperature heat treatment.
JP56202854A 1981-12-16 1981-12-16 Manufacture of compound semiconductor device Pending JPS58103123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56202854A JPS58103123A (en) 1981-12-16 1981-12-16 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56202854A JPS58103123A (en) 1981-12-16 1981-12-16 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS58103123A true JPS58103123A (en) 1983-06-20

Family

ID=16464287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56202854A Pending JPS58103123A (en) 1981-12-16 1981-12-16 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS58103123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868133A (en) * 1988-02-11 1989-09-19 Dns Electronic Materials, Inc. Semiconductor wafer fabrication with improved control of internal gettering sites using RTA

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312289A (en) * 1976-07-20 1978-02-03 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPS5357751A (en) * 1976-11-04 1978-05-25 Hitachi Ltd Production of semiconductor device
JPS55111125A (en) * 1979-02-21 1980-08-27 Hitachi Ltd Method for manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312289A (en) * 1976-07-20 1978-02-03 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPS5357751A (en) * 1976-11-04 1978-05-25 Hitachi Ltd Production of semiconductor device
JPS55111125A (en) * 1979-02-21 1980-08-27 Hitachi Ltd Method for manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868133A (en) * 1988-02-11 1989-09-19 Dns Electronic Materials, Inc. Semiconductor wafer fabrication with improved control of internal gettering sites using RTA

Similar Documents

Publication Publication Date Title
US4615766A (en) Silicon cap for annealing gallium arsenide
US4960728A (en) Homogenization anneal of II-VI compounds
US6884644B1 (en) Low temperature formation of backside ohmic contacts for vertical devices
US4757030A (en) Method of making group IV single crystal layers on group III-V substrates using solid phase epitaxial growth
JPH0787187B2 (en) Method for manufacturing GaAs compound semiconductor substrate
JPH04233219A (en) Manufacture of products comprising semiconductor devices
JPS58103123A (en) Manufacture of compound semiconductor device
EP0196245B1 (en) Compound semiconductor layer having high carrier concentration and method of forming same
JPH02260628A (en) Manufacture of semiconductor device
JP2848404B2 (en) Method for forming group III-V compound semiconductor layer
JPH08316164A (en) Manufacture of semiconductor element
JPS62265717A (en) Heat treating method for substrate for gallium arsenide integrated circuit
JPS6130030A (en) Method of annealing multi-element semiconductor
JPS63158836A (en) Manufacture of semiconductor element
CA1131797A (en) Fabrication of a semiconductor device in a simulated epitaxial layer
JPS59191329A (en) Manufacture of ion-implanted gaas element
US3846194A (en) Process for producing lightly doped p and n-type regions of silicon on an insulating substrate
JPS6154619A (en) Forming process of gallium arsenide p type conductive layer
JPH01243582A (en) Semiconductor device and its manufacture
JP2705374B2 (en) Method for forming group IV element semiconductor on III-V compound semiconductor
JPH0547693A (en) Manufacture of semiconductor element
JPS6157714B2 (en)
WO1987004006A1 (en) Proximity diffusion method for group iii-v semiconductors
Donahue et al. Low Temperature Silicon Epitaxy Deposited by Very Low Pressure Chemical Vapor Deposition: III. Pattern Transfer
JPS61144822A (en) Formation of gaas conductive layer