JPH0547693A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH0547693A
JPH0547693A JP22352091A JP22352091A JPH0547693A JP H0547693 A JPH0547693 A JP H0547693A JP 22352091 A JP22352091 A JP 22352091A JP 22352091 A JP22352091 A JP 22352091A JP H0547693 A JPH0547693 A JP H0547693A
Authority
JP
Japan
Prior art keywords
layer
type
manufacturing
semiconductor device
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22352091A
Other languages
Japanese (ja)
Inventor
Kimihiko Nagami
公彦 永見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22352091A priority Critical patent/JPH0547693A/en
Publication of JPH0547693A publication Critical patent/JPH0547693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve the performance of an element by doping it with impurities from an optional depth without affecting other parts of the elements at the surface of a substrate, an operating layer, etc. CONSTITUTION:The crystals of an AP dope layer 3 by p-type dopant, in a GaAs buffer layer 2, and the crystals of an AP dope layer 8 by n-type dopant, in 8n n-GaAs layer 7, are grown, and by annealing, with these AP dope layers 3 and 8 as diffusion layers, dopant is diffused to form a p-buried layer 9 and an n<+>-ohmic layer 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板に不純物原子をド
ープしてp型領域又はn型領域を形成する半導体素子の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device in which a substrate is doped with impurity atoms to form a p-type region or an n-type region.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】半導体
素子の製造過程における不純物ドーピングでは、基板表
面から深さ方向に不純物プロファイルが形成される。従
来の不純物ドーピング法としては、気相拡散,固相拡
散,イオン注入などがある。気相拡散, 固相拡散では不
純物を基板表面から拡散させるので、基板表面の不純物
濃度が高く深さ方向へゆくに従って低くなる不純物プロ
ファイルしか得られない。
2. Description of the Related Art In impurity doping in the process of manufacturing a semiconductor device, an impurity profile is formed in the depth direction from the substrate surface. Conventional impurity doping methods include vapor phase diffusion, solid phase diffusion, and ion implantation. Since the impurities are diffused from the substrate surface in vapor phase diffusion and solid phase diffusion, only the impurity profile in which the impurity concentration on the substrate surface is high and decreases as it goes in the depth direction is obtained.

【0003】一方、イオン注入法では注入エネルギの制
御により表面から任意の深さに不純物濃度の極大値をも
つプロファイルを形成できるため、この方法によってP
層埋め込み型のイオン注入FETを作成することができ
る。
On the other hand, in the ion implantation method, a profile having a maximum impurity concentration can be formed at an arbitrary depth from the surface by controlling the implantation energy.
A layer embedded type ion implantation FET can be created.

【0004】しかし、イオン注入法では高エネルギの不
純物が表面を通過する際に結晶が損傷を受け、この損傷
は不純物を活性化させるべく行われる高温のアニール処
理によっても完全には回復せずに結晶欠陥が残り素子特
性に大きな影響を与える。
However, in the ion implantation method, the crystal is damaged when high-energy impurities pass through the surface, and the damage is not completely recovered even by the high-temperature annealing treatment performed to activate the impurities. The crystal defects remain and have a great influence on the device characteristics.

【0005】本発明はこのような問題点を解決するため
になされたものであって、アトミックプレーンドーピン
グで結晶成長させた層を不純物の拡散源とすることによ
り、素子の動作層などの他の部分に影響を与えないで任
意の深さから不純物を拡散できる半導体素子の製造方法
を提供することを目的とする。
The present invention has been made in order to solve such a problem, and the layer grown by the atomic plane doping is used as a diffusion source of impurities, so that other layers such as an operating layer of an element can be obtained. It is an object of the present invention to provide a method for manufacturing a semiconductor device capable of diffusing impurities from an arbitrary depth without affecting a portion.

【0006】[0006]

【課題を解決するための手段】本発明に係る半導体素子
の製造方法は、不純物のドーピングによってp型領域又
はn型領域を形成する半導体素子の製造方法において、
p型又はn型に形成すべき領域内にアトミックプレーン
ドープ層を設け、該アトミックプレーンドープ層を不純
物の拡散源とすることを特徴とする。
A method of manufacturing a semiconductor device according to the present invention is a method of manufacturing a semiconductor device, in which a p-type region or an n-type region is formed by doping an impurity,
An atomic plane dope layer is provided in a region to be formed into a p-type or an n-type, and the atomic plane dope layer is used as a diffusion source of impurities.

【0007】[0007]

【作用】本発明に係る半導体素子の製造方法は、n型又
はp型に形成すべき領域内にn型又はp型のドーパント
からなるアトミックプレーンドープ層を形成しておき、
熱処理を加えてアトミックプレーンドープ層を拡散源と
して不純物を拡散させる。従って、基板の表面を損傷す
ることなく、任意の深さにn型又はp型領域が形成でき
る。
According to the method of manufacturing a semiconductor device of the present invention, an atomic plane dope layer made of an n-type or p-type dopant is formed in a region to be formed as an n-type or p-type,
The heat treatment is applied to diffuse the impurities using the atomic plane dope layer as a diffusion source. Therefore, the n-type or p-type region can be formed at any depth without damaging the surface of the substrate.

【0008】[0008]

【実施例】以下、本発明をその実施例を示す図に基づい
て説明する。図1は本発明に係る半導体素子の製造方法
によるFET の製造過程を示す断面図である。
The present invention will be described below with reference to the drawings showing the embodiments thereof. FIG. 1 is a cross-sectional view showing a process of manufacturing an FET by the method of manufacturing a semiconductor device according to the present invention.

【0009】まず、半絶縁性のGaAs基板1に結晶成長に
よって8000Åのバッファ層2を形成するが、結晶成長を
中断してMBE, MOCVD等の結晶成長法で、拡散係数の大き
いドーパントを用いてアトミックプレーンドープを行
い、p型ドーパントのAP(アトミックプレーン)ドープ
層3を挿入する。
First, the 8000 Å buffer layer 2 is formed on the semi-insulating GaAs substrate 1 by crystal growth. The crystal growth is interrupted and a dopant having a large diffusion coefficient is used by a crystal growth method such as MBE or MOCVD. Atomic plane doping is performed, and an AP (atomic plane) doped layer 3 of p-type dopant is inserted.

【0010】拡散係数の大きいドーパントとして、n型
領域を形成する場合はSe,Te 等、またp型領域を形成す
る場合はZn等が用いられる。以下に、各ドーパントの拡
散係数D(cm2 /sec)を示す。 Se: D=3.0 ×103 e(−4.16/kT ) (但し、k:ボルツマン定数, T:絶対温度) Te: D=10-13 (at 1000 ℃),3 ×10-14 (at 580
℃) Zn: D≒10-8(at 900℃),10-10 (at 700℃)
As the dopant having a large diffusion coefficient, Se, Te or the like is used for forming the n-type region, and Zn or the like is used for forming the p-type region. The diffusion coefficient D (cm 2 / sec) of each dopant is shown below. Se: D = 3.0 × 10 3 e (−4.16 / kT) (however, k: Boltzmann's constant, T: absolute temperature) Te: D = 10 −13 (at 1000 ° C.), 3 × 10 −14 (at 580
℃) Zn: D ≒ 10 -8 (at 900 ℃), 10 -10 (at 700 ℃)

【0011】本実施例では、p型ドーパントのAP(アト
ミックプレーン)ドープ層3入りバッファ層2を形成し
た後、バッファ層2の上にn-GaAs動作層4を形成する
(図1(a) )。
In this embodiment, after the buffer layer 2 containing the AP (atomic plane) doped layer 3 of p-type dopant is formed, the n-GaAs operating layer 4 is formed on the buffer layer 2 (FIG. 1 (a)). ).

【0012】n-GaAs 動作層4にW,Si等の耐熱金属ゲー
ト5、SiO2 等のサイドウォール6を形成する(図1
(b))。
A refractory metal gate 5 of W, Si or the like and a sidewall 6 of SiO 2 or the like are formed on the n-GaAs operating layer 4 (FIG. 1).
(b)).

【0013】選択結晶成長法によってn-GaAs 層7を成
長させるが、成長を中断してn型ドーパントのAPドープ
層8を挿入する(図1(c) )。
The n-GaAs layer 7 is grown by the selective crystal growth method, but the growth is interrupted and the AP-doped layer 8 of the n-type dopant is inserted (FIG. 1 (c)).

【0014】次に、アニール装置を用いてp型ドーパン
トのAPドープ層3とn型ドーパントのAPドープ層8とを
拡散源としてドーパントをそれぞれ拡散させ、n+ オー
ミック層10とp埋込層9を形成する(図1(d) )。
Next, an annealing device is used to diffuse the dopants using the AP-doped layer 3 of the p-type dopant and the AP-doped layer 8 of the n-type dopant as diffusion sources, respectively, and the n + ohmic layer 10 and the p-buried layer 9 are formed. Are formed (FIG. 1 (d)).

【0015】拡散の距離dは拡散時間をt(sec )とす
ると、d=(D・t)1/2 となる。従って、上述のドー
パントをそれぞれ300Å拡散させるには、Te:1000℃で9
0秒, 580℃で3分、Se:1000℃で36秒、Zn: 700℃で
0.1 秒のアニール処理が必要である。
The diffusion distance d is d = (D · t) 1/2 when the diffusion time is t (sec). Therefore, in order to diffuse 300 Å of each of the above dopants, Te:
0 seconds, 580 ℃ for 3 minutes, Se: 1000 ℃ for 36 seconds, Zn: 700 ℃ for 3 seconds
Annealing for 0.1 seconds is required.

【0016】図2は本発明に係る半導体素子の製造方法
により作成したBP-SAINT FET(p層埋込みSAINT FET )
の断面図である。この実施例では、p型ドーパントのAP
ドープ層11を拡散源としてアニール処理してp埋込層12
を形成するものである。
FIG. 2 shows a BP-SAINT FET (p-layer-embedded SAINT FET) prepared by the method for manufacturing a semiconductor device according to the present invention.
FIG. In this example, the p-type dopant AP
Annealing is performed using the doped layer 11 as a diffusion source to form the p-buried layer 12
Is formed.

【0017】[0017]

【発明の効果】以上のように、本発明に係る半導体素子
の製造方法は、n型又はp型領域を形成しようとする層
にAPドープ層を挿入してアニール処理することによりAP
ドープ層を拡散源として不純物が拡散されるので、任意
の深さで不純物の拡散を行うことができるとともに、拡
散による基板表面の結晶損傷及び不純物濃度の変化を受
けずに性能の良い半導体素子が得られるという優れた効
果を奏する。
As described above, in the method of manufacturing a semiconductor device according to the present invention, the AP-doped layer is inserted into the layer in which the n-type or p-type region is to be formed and the annealing treatment is performed.
Since the impurities are diffused by using the doped layer as a diffusion source, the impurities can be diffused at an arbitrary depth, and a semiconductor element having a good performance without being damaged by the crystal damage on the substrate surface and the change in the impurity concentration can be obtained. It has an excellent effect of being obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体素子の製造方法によるFET
の製造過程を示す断面図である。
FIG. 1 is a FET according to a method for manufacturing a semiconductor device according to the present invention.
FIG. 6 is a cross-sectional view showing the manufacturing process of.

【図2】本発明に係る半導体素子の製造方法により製造
されたBP-SAINT FETの断面図である。
FIG. 2 is a cross-sectional view of a BP-SAINT FET manufactured by the method for manufacturing a semiconductor device according to the present invention.

【符号の説明】 1 GaAs基板 2 GaAsバッファ層 3 APドープ層 4 n-GaAs 動作層 7 n-GaAs 層 8 APドープ層 9 p埋込層 10 n+ オーミック層 11 APドープ層 12 p埋込層[Explanation of symbols] 1 GaAs substrate 2 GaAs buffer layer 3 AP-doped layer 4 n-GaAs operating layer 7 n-GaAs layer 8 AP-doped layer 9 p buried layer 10 n + ohmic layer 11 AP-doped layer 12 p buried layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 不純物のドーピングによってp型領域又
はn型領域を形成する半導体素子の製造方法において、
p型又はn型に形成すべき領域内にアトミックプレーン
ドープ層を設け、該アトミックプレーンドープ層を不純
物の拡散源とすることを特徴とする半導体素子の製造方
法。
1. A method of manufacturing a semiconductor device, wherein a p-type region or an n-type region is formed by doping an impurity,
A method of manufacturing a semiconductor device, comprising: providing an atomic plane dope layer in a region to be formed into a p-type or an n-type, and using the atomic plane dope layer as a diffusion source of impurities.
JP22352091A 1991-08-07 1991-08-07 Manufacture of semiconductor element Pending JPH0547693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22352091A JPH0547693A (en) 1991-08-07 1991-08-07 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22352091A JPH0547693A (en) 1991-08-07 1991-08-07 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH0547693A true JPH0547693A (en) 1993-02-26

Family

ID=16799433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22352091A Pending JPH0547693A (en) 1991-08-07 1991-08-07 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH0547693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982002951A1 (en) * 1981-02-16 1982-09-02 Ogoshi Yoshimasa Apparatus for measuring concentration of bilirubin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982002951A1 (en) * 1981-02-16 1982-09-02 Ogoshi Yoshimasa Apparatus for measuring concentration of bilirubin

Similar Documents

Publication Publication Date Title
US4629520A (en) Method of forming shallow n-type region with arsenic or antimony and phosphorus
JPH07226510A (en) Doping of semiconductor polysilicon layer and manufacture of pmosfet using this
JPH05347313A (en) Manufacture of extremely thin active region of high-speed semiconductor device
JPS61248470A (en) Iii-v group semiconductor device and manufacture thereof
JPH03278542A (en) Semiconductor device
JPH0547693A (en) Manufacture of semiconductor element
EP0196245B1 (en) Compound semiconductor layer having high carrier concentration and method of forming same
US20040115889A1 (en) Ultra shallow junction formation
US20050112830A1 (en) Ultra shallow junction formation
JPH05175536A (en) Manufacture of semiconductor device
JP3205150B2 (en) Method for manufacturing semiconductor device
JPH0964355A (en) Manufacture of semiconductor element
JP2797200B2 (en) Polycrystalline silicon electrode and method of manufacturing the same
JP2708492B2 (en) Method for manufacturing semiconductor device
JPS6159723A (en) Manufacture of semiconductor device
JPH023916A (en) Manufacture of semiconductor device
JP3168310B2 (en) Method for manufacturing semiconductor device
JP2023017508A (en) Nitride semiconductor device and method for manufacturing nitride semiconductor device
JPH0373540A (en) Hetero-junction bipolar transistor and manufacture thereof
JPH05110079A (en) Manufacture of semiconductor device
JPS62243316A (en) Manufacture of semiconductor device
JPS58103123A (en) Manufacture of compound semiconductor device
JPS60137072A (en) Manufacture of junction type field effect transistor
JPS6386426A (en) Manufacture of compound semiconductor device
JPH05121345A (en) Manufacture of semiconductor device