JPS63142880A - Multi-beam semiconductor laser - Google Patents

Multi-beam semiconductor laser

Info

Publication number
JPS63142880A
JPS63142880A JP29026586A JP29026586A JPS63142880A JP S63142880 A JPS63142880 A JP S63142880A JP 29026586 A JP29026586 A JP 29026586A JP 29026586 A JP29026586 A JP 29026586A JP S63142880 A JPS63142880 A JP S63142880A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser
leading
junction
out electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29026586A
Other languages
Japanese (ja)
Inventor
Katsuto Shimada
勝人 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP29026586A priority Critical patent/JPS63142880A/en
Publication of JPS63142880A publication Critical patent/JPS63142880A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond

Landscapes

  • Die Bonding (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the heat dissipating properties of the heat of a laser light-emitting section, and to inhibit the generation of a dislocation loop and a dark line by fixing a base with conductive material wirings in the number of laser beam pairs formed onto an insulating film on a radiator plate and a multi-beam semiconductor laser in a junction-down manner through a solder material. CONSTITUTION:Al2O3 having a comparatively large heat transfer coefficient as an insulator is deposited onto an Si heat sink 101 filling the role of a radiator plate through plasma CVD, a film is formed through a sputtering method by Au as a conductive material for leading-out electrodes, and the leading-out electrodes 103 are shaped through patterning by a normal photolithographic process, thus manufacturing a base. Laser beams are emitted in the longitudinal direction of an etching stripe from three pairs of light-emitting sections 106. The semiconductor laser chip 104 is bonded through a solder material in a junction-down manner, and a common electrode and the leading-out electrodes 103 are bonded by gold wires 105, thus forming wirings for each electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマルチビーム半導体レーザをジャンクションダ
ウンでヒートシンクに固着する溝道に関するものでめる
・ 〔従来の技術〕 従来のマルチビーム半導体レーザのヒートシンクへのマ
ウント方法は、第47回応用物理学会学術講演会講演予
稿集P159、−演番号27p−T−11にあるように
、ジャンクションアップでマウントされてい友、これを
$2図で説明する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a groove path for fixing a multi-beam semiconductor laser to a heat sink by junction down. [Prior Art] Heat sink of a conventional multi-beam semiconductor laser The mounting method for the 47th Japan Society of Applied Physics Academic Conference Proceedings P159, performance number 27p-T-11 shows how to mount it by junction up. This will be explained using a $2 diagram.

3組の発光部206t%つレーザ204が、エツチング
により分離されてお9、電極框ヒートシンク201接着
側は共通となっていて、発光部206側はそれぞれ、ワ
イヤー205のボンディングで別個に取り付けられ、そ
れぞれの発光5206は独立に制御できるようになって
いる。
Three sets of light emitting parts 206t% lasers 204 are separated by etching 9, the bonding side of the electrode frame heat sink 201 is common, and the light emitting parts 206 sides are each attached separately by bonding with wires 205. Each light emission 5206 can be controlled independently.

このように発光部206側が、ヒートシンク201とは
逆側になるよう接着されている。この接着万f:は、発
光部206すなわちp−nジャンクションが上側にある
九めジャンクション・アップと呼ばれている。ヒートシ
ンク201i1ノーザ発元5206付近で兄生じt熱の
放熱のために使用されている。
In this way, the light emitting part 206 side is bonded so that it is on the opposite side from the heat sink 201. This adhesion is called a ninth junction up in which the light emitting portion 206, that is, the p-n junction is on the upper side. The heat sink 201i1 is used to dissipate the heat generated near the norther generator 5206.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上記の従来技術では、1ノ−ザビーム発光部がヒ
ートシンクから離れているため、発光部で発生する熱の
放熱性が悪く、高出力1ノ−ザには不向きであった。す
なわち、熱による半導体レーザ発光部の温度上昇によっ
て転位ループやダークラインの発生が活性化され、寿命
が短かくなるとか、しきい値電流の上昇、外部微分量子
効率の減少など、信頼性に問題点が6つ几。
However, in the above-mentioned conventional technology, since the one-noser beam light emitting section is located far from the heat sink, the heat dissipation property of the heat generated in the light-emitting section is poor, making it unsuitable for a high-output one-noser. In other words, the rise in temperature of the semiconductor laser light emitting part due to heat activates the generation of dislocation loops and dark lines, resulting in reliability problems such as shortened lifetime, increased threshold current, and decreased external differential quantum efficiency. There are 6 points.

さらに上記の問題点に加えて、実装上半導体レーザの上
部電極の数だけ、直接ワイヤーポンディングするtめ、
ボンディング不良が起こりやすいという問題点も有して
い友。
Furthermore, in addition to the above-mentioned problems, since the number of upper electrodes of the semiconductor laser is directly wire bonded,
It also has the problem of easy bonding failure.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決する九めに、本発明のマルチビーム半
導体レーザに、複数のレーザビーム対が独立に放射でき
るマルチビーム半導体レーザにおいて、放熱板上に絶縁
膜全層し、前記絶縁膜上に形成した前記レーザビーム対
の数の導電材料配線を備え九基台と、前記マルチビーム
半導体1ノ−ザがろう材を介して、ジャンクションダウ
ンで固着されていることを特徴とするジャンクションダ
ウンとに、半導体レーザのp−nジャンクションが基台
側になる工うな固層方法金いう。
Ninthly, in order to solve the above problems, in the multi-beam semiconductor laser of the present invention, in which a plurality of pairs of laser beams can be emitted independently, an insulating film is formed in all layers on the heat sink. 9 bases each having conductive material wiring in the number of the formed laser beam pairs; and a junction down, characterized in that the multi-beam semiconductor 1 noser is fixed by a junction down via a brazing material. In this case, the semiconductor laser's p-n junction is on the base side, which is called a solid-state method.

〔実施例〕〔Example〕

以下、本発明について、実施例?こ基づき詳細に伐明す
る。第1囚は本発明のマルナビーム半導体1ノーザの実
肢方法を示′r要部斜視図である。工程を追って伐明す
ると、放熱板の役目をは几すS1ヒートシンク101上
に絶縁体であり比較的熱電導率の人きいAIt@03 
102’、(7う、x: −r CV Dで堆積し、引
出し電極用の4vL材料、例えばAutスパッタ法で成
膜した後、普通のフォトリングラフィ工程により、パタ
ーニングし、引出し電極103全形成し基台とする。本
実施例では、スリービーム半導体1)−ザを用い7tた
め、3個の引出し電極103がある。
Hereinafter, examples of the present invention will be described. Based on this, I will explain in detail. The first figure is a perspective view of the main part of the Marna Beam semiconductor 1 noser according to the present invention. Following the process, we find that on the S1 heat sink 101, which plays the role of a heat sink, there is an insulator with relatively high thermal conductivity.
102', (7U, In this embodiment, a three-beam semiconductor 1) is used and has a thickness of 7t, so there are three extraction electrodes 103.

一方、半導体1ノ−ザ104の詳しい溝道に第5図に示
す、第1導電型の半導体単結晶基板301上に、順次第
1導電型のバッファ層302、第1導電型のクラッド層
503、ノンドープ活性層304、第2導電型のクラッ
ド層305、第2導電型のコンタクト層306がエピタ
キシャルg長され、第1導を型側の電極308、第2導
電型側の電極307をそれぞれ半導体単結晶基板301
、コンタクト層306側に蒸着で形成しt後、オーミッ
ク接触するようアニールし、リアクティブイオンビーム
エツチング法等で、活性層504i3つに分離する。1
ノ−ザビームは、3組の発光部106からエツチングス
トライプの長手方向に放射される。
On the other hand, in the detailed groove path of the semiconductor 1 nose 104, as shown in FIG. , the non-doped active layer 304, the cladding layer 305 of the second conductivity type, and the contact layer 306 of the second conductivity type are epitaxially lengthened. Single crystal substrate 301
, is formed on the contact layer 306 side by vapor deposition, and then annealed to make ohmic contact, and separated into three active layers 504i by reactive ion beam etching or the like. 1
The nose beam is emitted from three sets of light emitting sections 106 in the longitudinal direction of the etching stripe.

この半導体レーザチップを第1図に示すようジャンクシ
ョンダウンでろう材を介して接着し、金ワイヤ−105
で共通電極及び引出し電極103をボンディングし、各
電極の配線全形成する。
This semiconductor laser chip is bonded via a brazing material with a junction down as shown in Figure 1, and gold wire-105
The common electrode and the lead electrode 103 are bonded, and all wiring for each electrode is formed.

本実施例でに、スリービーム半導体1ノ−ザを用いて説
明したが、ツービーム半導体レ−ザとか、スリービーム
以上の発光8を所有する半導体レーザについても当然同
様の実装方@全使用できる。
Although this embodiment has been described using a three-beam semiconductor laser, the same mounting method can also be used for a two-beam semiconductor laser or a semiconductor laser having three or more beams of light.

〔発明の効果〕〔Effect of the invention〕

本発明の効果Vユ、マルチビーム半導体1ノ−ザをジャ
ンクションダウンでヒートシンクにN!することにより
、1ノ−ザ発元部で発生する熱の放熱性全向上させるこ
とができ、1ノ一ザ発元部での転位ループやダークライ
ンの発生を抑制でき、長寿命で信頼性の高いレーザに提
供することができる。
The effect of the present invention is to connect a multi-beam semiconductor 1 nose to a heat sink with a junction down! By doing so, it is possible to completely improve the heat dissipation of the heat generated at the 1-noser source, suppress the occurrence of dislocation loops and dark lines at the 1-noser source, and ensure long life and reliability. Can be provided with high laser beams.

また、長時間駆動に対してしきい値電流、外部微分を子
効率の変動金少なくすることができる。
Further, it is possible to reduce fluctuations in threshold current and external differential efficiency for long-time driving.

さらに、半導体1ノ−ザ上にボンティングする回数は1
回でよいため、ボンディング不良による欠陥品を少なく
することができ、歩留′!!シを大幅に同上するOとが
できる。
Furthermore, the number of times of bonding on the semiconductor 1 nose is 1.
Since it only takes a few times, it is possible to reduce the number of defective products due to poor bonding, and improve the yield rate. ! It is possible to obtain O which greatly equates to C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のマルナビーム半導体1ノーザを示す
妾都召視図。 第2図は、従来のマルチビーム半24坏レー”Q−示す
要部斜視図。 第3図は、本発明のスリービーム半導体1ノーザナツプ
の斜視図。 101・・・S1ヒートシンク 102  ・・・ A n  鵞 03105・・・引
出し電極 104・・・半導体1ノ−ザ 105・・・金ワイヤ− 106・・・発光部 201・・・S1ヒートシンク 204・・・半導体レーザ 205・・・ワイヤー 206・・・発光部 301・・・半導体単結晶基板 302・・・バッファ膚 305・・・クラッド層 304・・・活性層 305・・・クラッド層 306・・・コンタクト層 307・・・電極 308・・・電極 以上 出願人 セイコーエプソン株式会社 代理人 弁理士  最 上  (、・・務:〜、2他−
′1名
FIG. 1 is a perspective view showing a Marna Beam semiconductor 1 noser of the present invention. Fig. 2 is a perspective view of the main parts of a conventional multi-beam half-24 x relay. Fig. 3 is a perspective view of a three-beam semiconductor 1 norther nap of the present invention. 101...S1 heat sink 102...A n Goose 03105...Extraction electrode 104...Semiconductor 1 nose 105...Gold wire 106...Light emitting section 201...S1 heat sink 204...Semiconductor laser 205...Wire 206... - Light emitting part 301...Semiconductor single crystal substrate 302...Buffer skin 305...Clad layer 304...Active layer 305...Clad layer 306...Contact layer 307...Electrode 308... Electrodes and above Applicant Seiko Epson Co., Ltd. Representative Patent Attorney Mogami (...Affiliate: ~, 2 others-
'1 person

Claims (1)

【特許請求の範囲】[Claims] 複数のレーザビーム対が独立に放射できるマルチビーム
半導体レーザにおいて、放熱板上に絶縁膜を有し、前記
絶縁膜上に形成した前記レーザビーム対の数の導電材料
配線を備えた基台と、前記マルチビーム半導体レーザが
ろう材を介して、ジャンクションダウンで同着されてい
ることを特徴とするマルチビーム半導体レーザ。
In a multi-beam semiconductor laser capable of independently emitting a plurality of laser beam pairs, a base having an insulating film on a heat sink and having conductive material wiring formed on the insulating film as many as the number of the laser beam pairs; A multi-beam semiconductor laser, characterized in that the multi-beam semiconductor laser is bonded together by a junction down via a brazing material.
JP29026586A 1986-12-05 1986-12-05 Multi-beam semiconductor laser Pending JPS63142880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29026586A JPS63142880A (en) 1986-12-05 1986-12-05 Multi-beam semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29026586A JPS63142880A (en) 1986-12-05 1986-12-05 Multi-beam semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63142880A true JPS63142880A (en) 1988-06-15

Family

ID=17753900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29026586A Pending JPS63142880A (en) 1986-12-05 1986-12-05 Multi-beam semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63142880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057402A (en) * 2000-08-10 2002-02-22 Sony Corp Semiconductor light-emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057402A (en) * 2000-08-10 2002-02-22 Sony Corp Semiconductor light-emitting element
JP4538921B2 (en) * 2000-08-10 2010-09-08 ソニー株式会社 Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP2017050463A (en) Surface emission semiconductor laser array and manufacturing method of surface emission semiconductor laser array
JP3736462B2 (en) Semiconductor laser device
JP3617565B2 (en) Nitride semiconductor laser device
JP2021170673A (en) End face light emission type laser bar
JP4811629B2 (en) Semiconductor laser device
WO2019163276A1 (en) Semiconductor light-emitting device
JP2000261088A (en) Light emitting element
JPH11220204A (en) Arrayed semiconductor laser system and its manufacture
JPH036875A (en) Semiconductor laser
JP5280119B2 (en) Semiconductor laser device
JP2005505914A (en) Power pack laser diode assembly
JPS63142880A (en) Multi-beam semiconductor laser
JP2010245207A (en) Multi-beam semiconductor laser device
JPH0451073B2 (en)
JP2004096062A (en) Semiconductor light emitting device
JPS63144588A (en) Sub-mount for semiconductor chip laser
JPH02103987A (en) Semiconductor laser-array device
JPH1022570A (en) Nitride semiconductor laser element
JPH0758400A (en) High output pulse laser diode module
JPS63141385A (en) Multibeam semiconductor laser device
JPS61234588A (en) Submount for optical semiconductor element
JPS6079789A (en) Semiconductor laser-array device
JP2002232063A (en) Semiconductor laser device and light pickup device
KR101501012B1 (en) High-power laser diode module and fabricating method thereof
JPH02257689A (en) Multibeam semiconductor laser device