JPH02103987A - Semiconductor laser-array device - Google Patents

Semiconductor laser-array device

Info

Publication number
JPH02103987A
JPH02103987A JP63184158A JP18415888A JPH02103987A JP H02103987 A JPH02103987 A JP H02103987A JP 63184158 A JP63184158 A JP 63184158A JP 18415888 A JP18415888 A JP 18415888A JP H02103987 A JPH02103987 A JP H02103987A
Authority
JP
Japan
Prior art keywords
laser
elements
electrode
outermost
laser array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63184158A
Other languages
Japanese (ja)
Inventor
Masaki Tsunekane
正樹 常包
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63184158A priority Critical patent/JPH02103987A/en
Publication of JPH02103987A publication Critical patent/JPH02103987A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Abstract

PURPOSE:To diffuse heat which is generated in an element into the outward lateral direction, to suppress the increase in temperature, to decrease interference to neighboring elements and to improve reliability by forming a semiconductor region at the outside of an outermost element in a laser array element having separated electrodes. CONSTITUTION:Grooves 30 extending from the side of an electrode to an active layer 4 are provided in multilayered growth layers 3 on a semiconductor substrate 2. Laser array elements 31 in the layer 3 are electrically separated. A semiconductor region 100 is formed at the outside of an outermost element 31a. A pattern electrode 8 is formed on a heat sink 7 and bonded to the electrode 6 and the elements 31 electrically and thermally through a brazing filler metal 9. A contact wire 10 is connected by compression to the region 100 so as to form electrical contact. Introduction of defects into the elements 31 is prevented. Heat generated in the outermost element 31a is diffused in the lateral direction through the semiconductor region in this way. The increase in temperature is suppressed, and thermal interference to neighboring elements is decreased. Thus the reliability is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、安定して動作し信頼性の高い半導体レーザア
レイ(以下レーザアレイ装置と略記する)装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser array (hereinafter abbreviated as a laser array device) device that operates stably and has high reliability.

〔従来の技術〕[Conventional technology]

従来、アプライド・オプティクス(APPLIED  
0PTICS)Vo 1.23.Nn、24゜pp46
13 (1984)に記載されるような技術が知られて
いる。これは第3図に示すようにGaAs12を基板と
しAlGaAsを材料とする活性層14を内包する多層
成長層13を形成し、150μm間隔にレーザ発光点1
1を形成するように多層成長N(素子間)に、p電極1
6側から活性層14まで分離する溝30を設け、各レー
ザ素子31が独立に駆動できる構造になっている。さら
に、BeOを材料とするヒートシンク17側にも半導体
レーザアレイ素子(以下レーザアレイ素子と略記する)
と同じように中心距離150μm間隔でパターン電極1
8を設けて、図に示すようにレーザアレイ素子の電極と
ヒートシンク17の電極を合わせInのろう材19によ
り接着している。またn側電極15のコンタクトワイヤ
ー20との接触点は任意のレーザ素子上かそれに近い領
域で形成している。
Conventionally, applied optics (APPLIED
0PTICS) Vo 1.23. Nn, 24°pp46
13 (1984) is known. As shown in FIG. 3, a multilayer growth layer 13 is formed using GaAs 12 as a substrate and an active layer 14 made of AlGaAs as a material, and laser emitting points are placed at intervals of 150 μm.
A p-electrode 1 is formed on the multilayer growth N (between elements) to form a
A groove 30 is provided to separate the active layer 14 from the 6 side, so that each laser element 31 can be driven independently. Furthermore, a semiconductor laser array element (hereinafter abbreviated as laser array element) is also installed on the heat sink 17 side made of BeO.
In the same way as above, pattern electrode 1 is placed at intervals of 150 μm between centers.
8, and as shown in the figure, the electrodes of the laser array element and the electrodes of the heat sink 17 are aligned and bonded together using an In brazing material 19. Further, the contact point of the n-side electrode 15 with the contact wire 20 is formed on or near an arbitrary laser element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら従来の技術は、最も外側及び外側付近のレ
ーザ素子は横方向に熱の逃げ場がないために放熱が悪く
、動作時の発熱による温度上昇により動作が不安定にな
り信頼性も低下する。加えて隣接する他のレーザ素子に
熱的な干渉を与え、動作を不安定にしたり、信頼性の低
下を招く恐れがあった。
However, in the conventional technology, the outermost laser elements and the laser elements near the outer side have poor heat dissipation because there is no place for heat to escape in the lateral direction, and the temperature rise due to heat generated during operation makes the operation unstable and reduces reliability. In addition, there is a possibility that thermal interference may be caused to other adjacent laser elements, leading to unstable operation or a decrease in reliability.

また共通な基板側のコンタクトはレーザ素子の活性領域
上かそれに近いところで形成さなければならず、コンタ
クト形成の際になんらかの欠陥が導入され素子の信頼性
を低下させる原因になっていた。
In addition, contacts on the common substrate side must be formed on or near the active region of the laser element, and some defects may be introduced during contact formation, causing a reduction in the reliability of the element.

本発明の目的は、レーザアレイ素子のもつとも外側のレ
ーザ素子の温度上昇を抑え、動作を安定させ、信頼性を
向上し、かつ基板側の電極にコンタクトワイヤーを電気
的に接続してもレーザ素子が劣化せず信頼性が高いレー
ザアレイ装置を提供することにある。
The purpose of the present invention is to suppress the temperature rise of the outer laser elements of a laser array element, stabilize the operation, improve reliability, and prevent the laser elements from being damaged even when the contact wire is electrically connected to the electrode on the substrate side. An object of the present invention is to provide a highly reliable laser array device that does not deteriorate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のレーザアレイ装置は、同一半導体基板上に、活
性層を内包する多層成長層を有し、溝で互いに電気的に
分離された複数のレーザ素子をアレイ状に備え、さらに
、このレーザアレイの少なくとも一方の最も外側のレー
ザ素子の発光点より外側に、レーザ素子の間隔よりも広
い半導体領域を設けたレーザアレイ素子と、そのレーザ
アレイ素子の各レーザ素子に形成された電極と同じ中心
間隔で電気的に分離されたパーターン電極を有し、最も
外側の電極が素子間隔より広い電極領域を有するヒート
シンクとを、互いの分離された電極を向かい合わせてろ
う材により電気的、熱的に接着した構成となっている。
The laser array device of the present invention has a multilayer growth layer containing an active layer on the same semiconductor substrate, and is provided with a plurality of laser elements in an array, which are electrically isolated from each other by grooves, and further comprises: A laser array element that has a semiconductor region wider than the spacing between the laser elements outside the light emitting point of at least one of the outermost laser elements, and a center spacing that is the same as that of the electrodes formed on each laser element of the laser array element. The heat sink has patterned electrodes that are electrically separated from each other, and the outermost electrode has an electrode area wider than the element spacing, and is electrically and thermally bonded using a brazing material with the separated electrodes facing each other. The structure is as follows.

〔作用〕[Effect]

本発明は、分離電極を有するレーザアレイ素子の最も外
側のレーザ素子のさらに外側にレーザ素子間隔以上の長
さの半導体領域を形成して、ヒートシンクに固着してい
る構造になっている。このため最も外側のレーザ素子に
おいて発生する熱はこの半導体領域を介して外側横方向
へ放散されるので、素子の温度上昇を抑え、信頼性が向
上すると同時に、隣接する他の素子への熱的な干渉を低
減することができる。
The present invention has a structure in which a semiconductor region having a length equal to or longer than the laser element interval is formed further outside the outermost laser element of a laser array element having a separation electrode, and is fixed to a heat sink. Therefore, the heat generated in the outermost laser element is dissipated outward laterally through this semiconductor region, which suppresses the temperature rise of the element and improves reliability, while at the same time reducing thermal radiation to other adjacent elements. interference can be reduced.

また最も外側の素子とその外側に設けた半導体領域の間
を電気的に分離すると、放熱の改善に加え、外側に設け
た半導体領域における漏れ電流が最も外側のレーザ素子
に流れ込むのを防ぎ、素子の動作電流を安定させ、余分
な温度上昇を避けることができる。
In addition, electrically separating the outermost element and the outermost semiconductor region not only improves heat dissipation but also prevents leakage current in the outermost semiconductor region from flowing into the outermost laser element. can stabilize the operating current and avoid excessive temperature rise.

さらに共通な基板側の電気的なコンタクトをレーザアレ
イ素子の最も外側の発光点より外側の設けた半導体領域
に形成することができるのでレーザ素子に欠陥などが導
入されることがなくレーザアレイ装置の信頼性を向上さ
せることができる。
Furthermore, since electrical contacts on the common substrate side can be formed in the semiconductor region provided outside the outermost light emitting point of the laser array element, defects are not introduced into the laser element, and the laser array device Reliability can be improved.

〔実施例〕〔Example〕

第1図本発明の一実施例のレーザアレイ装置を示した図
である。レーザアレイ素子は、n形GaAs 2を基板
とし、AlGaAsを材料として多層成長層3に100
μm間隔でレーザ発光点1が形成されるように、多層成
長層3にp電極6側から活性層4まで至る溝30を形成
し、溝30で電気的に完全に分離されているレーザ素子
を複数個基板2上に備えた構成になっている0両端の最
も外側のレーザ素子31aの発光点の外側には300μ
mの長さで半導体領域100が設けられている。レーザ
アレイ素子の半導体材料としては他にGaAsを基板と
するAIGaInPを材料とするレーザ素子でもよいし
、InPを基板とするInGaAsPを材料とするレー
ザ素子でもよい、また半導体の伝導型(pとn)は逆転
してもよい、電気的絶縁性のSiCから成るヒートシン
ク7の上にはTi、Pt、Auの順に金属を積層して形
成したパターン電極8が中心間隔100μm、電極幅6
0μmで形成されている。
FIG. 1 is a diagram showing a laser array device according to an embodiment of the present invention. The laser array element uses an n-type GaAs 2 as a substrate and a multilayer growth layer 3 made of AlGaAs as a material.
Grooves 30 extending from the p-electrode 6 side to the active layer 4 are formed in the multilayer growth layer 3 so that laser emission points 1 are formed at μm intervals, and the laser element is completely electrically isolated by the grooves 30. A laser element 31a of 300 μm is placed outside the light emitting point of the outermost laser element 31a at both ends, which is configured to have a plurality of laser elements on the substrate 2.
A semiconductor region 100 is provided with a length of m. Other semiconductor materials for the laser array element include a laser element made of AIGaInP with a GaAs substrate, a laser element made of InGaAsP with an InP substrate, and semiconductor conductivity types (p and n). ) may be reversed. On the heat sink 7 made of electrically insulating SiC, a pattern electrode 8 formed by laminating metals in the order of Ti, Pt, and Au is arranged with a center spacing of 100 μm and an electrode width of 6.
It is formed with a thickness of 0 μm.

最も外側のパターン電極101は図のようにレーザの発
光点の位置より外側に300μmの広がりを持っている
。レーザアレイ素子とヒートシンク7を互いの分離され
た電極を向かい合わせてPb5nのろう材9により電気
的、熱的に接着させ、レーザアレイ装置とする。レーザ
アレイ素子の最も外側の発光点より外側の半導体領域1
00にAuを材料とするコンタクトワイヤー10を圧着
し電気的な接触を形成する。こうすることによリレーザ
素子に欠陥などが導入されることがなくレーザアレイ素
子の信頼性を向上させることができる。また、最も外側
のレーザ素子の外側にも半導体領域を設け、ヒートシン
クと熱的に接着させることにより最も外側のレーザ素子
において発生する熱の外側横方向への放散を促進し、素
子の温度上昇を抑え、信頼性が向上すると同時に隣接す
る他の素子への熱的な干渉を低減することができる。ろ
う材としては他にInでもよいし、Snでもよい。また
最も外側に設ける半導体領域はレーザアレイの両側に限
らずレーザアレイ素子のいずれか一方の側でもよい。
As shown in the figure, the outermost pattern electrode 101 extends 300 μm outward from the position of the laser light emitting point. The laser array element and the heat sink 7 are electrically and thermally bonded by a Pb5n brazing material 9 with their separated electrodes facing each other to form a laser array device. Semiconductor region 1 outside the outermost light emitting point of the laser array element
A contact wire 10 made of Au is crimped onto 00 to form electrical contact. This prevents defects from being introduced into the laser element, thereby improving the reliability of the laser array element. Additionally, by providing a semiconductor region outside the outermost laser element and thermally bonding it to the heat sink, it promotes the dissipation of heat generated in the outermost laser element in the outward lateral direction, thereby reducing the temperature rise of the element. At the same time, thermal interference to other adjacent elements can be reduced. The brazing material may also be In or Sn. Further, the outermost semiconductor region is not limited to both sides of the laser array, but may be provided on either side of the laser array element.

第2図は本発明の別の実施例を示した図である。レーザ
アレイ素子の最も外側の素子の発光点により50μm外
側にp電極6側から素子間に活性層4まで至る溝を形成
し、ヒートシンク7にもその溝に対応する部分のパター
ン電極にも電気的な分離を施すことにより、最も外側の
レーザ素子31aとその外側に設けた半導体領域100
は電気的に完全に分離されている。これにより外側の半
導体領域で発生する漏れ電流がレーザ素子に流れ込まな
い構造となる。
FIG. 2 is a diagram showing another embodiment of the present invention. A groove is formed 50 μm outward from the light emitting point of the outermost element of the laser array element from the p-electrode 6 side to the active layer 4 between the elements, and the heat sink 7 and the pattern electrode corresponding to the groove are electrically connected. By separating the outermost laser element 31a and the semiconductor region 100 provided outside it,
are completely electrically isolated. This provides a structure in which leakage current generated in the outer semiconductor region does not flow into the laser element.

尚、多層成長層3、レーザ素子31、レーザアレイ素子
とヒートシンクの接着構造等、上述した部分以外は前述
の実施例と同じである。
Note that the parts other than those described above, such as the multilayer growth layer 3, the laser element 31, and the bonding structure between the laser array element and the heat sink, are the same as in the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明により、最も外側のレーザ素子において発生する
熱の外側横方向への放散を促進し、素子の温度上昇を抑
え、信頼性が向上すると同時に隣接する他の素子への熱
的な干渉を低減することができる。またレーザ素子に流
れ込む漏れ電流を抑え、余分な温度上昇をおさえること
ができる。さらに共通な基板側の電気的なコンタクトを
レーザ素子に欠陥などが導入されることがなく形成する
ことができ、レーザアレイ装置の信頼性を向上させるこ
とができる。
The present invention promotes the dissipation of heat generated in the outermost laser element in the outward lateral direction, suppresses the temperature rise of the element, improves reliability, and at the same time reduces thermal interference with other adjacent elements. can do. In addition, leakage current flowing into the laser element can be suppressed, and excessive temperature rise can be suppressed. Further, electrical contacts on the common substrate side can be formed without introducing defects into the laser element, and the reliability of the laser array device can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は本発明の
別の実施例を示す図、第3図は従来例を示す図である。 1・・・発光点、2・・・GaAs基板、3・・・多層
成長層、4・・・活性層、5・・・n側電極、6・・・
p電極、7−3 i Cヒートシンク、8−=Ti/P
t/Auパターン電極、9・・・Pb5nろう材、10
・・・Auコンタクトワイヤー 11・・・発光点、1
2・・・GaAs基板、13・・・多層成長層、14・
・・活性層、15・・・n型電極、16・・・p電極、
17・・・BeOヒートシンク、18・・・パターン電
極、19・・・Inろう材、20・・・コンタクトワイ
ヤー
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing another embodiment of the present invention, and FIG. 3 is a diagram showing a conventional example. DESCRIPTION OF SYMBOLS 1... Luminous point, 2... GaAs substrate, 3... Multilayer growth layer, 4... Active layer, 5... N-side electrode, 6...
p electrode, 7-3 i C heat sink, 8-=Ti/P
t/Au pattern electrode, 9...Pb5n brazing material, 10
...Au contact wire 11...Light-emitting point, 1
2...GaAs substrate, 13...Multilayer growth layer, 14.
...active layer, 15...n-type electrode, 16...p electrode,
17...BeO heat sink, 18...pattern electrode, 19...In brazing material, 20...contact wire

Claims (1)

【特許請求の範囲】[Claims] 同一半導体基板上に、活性層を内包する多層成長層を有
し、溝で互いに電気的に分離された複数のレーザ素子を
アレイ状に備え、さらに、このレーザアレイの少なくと
も一方の最も外側のレーザ素子の発光点より外側に、レ
ーザ素子の間隔よりも広い半導体領域を設けたレーザア
レイ素子と、そのレーザアレイ素子の各レーザ素子に形
成された電極と同じ中心間隔で電気的に分離されたパー
ターン電極を有し、最も外側の電極が素子間隔より広い
電極領域を有するヒートシンクとを、互いの分離された
電極を向かい合わせてろう材により電気的、熱的に接着
したことを特徴とする半導体レーザアレイ装置。
A plurality of laser elements each having a multilayer growth layer including an active layer and electrically separated from each other by grooves are provided in an array on the same semiconductor substrate, and further, at least one of the outermost lasers of this laser array is provided. A laser array element that has a semiconductor region wider than the spacing between laser elements outside the light emitting point of the element, and a pattern that is electrically separated at the same center spacing as the electrodes formed on each laser element of the laser array element. A semiconductor laser having electrodes, and a heat sink whose outermost electrode has an electrode area wider than the element spacing, and the semiconductor laser is electrically and thermally bonded by a brazing material with the separated electrodes facing each other. Array device.
JP63184158A 1988-07-22 1988-07-22 Semiconductor laser-array device Pending JPH02103987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184158A JPH02103987A (en) 1988-07-22 1988-07-22 Semiconductor laser-array device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184158A JPH02103987A (en) 1988-07-22 1988-07-22 Semiconductor laser-array device

Publications (1)

Publication Number Publication Date
JPH02103987A true JPH02103987A (en) 1990-04-17

Family

ID=16148380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184158A Pending JPH02103987A (en) 1988-07-22 1988-07-22 Semiconductor laser-array device

Country Status (1)

Country Link
JP (1) JPH02103987A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936706A1 (en) * 1998-02-16 1999-08-18 Nec Corporation Array type laser diode
US6184560B1 (en) 1998-05-15 2001-02-06 Nec Corporation Photosemiconductor device mounted structure
JP2007173772A (en) * 2005-11-28 2007-07-05 Mitsubishi Electric Corp Array type semiconductor laser device
JP2007180563A (en) * 2001-02-14 2007-07-12 Fuji Xerox Co Ltd Laser light source
JP2017126784A (en) * 2017-04-05 2017-07-20 ウシオオプトセミコンダクター株式会社 Multi-beam semiconductor laser device
JP2019207966A (en) * 2018-05-30 2019-12-05 ウシオオプトセミコンダクター株式会社 Semiconductor light-emitting element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936706A1 (en) * 1998-02-16 1999-08-18 Nec Corporation Array type laser diode
US6353625B1 (en) 1998-02-16 2002-03-05 Nec Corporation Array type laser diode
US6184560B1 (en) 1998-05-15 2001-02-06 Nec Corporation Photosemiconductor device mounted structure
JP2007180563A (en) * 2001-02-14 2007-07-12 Fuji Xerox Co Ltd Laser light source
JP2007173772A (en) * 2005-11-28 2007-07-05 Mitsubishi Electric Corp Array type semiconductor laser device
JP2017126784A (en) * 2017-04-05 2017-07-20 ウシオオプトセミコンダクター株式会社 Multi-beam semiconductor laser device
JP2019207966A (en) * 2018-05-30 2019-12-05 ウシオオプトセミコンダクター株式会社 Semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
US11923662B2 (en) Edge-emitting laser bar
JPWO2020110783A1 (en) Semiconductor laser device
JPH02103987A (en) Semiconductor laser-array device
JP4058937B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH10335696A (en) Light emitting diode array
JP5280119B2 (en) Semiconductor laser device
JP2001284731A (en) Semiconductor laser device
JP7114292B2 (en) Semiconductor laser device
US9947832B2 (en) Light-emitting device
JPS63144588A (en) Sub-mount for semiconductor chip laser
US20240146034A1 (en) Edge-emitting laser bar
US4092561A (en) Stripe contact providing a uniform current density
JP4168555B2 (en) Semiconductor device
JP3186937B2 (en) Semiconductor light emitting device
JPH0831654B2 (en) Submount for semiconductor laser device
US11605769B2 (en) Light emitting element and light emitting device
JPH08186287A (en) Semiconductor light-emitting diode
JP3814950B2 (en) Stacked semiconductor laser
JPH04192483A (en) Semiconductor laser array device
JPS61214591A (en) Semiconductor laser element
KR100252997B1 (en) Laser diode
JP2819593B2 (en) Multi-beam semiconductor laser device
JPS61194886A (en) Semiconductor laser element
JPH11298093A (en) Dual-frequency semiconductor laser device
JPS63142880A (en) Multi-beam semiconductor laser