JP4058937B2 - Semiconductor light emitting device and manufacturing method thereof - Google Patents

Semiconductor light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP4058937B2
JP4058937B2 JP2001341682A JP2001341682A JP4058937B2 JP 4058937 B2 JP4058937 B2 JP 4058937B2 JP 2001341682 A JP2001341682 A JP 2001341682A JP 2001341682 A JP2001341682 A JP 2001341682A JP 4058937 B2 JP4058937 B2 JP 4058937B2
Authority
JP
Japan
Prior art keywords
layer
emitting device
semiconductor light
active layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001341682A
Other languages
Japanese (ja)
Other versions
JP2003142727A (en
Inventor
康彦 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001341682A priority Critical patent/JP4058937B2/en
Publication of JP2003142727A publication Critical patent/JP2003142727A/en
Application granted granted Critical
Publication of JP4058937B2 publication Critical patent/JP4058937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、InGaAlPを活性層とする半導体発光装置及びその製造方法に関する。
【0002】
【従来の技術】
基板の上に化合物半導体を積層して構成される各種の半導体発光素子の中で、4元化合物半導体InGaAlPを活性層とする半導体発光素子は、高輝度のオレンジ色やアンバー色の発光ダイオード及び赤色レーザーダイオードとして製品化されている。このようなInGaAlPを活性層とするものでは、GaAsを基板とすることで、従来のGaPやGaAs等を用いるものに比べると、赤色から緑色の高輝度発光が既に達成されている。
【0003】
製品化されている高輝度オレンジ色またはアンバー色発光の半導体発光素子の構造の一例を図3に示す。この半導体発光素子50は有機金属気相成長法により、n型GaAs基板51の表面に、n型GaAsバッファ層52と、n型のGaAlAsとInAlPの20ペアからなる超格子の多層反射層53と、n型InGaAlPのクラッド層54と、ノンドープInGaAlPの活性層55と、p型InGaAlPのクラッド層56と、p型GaAlAsの窓層58とを順に積層したダブルヘテロ構造としたものである。
【0004】
そして、n型GaAs基板51側には、AuとGeの合金層とAu層からなるn側電極61を形成し、p型GaAlAsの窓層58側には、AuとZnの合金層とAu層からなるp側電極60を形成している。
【0005】
ここで、ノンドープInGaAlPの活性層55を挟むクラッド層54,56は活性層55よりAl混晶比を高くすることにより、活性層55に対する電子及び正孔の閉じ込みが行なわれる。また、窓層58は、p側電極60から流される電流を十分に広げて活性層55に注入するためにやや厚く(数μm程度)形成されている。そして、クラッド層54,56及び窓層58は、ともに活性層55から発光される光に対して透明である。
【0006】
【発明が解決しようとする課題】
しかしながら、前記従来の半導体発光素子50は、光取り出し面側に設けられたp側電極60が活性層55の上方に配置されているため、活性層55から発光される光はp側電極60によって遮られることになる。
【0007】
このため、ワイヤボンディングされるp側電極60の面積分だけ発光効率が下がるという問題がある。
【0008】
そこで本発明は、活性層に無駄な電流が流れることを防止して発光効率を上げる半導体発光素子を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の半導体発光装置においては、活性層及びその上側層を貫通して孔部を形成し、この孔部内に絶縁膜を介してワイヤボンディング部を設け、さらにこのワイヤボンディング部を、上側層の上面に配置した線状電極に接続したものである。
【0010】
この発明によれば、活性層に無駄な電流が流れることを防止するとともに均一に電流を流して発光効率を上げる半導体発光素子が得られる。
【0011】
【発明の実施の形態】
本願の第1の発明は、InGaAlPを活性層とする半導体発光装置において、前記活性層及びその上側層を貫通して孔部を形成し、この孔部内の活性層及びその上側層を除去した部分に絶縁膜を介してワイヤボンディング部を設け、さらにこのワイヤボンディング部を、光取り出し面となる前記上側層の上面に配置した線状電極に接続したことを特徴とする半導体発光装置としたものであり、活性層に孔部を形成することにより、ワイヤボンディング部の下側からの発光がほとんどなくなり、活性層から発光される光がワイヤボンディング部により遮られず、また、線状電極を用いるので、電流を分散すると共に遮光を少なくするという作用を有する。
本願の第2の発明は、第1の発明において、前記上側層のうち前記活性層と接する層をPクラッド層とし、前記活性層を挟んで前記Pクラッド層と反対側となる層をNクラッド層とすることでダブルヘテロ構造を構成したことを特徴としたものである。
【0012】
本願の第3の発明は、第1の発明または第2の発明において、前記線状電極は、前記ワイヤボンディング部を中心にして放射状に複数配置されていることを特徴とする半導体発光装置であり、ワイヤボンディング部に供給された電流は放射状に分散して均一に流される。
【0013】
本願の第4の発明は、InGaAlPを活性層とする半導体発光装置の製造方法において、GaAs基板上に、少なくとも多層反射層と、InGaAlPからなるNクラッド層と、前記活性層と、InGaAlPからなるPクラッド層と、GaAlAsからなる窓層とを順次積層して形成する工程と、前記窓層、前記Pクラッド層及び前記活性層を貫通する孔部をエッチングにより形成する工程と、前記孔部内の活性層及びその上側層を除去した部分に絶縁膜を形成する工程と、前記絶縁膜の上部にワイヤボンディング部を設けると共に、光取り出し面となる前記窓層の表面に前記ワイヤボンディング部に接続した線状電極を配置することを特徴とする半導体発光装置の製造方法であり、かかる手順によって、発光効率のよい半導体発光装置を容易に製造できる。
【0014】
以下、本発明の実施の形態について、図1を用いて説明する。
【0015】
図1は本発明の半導体発光装置の正断面図、図2は同半導体発光装置の平面図を示す。
【0016】
半導体発光装置1は、有機金属気相成長法により、n型のGaAs基板7の表面に、n型GaAsからなるバッファ層2と、n型のGaAlAsとInAlPの20ペアからなる超格子の多層反射層3と、n型InGaAlPのNクラッド層4と、ノンドープInGaAlPの活性層5と、p型InGaAlPのPクラッド層6と、p型GaAlAsの窓層8とを順に積層してダブルヘテロ構造としている。
【0017】
そして、GaAs基板7の下面側には、AuとGeの合金層とAu層からなるn側電極11が形成されている。
【0018】
Nクラッド層4,Pクラッド層6及び窓層8は、ともに活性層5から発光される光に対して透明である。
【0019】
活性層5及びその上側層であるPクラッド層6及び窓層8には、各層を貫通して円形の孔部12が形成されている。孔部12の底面はNクラッド層4の上部に形成されている。孔部12の底面及び側面には、これを覆うSiO2からなる絶縁膜13が設けられている。
【0020】
絶縁膜13の上部には、AuとZnの合金層とAu層からなる金属製の円形のワイヤボンディング部14が設けられ、窓層8の上面には、ワイヤボンディング部14を中心にして半導体発光装置1の四隅に向かって放射状に4本配置された線状電極15が設けられている。線状電極15はワイヤボンディング部14と同じ材質からなり、その内側端は、ワイヤボンディング部14の外周部に接続されている。
【0021】
電流は、ワイヤボンディング部14に供給され、線状電極15を介して、各層を下側に向かって流れる。線状電極15によって、広い範囲に電流を分散させて流すことができる。
【0022】
活性層5の孔部12が形成された部分には電流が流れず、また、発光もしないので、他の部分に多くの電流を流すことができる。活性層5から発せられる光は窓層8から取り出されるが、直線状の線状電極15に邪魔される光は少なくなり、多くの光を取り出すことができる。
【0023】
かかる構成によって、周辺部の発光強度を強くするとともに窓層8表面で遮光される光を減らして、全体の発光効率を上げることができる。
【0024】
次に、半導体発光装置1の製造手順について説明する。
【0025】
まず、従来の有機金属気相成長法と同様な方法により、GaAs基板7上に、少なくとも多層反射層3と、InGaAlPからなるNクラッド層4と、活性層5と、InGaAlPからなるPクラッド層6と、GaAlAsからなる窓層8とを順次積層して形成する。
【0026】
次いで、窓層8、Pクラッド層6及び活性層5を貫通する孔部12をエッチングにより形成する。この工程を詳しく説明すると、まず、ダブルヘテロ構造が形成されたウエハーの窓層8の表面にフォトリソグラフ工程によりレジストでパターンを形成し、中央に形成した円を除いた表面をレジスト膜で被覆する。次に、レジストが被覆されていない部分をエッチングし、窓層8、Pクラッド層6及び活性層5を除去し、Nクラッド層4を表面に露出させ、レジストを除去する。
【0027】
次に、孔部12に絶縁膜13を形成する。SiO2からなる絶縁膜13の形成は、まず、温度400℃程度でCVD装置を用いSiO2膜を400nm〜500nmの膜厚で生成し、次いで、フォトリソグラフで孔部12より直径で10〜20μm程度大きいレジストパターンを被覆し、そして、他の部分のSiO2をエッチングで除去することにより行う。
【0028】
次に、絶縁膜13の上部に円形のワイヤボンディング部14を設けるとともに、窓層8の表面にワイヤボンディング部14に接続した線状電極15を放射状に配置、固定する。
【0029】
このようにして、半導体発光装置1を形成することができる。
【0030】
【発明の効果】
以上のように本発明によれば、活性層に孔部を形成することにより、ワイヤボンディング部の下側からの発光がほとんどなくなり、活性層から発光される光がワイヤボンディング部により遮られず、発光効率をよくすることができる。また、線状電極を用いるので、電流を均一に分散するとともに遮光を少なくして、さらに発光効率をよくすることができる。
【0031】
さらに、線状電極を放射状に複数配置することにより、ワイヤボンディング部に供給された電流が放射状に分散して均一に流され、発光強度を均一化することができる。
【0032】
また、窓層、Pクラッド層及び活性層を貫通する孔部をエッチングにより形成することにより、発光効率のよい半導体発光装置を容易に製造できる。
【図面の簡単な説明】
【図1】本発明の半導体発光装置の正断面図
【図2】同半導体発光装置の平面図
【図3】従来例にかかる半導体発光装置の正断面図
【符号の説明】
1 半導体発光装置
2 バッファ層
3 多層反射層
4 Nクラッド層
5 活性層
6 Pクラッド層
7 GaAs基板
8 窓層
11 n側電極
12 孔部
13 絶縁膜
14 ワイヤボンディング部
15 線状電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device having InGaAlP as an active layer and a method for manufacturing the same.
[0002]
[Prior art]
Among various types of semiconductor light-emitting devices configured by stacking compound semiconductors on a substrate, semiconductor light-emitting devices having a quaternary compound semiconductor InGaAlP as an active layer are high-intensity orange or amber light-emitting diodes and red It has been commercialized as a laser diode. With such an InGaAlP active layer, high intensity light emission from red to green has already been achieved by using GaAs as a substrate as compared with conventional ones using GaP or GaAs.
[0003]
FIG. 3 shows an example of the structure of a semiconductor light emitting device that emits high-luminance orange or amber light. This semiconductor light emitting device 50 is formed by metal organic vapor phase epitaxy on the surface of an n-type GaAs substrate 51, an n-type GaAs buffer layer 52, a multilayer reflective layer 53 of a superlattice made of 20 pairs of n-type GaAlAs and InAlP, The n-type InGaAlP clad layer 54, the non-doped InGaAlP active layer 55, the p-type InGaAlP clad layer 56, and the p-type GaAlAs window layer 58 are laminated in order.
[0004]
An n-side electrode 61 made of an Au and Ge alloy layer and an Au layer is formed on the n-type GaAs substrate 51 side, and an Au and Zn alloy layer and an Au layer are formed on the p-type GaAlAs window layer 58 side. The p side electrode 60 which consists of is formed.
[0005]
Here, the clad layers 54 and 56 sandwiching the non-doped InGaAlP active layer 55 have an Al mixed crystal ratio higher than that of the active layer 55, thereby confining electrons and holes to the active layer 55. Further, the window layer 58 is formed to be slightly thick (about several μm) in order to sufficiently spread the current flowing from the p-side electrode 60 and inject it into the active layer 55. The cladding layers 54 and 56 and the window layer 58 are both transparent to the light emitted from the active layer 55.
[0006]
[Problems to be solved by the invention]
However, in the conventional semiconductor light emitting device 50, since the p-side electrode 60 provided on the light extraction surface side is disposed above the active layer 55, the light emitted from the active layer 55 is transmitted by the p-side electrode 60. It will be blocked.
[0007]
For this reason, there is a problem that the light emission efficiency is reduced by the area of the p-side electrode 60 to be wire bonded.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor light emitting device that prevents the useless current from flowing through the active layer and increases the light emission efficiency.
[0009]
[Means for Solving the Problems]
In the semiconductor light emitting device of the present invention, a hole is formed through the active layer and the upper layer thereof, a wire bonding portion is provided in the hole via an insulating film, and the wire bonding portion is further connected to the upper layer. It is connected to a linear electrode arranged on the upper surface.
[0010]
According to the present invention, it is possible to obtain a semiconductor light emitting device that prevents unnecessary current from flowing through the active layer and increases the light emission efficiency by flowing the current uniformly.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
1st invention of this application WHEREIN: In the semiconductor light-emitting device which uses InGaAlP as an active layer The part which penetrated the said active layer and its upper layer, formed the hole, and removed the active layer and its upper layer in this hole The semiconductor light emitting device is characterized in that a wire bonding portion is provided via an insulating film, and the wire bonding portion is further connected to a linear electrode disposed on the upper surface of the upper layer serving as a light extraction surface. Yes, by forming a hole in the active layer, light emission from the lower side of the wire bonding part is almost eliminated, light emitted from the active layer is not blocked by the wire bonding part, and a linear electrode is used. , Have the effect of dispersing the current and reducing the light shielding.
According to a second invention of the present application, in the first invention, a layer in contact with the active layer of the upper layer is a P-cladding layer, and a layer opposite to the P-cladding layer is sandwiched between the active layers and an N-cladding layer. A double heterostructure is formed by forming a layer.
[0012]
A third invention of the present application is the semiconductor light emitting device according to the first invention or the second invention, wherein a plurality of the linear electrodes are arranged radially around the wire bonding portion. The electric current supplied to the wire bonding part is distributed radially and flows uniformly.
[0013]
According to a fourth aspect of the present invention, in a method of manufacturing a semiconductor light emitting device using InGaAlP as an active layer, at least a multilayer reflective layer, an N cladding layer made of InGaAlP, the active layer, and a P made of InGaAlP on a GaAs substrate. a clad layer, a step of sequentially stacked and a window layer made of GaAlAs, said window layer; a hole is formed by etching through the P clad layer and the active layer, in the hole A step of forming an insulating film on a portion where the active layer and the upper layer thereof are removed, and a wire bonding portion is provided on the insulating film, and connected to the wire bonding portion on the surface of the window layer serving as a light extraction surface A method of manufacturing a semiconductor light-emitting device, characterized in that a linear electrode is arranged, and the semiconductor light-emitting device having good luminous efficiency is obtained by such a procedure. It can be easily manufactured.
[0014]
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
[0015]
FIG. 1 is a front sectional view of a semiconductor light emitting device of the present invention, and FIG. 2 is a plan view of the semiconductor light emitting device.
[0016]
The semiconductor light emitting device 1 has a multilayer reflection of a superlattice composed of a buffer layer 2 made of n-type GaAs and 20 pairs of n-type GaAlAs and InAlP on the surface of an n-type GaAs substrate 7 by metal organic vapor phase epitaxy. Layer 3, n-type InGaAlP N-cladding layer 4, non-doped InGaAlP active layer 5, p-type InGaAlP P-cladding layer 6, and p-type GaAlAs window layer 8 are sequentially laminated to form a double heterostructure. .
[0017]
An n-side electrode 11 made of an alloy layer of Au and Ge and an Au layer is formed on the lower surface side of the GaAs substrate 7.
[0018]
Both the N clad layer 4, the P clad layer 6 and the window layer 8 are transparent to the light emitted from the active layer 5.
[0019]
A circular hole 12 is formed in each of the active layer 5 and the P clad layer 6 and the window layer 8 which are the upper layers thereof so as to penetrate each layer. The bottom surface of the hole 12 is formed above the N clad layer 4. The bottom and side surfaces of the hole 12, the insulating film 13 is provided consisting of SiO 2 covering the.
[0020]
A metal circular wire bonding portion 14 made of an alloy layer of Au and Zn and an Au layer is provided on the insulating film 13, and semiconductor light emission centering on the wire bonding portion 14 is provided on the upper surface of the window layer 8. Four linear electrodes 15 arranged radially toward the four corners of the apparatus 1 are provided. The linear electrode 15 is made of the same material as the wire bonding portion 14, and the inner end thereof is connected to the outer peripheral portion of the wire bonding portion 14.
[0021]
The electric current is supplied to the wire bonding unit 14 and flows downward through each layer via the linear electrode 15. The linear electrode 15 allows a current to be distributed over a wide range.
[0022]
Since no current flows through the portion of the active layer 5 where the hole 12 is formed and no light is emitted, a large amount of current can flow through other portions. The light emitted from the active layer 5 is extracted from the window layer 8, but the light obstructed by the linear line electrode 15 is reduced, and a lot of light can be extracted.
[0023]
With this configuration, it is possible to increase the light emission intensity at the peripheral portion and reduce the light shielded from the surface of the window layer 8 to increase the overall light emission efficiency.
[0024]
Next, a manufacturing procedure of the semiconductor light emitting device 1 will be described.
[0025]
First, at least a multilayer reflective layer 3, an N clad layer 4 made of InGaAlP, an active layer 5, and a P clad layer 6 made of InGaAlP on a GaAs substrate 7 by a method similar to the conventional metal organic chemical vapor deposition method. And a window layer 8 made of GaAlAs.
[0026]
Next, a hole 12 that penetrates the window layer 8, the P clad layer 6, and the active layer 5 is formed by etching. This process will be described in detail. First, a pattern is formed with a resist on the surface of the window layer 8 of the wafer on which the double heterostructure is formed by a photolithography process, and the surface excluding the circle formed at the center is covered with a resist film. . Next, the portion not covered with the resist is etched to remove the window layer 8, the P clad layer 6 and the active layer 5, the N clad layer 4 is exposed on the surface, and the resist is removed.
[0027]
Next, an insulating film 13 is formed in the hole 12. The insulating film 13 made of SiO 2 is formed by first forming a SiO 2 film with a film thickness of 400 nm to 500 nm using a CVD apparatus at a temperature of about 400 ° C., and then photolithography to 10 to 20 μm in diameter from the hole 12. This is done by covering a resist pattern having a relatively large size and etching away other portions of SiO 2 .
[0028]
Next, a circular wire bonding portion 14 is provided on the insulating film 13, and linear electrodes 15 connected to the wire bonding portion 14 are radially arranged and fixed on the surface of the window layer 8.
[0029]
In this way, the semiconductor light emitting device 1 can be formed.
[0030]
【The invention's effect】
As described above, according to the present invention, by forming a hole in the active layer, light emission from the lower side of the wire bonding portion is almost eliminated, and light emitted from the active layer is not blocked by the wire bonding portion, Luminous efficiency can be improved. Further, since the linear electrode is used, the current can be uniformly dispersed and the light shielding can be reduced, and the luminous efficiency can be further improved.
[0031]
Furthermore, by arranging a plurality of linear electrodes in a radial manner, the current supplied to the wire bonding portion is radially dispersed and uniformly supplied, and the light emission intensity can be made uniform.
[0032]
Further, by forming a hole that penetrates the window layer, the P-cladding layer, and the active layer by etching, a semiconductor light-emitting device with high luminous efficiency can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a semiconductor light emitting device of the present invention. FIG. 2 is a plan view of the semiconductor light emitting device. FIG. 3 is a front sectional view of a semiconductor light emitting device according to a conventional example.
DESCRIPTION OF SYMBOLS 1 Semiconductor light-emitting device 2 Buffer layer 3 Multilayer reflection layer 4 N clad layer 5 Active layer 6 P clad layer 7 GaAs substrate 8 Window layer 11 N side electrode 12 Hole 13 Insulating film 14 Wire bonding part 15 Linear electrode

Claims (4)

InGaAlPを活性層とする半導体発光装置において、
前記活性層及びその上側層を貫通して孔部を形成し、この孔部内の活性層及びその上側層を除去した部分に絶縁膜を介してワイヤボンディング部を設け、さらにこのワイヤボンディング部を、光取り出し面となる前記上側層の上面に配置した線状電極に接続したことを特徴とする半導体発光装置。
In a semiconductor light emitting device having InGaAlP as an active layer,
A hole is formed through the active layer and the upper layer thereof, and a wire bonding portion is provided via an insulating film in a portion where the active layer and the upper layer in the hole are removed . A semiconductor light-emitting device connected to a linear electrode disposed on the upper surface of the upper layer serving as a light extraction surface.
前記上側層のうち前記活性層と接する層をPクラッド層とし、前記活性層を挟んで前記Pクラッド層と反対側となる層をNクラッド層とすることでダブルヘテロ構造を構成したことを特徴とする請求項1に記載の半導体発光装置。  Of the upper layer, a layer in contact with the active layer is a P-cladding layer, and a layer on the opposite side of the P-cladding layer with the active layer interposed therebetween is an N-cladding layer, thereby forming a double heterostructure. The semiconductor light emitting device according to claim 1. 前記線状電極は、前記ワイヤボンディング部を中心にして放射状に複数配置されていることを特徴とする請求項1または2に記載の半導体発光装置。  3. The semiconductor light emitting device according to claim 1, wherein a plurality of the linear electrodes are radially arranged around the wire bonding portion. 4. InGaAlPを活性層とする半導体発光装置の製造方法において、
GaAs基板上に、少なくとも多層反射層と、InGaAlPからなるNクラッド層と、前記活性層と、InGaAlPからなるPクラッド層と、GaAlAsからなる窓層とを順次積層して形成する工程と、
前記窓層、前記Pクラッド層及び前記活性層を貫通する孔部をエッチングにより形成する工程と、
前記孔部内の活性層及びその上側層を除去した部分に絶縁膜を形成する工程と、
前記絶縁膜の上部にワイヤボンディング部を設けるとともに、光取り出し面となる前記窓層の表面に前記ワイヤボンディング部に接続した線状電極を配置することを特徴とする半導体発光装置の製造方法。
In a method for manufacturing a semiconductor light emitting device using InGaAlP as an active layer,
A step of sequentially laminating at least a multilayer reflective layer, an N clad layer made of InGaAlP, the active layer, a P clad layer made of InGaAlP, and a window layer made of GaAlAs on a GaAs substrate;
Forming a hole through the window layer, the P-cladding layer and the active layer by etching;
Forming an insulating film in a portion where the active layer and the upper layer in the hole are removed ; and
A method of manufacturing a semiconductor light emitting device, comprising: providing a wire bonding portion on the insulating film; and disposing a linear electrode connected to the wire bonding portion on a surface of the window layer serving as a light extraction surface.
JP2001341682A 2001-11-07 2001-11-07 Semiconductor light emitting device and manufacturing method thereof Expired - Fee Related JP4058937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001341682A JP4058937B2 (en) 2001-11-07 2001-11-07 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001341682A JP4058937B2 (en) 2001-11-07 2001-11-07 Semiconductor light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003142727A JP2003142727A (en) 2003-05-16
JP4058937B2 true JP4058937B2 (en) 2008-03-12

Family

ID=19155669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001341682A Expired - Fee Related JP4058937B2 (en) 2001-11-07 2001-11-07 Semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4058937B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140066764A (en) 2011-10-25 2014-06-02 쇼와 덴코 가부시키가이샤 Light-emitting diode, method for manufacturing light-emitting diode, light-emitting diode lamp and illumination device
WO2014204906A1 (en) * 2013-06-18 2014-12-24 Glo-Usa, Inc. Insulating layer for planarization and definition of the active region of a nanowire device
US9059355B2 (en) 2013-06-18 2015-06-16 Glo Ab Stopping an etch in a planar layer after etching a 3D structure
US9368672B2 (en) 2013-06-18 2016-06-14 Glo Ab Removal of 3D semiconductor structures by dry etching

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911347B2 (en) * 2006-08-03 2012-04-04 日立電線株式会社 Semiconductor light emitting device
JP5178360B2 (en) * 2007-09-14 2013-04-10 シャープ株式会社 Nitride semiconductor light emitting device
KR101154750B1 (en) 2009-09-10 2012-06-08 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
KR101172136B1 (en) * 2009-12-08 2012-08-09 엘지이노텍 주식회사 Light emitting device, method for fabricating the same and light emitting device package
KR101055768B1 (en) * 2009-12-14 2011-08-11 서울옵토디바이스주식회사 Light Emitting Diodes with Electrode Pads
US9236532B2 (en) 2009-12-14 2016-01-12 Seoul Viosys Co., Ltd. Light emitting diode having electrode pads
JP2014236038A (en) * 2013-05-31 2014-12-15 信越半導体株式会社 Light-emitting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140066764A (en) 2011-10-25 2014-06-02 쇼와 덴코 가부시키가이샤 Light-emitting diode, method for manufacturing light-emitting diode, light-emitting diode lamp and illumination device
US9705034B2 (en) 2011-10-25 2017-07-11 Showa Denko K.K. Light-emitting diode, method for manufacturing light-emitting diode, light-emitting diode lamp and illumination device
WO2014204906A1 (en) * 2013-06-18 2014-12-24 Glo-Usa, Inc. Insulating layer for planarization and definition of the active region of a nanowire device
US9059355B2 (en) 2013-06-18 2015-06-16 Glo Ab Stopping an etch in a planar layer after etching a 3D structure
US9224914B2 (en) 2013-06-18 2015-12-29 Glo Ab Insulating layer for planarization and definition of the active region of a nanowire device
US9368672B2 (en) 2013-06-18 2016-06-14 Glo Ab Removal of 3D semiconductor structures by dry etching
US9640723B2 (en) 2013-06-18 2017-05-02 Glo Ab Insulating layer for planarization and definition of the active region of a nanowire device
US9741895B2 (en) 2013-06-18 2017-08-22 Glo Ab Removal of 3D semiconductor structures by dry etching

Also Published As

Publication number Publication date
JP2003142727A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
JP5777879B2 (en) Light emitting device, light emitting device unit, and light emitting device package
JP4804485B2 (en) Nitride semiconductor light emitting device and manufacturing method
TWI497758B (en) Light emitting diode, method of manufacturing light-emitting diode, led lamp and lighting device
US8653552B2 (en) Semiconductor light-emitting device
TWI529966B (en) Semiconductor light emitting device
JP3893874B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP4974867B2 (en) Light emitting diode and manufacturing method thereof
TWI514615B (en) Light-emitting diode, light-emitting diode lamp and illumination apparatus
JPH114020A (en) Semiconductor light-emitting element, manufacture thereof and semiconductor light-emitting device
TWI600182B (en) Light emitting diode and production method thereof
JP2008277342A (en) Light-emitting diode
US20110163293A1 (en) Vertical Light-Emitting Diode and Manufacture Method Thereof
JP4058937B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH0997922A (en) Light-emitting element
KR100890468B1 (en) Light emitting diode device using conductive interconnection part
JP6009041B2 (en) Light emitting device, light emitting device unit, and light emitting device package
WO2017206772A1 (en) Light emitting diode with electrostatic protection function and manufacturing method therefor
JPH10209496A (en) Semiconductor light emitting device
TW201541663A (en) Point source light-emitting diode
JPH10335696A (en) Light emitting diode array
JP2009246237A (en) Current constriction type light-emitting element, and method for manufacturing the same
JP2006237467A (en) Semiconductor light emitting element and manufacturing method thereof
JP3934730B2 (en) Semiconductor light emitting device
JP2001127343A (en) Compound light emitting element and its manufacturing method
JPH0697498A (en) Semiconductor light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees