JPS61234588A - Submount for optical semiconductor element - Google Patents

Submount for optical semiconductor element

Info

Publication number
JPS61234588A
JPS61234588A JP60077990A JP7799085A JPS61234588A JP S61234588 A JPS61234588 A JP S61234588A JP 60077990 A JP60077990 A JP 60077990A JP 7799085 A JP7799085 A JP 7799085A JP S61234588 A JPS61234588 A JP S61234588A
Authority
JP
Japan
Prior art keywords
submount
chip
wire
optical semiconductor
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60077990A
Other languages
Japanese (ja)
Inventor
Hideyo Higuchi
樋口 英世
Yasuo Nakajima
康雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60077990A priority Critical patent/JPS61234588A/en
Publication of JPS61234588A publication Critical patent/JPS61234588A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make it possible to perform various kinds of assembling methods regardless of N-type and P-type substrates, by providing a conducting-chip bonding part and a wire bonding part electrically separately, on the main body of a submount, which has excellent heat conductivity and is constituted by an electric insulator. CONSTITUTION:On a submount main body 2 comprising an electric insulator, a chip bonding part 3, on which a chip is bonded, and a wire bonding part 4 for bonding wire are provided. The submount main body 2 has excellent heat conductivity and is constituted by the electric insulator. The main component of the material of the main body 2 is BeO or SiC. A current is inputted through the wire 13 and flows in the sequence of the chip 1, the wire 11 and the wire 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、n型及びp型基板をもつ光半導体素子の実用
的パンケージの組立に共用できるサブマウントに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a submount that can be used commonly for assembling a practical pancage for optical semiconductor devices having n-type and p-type substrates.

〔従来の技術〕[Conventional technology]

第4図は例えば特開昭58−87892号に示された従
来のサブマウントを用いた光半導体素子の組立法を示し
、第4図(a)は従来法のサブマウントの例で、2は導
体からなるサブマウント 3はチップ接着部、4はワイ
ヤ接着部、7は絶縁体である。
FIG. 4 shows a method for assembling an optical semiconductor device using a conventional submount, as disclosed in, for example, Japanese Patent Application Laid-Open No. 58-87892. FIG. 4(a) is an example of a conventional submount; A submount made of a conductor 3 is a chip bonding part, 4 is a wire bonding part, and 7 is an insulator.

第4図中)は第4図(a)のサブマウントを用いたレー
ザチップの組立法を示す図で、1はレーザチップ。
4) is a diagram showing a method of assembling a laser chip using the submount of FIG. 4(a), and 1 is a laser chip.

6はステム、11.12はワイヤである。6 is a stem, and 11.12 is a wire.

次に動作について説明する。Next, the operation will be explained.

半導体レーザ(LD)、発光ダイオード(LED)等の
光半導体素子はステム(又はパッケージ)本体6の電気
的極性が正となるように決められている。従って第4図
の組立法では電流がサブマウント2.チップ1.ワイヤ
11.ワイヤ12の順に流れる。ワイヤ12は負のリー
ド端子(図示せず)に接着される。
Optical semiconductor elements such as semiconductor lasers (LDs) and light emitting diodes (LEDs) are determined so that the electrical polarity of the stem (or package) body 6 is positive. Therefore, in the assembly method shown in FIG. 4, the current flows from submount 2. Chip 1. Wire 11. The wires 12 flow in this order. Wire 12 is glued to a negative lead terminal (not shown).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光半導体素子はn型又はp型の導電型を有する単
結晶基板上に結晶成長を行なうことによって形成される
。個々のチップの結晶の厚み構成としては、LDの場合
一般に基板部公約100μmに対し、成長部分数μm程
度である。発光領域は結晶成長部分にあるので、基板側
を下にした場合、発光領域は上の方に来ることになる。
Conventional optical semiconductor devices are formed by crystal growth on a single crystal substrate having n-type or p-type conductivity. In the case of an LD, the thickness of the crystal of each chip is generally about 100 μm in the substrate portion, while the thickness in the grown portion is approximately several μm. Since the light-emitting region is located in the crystal growth area, if the substrate side is placed down, the light-emitting region will be at the top.

チップをサブマウントに接着する方法には、基板側を下
にする(接着する)ジャンクションアップ(Junct
ionup)法と、発光領域を下にするジャンクション
ダウン(Junction down )法がある。第
4図の組立法では、サブマウントが正でなければならな
いので、n型基板を用いたチップではジャンクションダ
ウンUunction down )法、p型基板を用
いたチップではジャンクションアップ(Junctio
n up )法しか採用することができない。
The method of bonding the chip to the submount includes junction up (bonding) with the board side facing down.
There are two methods: an ion up method and a junction down method in which the light emitting region is placed at the bottom. In the assembly method shown in Figure 4, the submount must be positive, so the junction down method is used for chips using an n-type substrate, and the junction up method is used for chips using a p-type substrate.
n up ) method can only be adopted.

ジャンクションダウン(Junction down 
)法では発光領域の放熱性がよくなる一方、発光点がチ
ップ下方にあるので、接着時に発光領域にハンダが付着
し、ショートが起き、組立歩留が低下することが多い。
Junction down
) method improves the heat dissipation of the light emitting region, but since the light emitting point is located below the chip, solder adheres to the light emitting region during bonding, often causing short circuits and lowering the assembly yield.

また、サブマウントとチップの線膨張係数のズレが大き
いと、発光領域に機械的歪が強く加わり、劣化の原因と
なる。ジャンクションアップ(Junction up
 )法では放熱性が悪くなるが組立易く、かつ発光領域
に機械的歪が加わりにくいという利点を有する。どちら
の組立法を用いるかはチップの特性とその使用状態によ
り決めなければならない。しかし、チップ構造(主に電
極構造)によっては採用できない組立法もある。
Furthermore, if there is a large difference in linear expansion coefficient between the submount and the chip, strong mechanical strain will be applied to the light emitting region, causing deterioration. Junction up
) method results in poor heat dissipation, but has the advantage of being easy to assemble and hardly subjecting the light emitting region to mechanical strain. Which assembly method to use must be determined depending on the characteristics of the chip and the conditions in which it will be used. However, there are some assembly methods that cannot be adopted depending on the chip structure (mainly the electrode structure).

本発明は、上記のような問題点、即ちチップ組立法が限
定されるという点を解消するためになさレタもので、n
型、p型基板を問わずジャンクションアップ(Junc
tion up ) + ジャンクションダウン(Ju
nction down )組立が可能な光半導体素子
用サブマウントを提供することを目的とする。
The present invention was made in order to solve the above-mentioned problem, that is, the chip assembly method is limited.
Junction up regardless of type or p type substrate.
tion up) + junction down (Ju
An object of the present invention is to provide a submount for an optical semiconductor element that can be assembled.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る光半導体素子用サブマウントは、サブマウ
ント本体を熱伝導率が良好で、電気的絶縁体から構成し
、該サブマウント上に光半導体素子チップを接着するた
めの導電性のチップ接着部と、ワイヤを接着するための
導電性のワイヤ接着部とを備えたものである。
The submount for optical semiconductor devices according to the present invention has a submount body having good thermal conductivity and made of an electrical insulator, and a conductive chip adhesive for bonding the optical semiconductor device chips onto the submount. and a conductive wire bonding portion for bonding the wire.

〔作用〕[Effect]

この発明においては、サブマウント本体が電気的絶縁体
からなっているので、チップ接着部に接着されたチップ
はワイヤが接続されてない状態ではステムとも負リード
電極とも絶縁された状態となり、これに適当にワイヤを
接続することにより、n型、p型基板を問わず、種々の
組立法が可能となる。
In this invention, since the submount body is made of an electrical insulator, the chip bonded to the chip bonding part is insulated from both the stem and the negative lead electrode when no wire is connected. By connecting the wires appropriately, various assembly methods are possible for both n-type and p-type substrates.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図は本発明の一実施例による光半導体素子用サブマウン
トを示し、図中、第4図と同一符号は同一部分を示す。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a submount for an optical semiconductor device according to an embodiment of the present invention, and in the figure, the same reference numerals as in FIG. 4 indicate the same parts.

第1図(a)はサブマウントを示し、2は電気的絶縁体
からなるサブマウント本体、3は該サブマウント本体2
上に設けられ、その上にチップを接着するためのチップ
接着部、4は上記サブマウント本体2上に設けられ、そ
の上にワイヤを接着するためのワイヤ接着部である。
FIG. 1(a) shows a submount, 2 is a submount body made of an electrical insulator, and 3 is the submount body 2.
A chip bonding section 4 is provided on the submount main body 2 to bond a chip thereon, and a wire bonding section 4 is provided on the submount body 2 to bond a wire thereon.

ここで上記サブマウント本体2の寸法は幅1.2゜奥行
0.4.厚み9.33mmとした。
Here, the dimensions of the submount main body 2 are width 1.2 degrees and depth 0.4 degrees. The thickness was 9.33 mm.

第1図(blは第1図(II)のサブマウントを用いた
レーザチップの組立法を示す図であり、1はレーザチッ
プ、6はステム(又はパッケージ)、11゜12.13
はワイヤ、20は出力光(レーザ光)である。このサブ
マウント本体2はその絶縁体部分を、BeO又はSiC
を主成分とする物質とすることにより、熱伝導性が良好
となり、チップの放熱性を良くすることができる。
FIG. 1 (bl is a diagram showing a method of assembling a laser chip using the submount of FIG. 1 (II), 1 is a laser chip, 6 is a stem (or package), 11° 12.13
is a wire, and 20 is an output light (laser light). This submount main body 2 has an insulator part made of BeO or SiC.
By using a substance containing as a main component, the thermal conductivity becomes good and the heat dissipation of the chip can be improved.

次に動作について説明する。Next, the operation will be explained.

第1図の組立法では電流がワイヤ13から流入し、チッ
プ1.ワイヤ11.ワイヤ12の順に流れる。この組立
法はn型基板を用いたチップのジャンクションダウン(
Junction down )組立、p型基板を用い
たチップのジャンクションアップ(Junction 
up )組立のいずれにも適応できる。
In the assembly method of FIG. 1, current flows from wire 13 into chip 1. Wire 11. The wires 12 flow in this order. This assembly method uses an n-type substrate to junction down the chip (
Junction down assembly, chip junction up using a p-type substrate
UP) Applicable to any assembly.

第2図は上記実施例のサブマウントの他の使用法を示す
図である。図中、第1図と同一符号は同一部分を示す。
FIG. 2 is a diagram showing another method of using the submount of the above embodiment. In the figure, the same symbols as in FIG. 1 indicate the same parts.

第2図の組立法では電流がワイヤ13から流入し、チッ
プ1.ワイヤ12の順に流れる。この組立法も上記第1
図の組立法と同様、n型基板を用いたチップのジャンク
ションアップ(Junction up組立、p型基板
を用いたチップのジャンクションダウンUunctio
n down )組立のいずれにも適応できる。この組
立法ではワイヤ接着部4は必要ではない。
In the assembly method of FIG. 2, current flows from wire 13 into chip 1. The wires 12 flow in this order. This assembly method is also the same as the first one above.
Similar to the assembly method shown in the figure, there is a junction up assembly of a chip using an n-type substrate, and a junction-down assembly of a chip using a p-type substrate.
n down ) can be applied to any assembly. This assembly method does not require the wire bond 4.

なお、第1.第2vj!Jで示した例では、サブマウン
トが直接ステム(又はパッケージ)に接着されていたが
、このサブマウントは導電体を介してステムに接着する
こともできる。
In addition, 1. 2nd vj! In the example shown in J, the submount was directly bonded to the stem (or package), but the submount could also be bonded to the stem via a conductor.

第3図はステム6に相当する導電体として銀ブロックを
用いた場合の他の組立例を示し、図中、第1図と同一符
号は同一部分を示す、5は銀ブロック5からなる導電体
である。ワイヤ13は導電体5に接着されている。
FIG. 3 shows another example of assembly in which a silver block is used as the conductor corresponding to the stem 6. In the figure, the same reference numerals as in FIG. It is. The wire 13 is bonded to the conductor 5.

この構造を採用することにより、以下の実際的な利点が
生ずる。即ち、導電体(銀ブロック)5に組立られたチ
ップ1を最小単位として、チップを種々のパッケージに
組込む(組換える)ことが可能となる0組込みに際して
は、負リード端子からワイヤ12を取外す必要が生ずる
が、ワイヤ1) 2はチップ本体とは分離されている為
、チップに力が加わることがなく、信頼性上問題が生ず
ることはない。
Adopting this structure provides the following practical advantages. That is, when the chip 1 assembled on the conductor (silver block) 5 is used as the minimum unit and the chip can be assembled (recombined) into various packages, it is necessary to remove the wire 12 from the negative lead terminal. However, since the wires 1) and 2 are separated from the chip body, no force is applied to the chip, and no reliability problems occur.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明に係る光半導体素子用サブマウン
トによれば、サブマウント本体を熱伝導性が良好で、電
気的絶縁体から構成し、該サブマウント本体上に導電性
のチップ接着部とワイヤ接着部とを電気的に分離させて
設けたので、n型基板、p型基板を用いたチップに対し
、ジャンクションアップ(Junction up )
 + ジャンクションダウン(Junction do
wn )組立のいずれもが可能となり、あらゆる組立法
が可能となる。さらに熱伝導性のよいサブマウントを用
いているので、チップの放熱性も良好となる効果がある
As described above, according to the submount for optical semiconductor devices according to the present invention, the submount body has good thermal conductivity and is made of an electrical insulator, and the submount body has a conductive chip bonding part on the submount body. Since the wire bonding part is electrically separated from the wire bonding part, junction up is possible for chips using n-type and p-type substrates.
+ Junction do
wn) Any assembly method is possible. Furthermore, since a submount with good thermal conductivity is used, the heat dissipation of the chip is also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す図であり、第1図(
a)はサブマウントを示す図、第1図中)はサブマウン
トを用いた組立法を示す図、第2図は上記実施例を用い
た他の組立法を示す図、第3図はさらに他の組立法を示
す図であり、第4図は従来の組立法を示す図、第4図(
a)は従来のサブマウントを示す図、第4図(b)はこ
のサブマウントを用いた組立法を示す図である。 1はチップ、2はサブマウント本体、3はチッ7”接f
FlIS、  4はワイヤ接着部、6はステム、11゜
12.13はワイヤである。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG.
a) is a diagram showing a submount, FIG. 1) is a diagram showing an assembly method using a submount, FIG. 2 is a diagram showing another assembly method using the above embodiment, and FIG. Figure 4 is a diagram showing a conventional assembly method, Figure 4 (
FIG. 4(a) is a diagram showing a conventional submount, and FIG. 4(b) is a diagram showing an assembly method using this submount. 1 is the chip, 2 is the submount body, 3 is the chip 7” contact f
FlIS, 4 is a wire bonding part, 6 is a stem, and 11°12.13 is a wire.

Claims (3)

【特許請求の範囲】[Claims] (1)熱伝導性が良好で電気的には絶縁体であるサブマ
ウント本体と、該サブマウント本体上に設けられその上
に光半導体素子チップを搭載するための導電性のチップ
接着部と、上記サブマウント本体上に上記チップ接着部
と電気的に分離されて設けられワイヤを接着するための
導電性のワイヤ接着部とを備えたことを特徴とする光半
導体素子用サブマウント。
(1) A submount main body that has good thermal conductivity and is an electrical insulator, and a conductive chip adhesive part provided on the submount main body for mounting an optical semiconductor element chip thereon; A submount for an optical semiconductor element, comprising: a conductive wire bonding part for bonding a wire, which is provided on the submount body to be electrically separated from the chip bonding part.
(2)上記サブマウント本体がBeO(酸化ベリリウム
)を含むものであることを特徴とする特許請求の範囲第
1項記載の光半導体素子用サブマウント。
(2) The submount for an optical semiconductor device according to claim 1, wherein the submount body contains BeO (beryllium oxide).
(3)上記サブマウント本体がSiC(シリコンカーバ
イド)を含むものであることを特徴とする特許請求の範
囲第1項記載の光半導体素子用サブマウント。
(3) The submount for an optical semiconductor device according to claim 1, wherein the submount body contains SiC (silicon carbide).
JP60077990A 1985-04-11 1985-04-11 Submount for optical semiconductor element Pending JPS61234588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60077990A JPS61234588A (en) 1985-04-11 1985-04-11 Submount for optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60077990A JPS61234588A (en) 1985-04-11 1985-04-11 Submount for optical semiconductor element

Publications (1)

Publication Number Publication Date
JPS61234588A true JPS61234588A (en) 1986-10-18

Family

ID=13649266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60077990A Pending JPS61234588A (en) 1985-04-11 1985-04-11 Submount for optical semiconductor element

Country Status (1)

Country Link
JP (1) JPS61234588A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482537A (en) * 1987-09-24 1989-03-28 Mitsubishi Electric Corp Sub-mount for optical semiconductor element
US5214660A (en) * 1990-09-25 1993-05-25 Fujitsu Limited Laser diode module and method for fabricating the same
JP2001345507A (en) * 2000-06-01 2001-12-14 Rohm Co Ltd Semiconductor laser and optical pickup
JPWO2019116981A1 (en) * 2017-12-15 2020-12-17 ローム株式会社 Submount and semiconductor laser equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167038A (en) * 1983-03-14 1984-09-20 Hitachi Ltd Structure of submount for photo semiconductor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167038A (en) * 1983-03-14 1984-09-20 Hitachi Ltd Structure of submount for photo semiconductor element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482537A (en) * 1987-09-24 1989-03-28 Mitsubishi Electric Corp Sub-mount for optical semiconductor element
US5214660A (en) * 1990-09-25 1993-05-25 Fujitsu Limited Laser diode module and method for fabricating the same
JP2001345507A (en) * 2000-06-01 2001-12-14 Rohm Co Ltd Semiconductor laser and optical pickup
JPWO2019116981A1 (en) * 2017-12-15 2020-12-17 ローム株式会社 Submount and semiconductor laser equipment

Similar Documents

Publication Publication Date Title
US7391153B2 (en) Light emitting device provided with a submount assembly for improved thermal dissipation
WO2013128794A1 (en) Semiconductor light-emitting device
KR20010062126A (en) Semiconductor light-emitting device and method of manufacturing the same and mounting plate
KR20060134969A (en) Surface mount light emitting chip package
KR20040027110A (en) Discrete package having insulated ceramic heat sink
JPH08264898A (en) Semiconductor laser device
US5022035A (en) Semiconductor laser device
KR100632006B1 (en) Light emitting diode package
JPS5833885A (en) Laser diode
JPS61234588A (en) Submount for optical semiconductor element
KR890002811B1 (en) Laser diode
JPS63132495A (en) Sub-mount for photo-semiconductor device
JPS63318193A (en) Sub-mount for optical semiconductor
JPH02306681A (en) Semiconductor laser device
JPH01150379A (en) Light emitting device
JPH04275482A (en) Mount for semiconductor device
JPH0459791B2 (en)
JPS63144588A (en) Sub-mount for semiconductor chip laser
JPH06163981A (en) Emiconductor device
JPH02278783A (en) Semiconductor laser
JPH0451073B2 (en)
JPS60110185A (en) Optical integrated circuit package
KR102228938B1 (en) Coupled semiconductor package
KR100335106B1 (en) Ⅲ-Ⅴ group GaN semiconductor optical devices
JPS61184889A (en) Semiconductor light emitting device