JPS6292340A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6292340A
JPS6292340A JP23268285A JP23268285A JPS6292340A JP S6292340 A JPS6292340 A JP S6292340A JP 23268285 A JP23268285 A JP 23268285A JP 23268285 A JP23268285 A JP 23268285A JP S6292340 A JPS6292340 A JP S6292340A
Authority
JP
Japan
Prior art keywords
layer
film
metal
layers
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23268285A
Other languages
Japanese (ja)
Inventor
Takeshi Okazawa
武 岡澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23268285A priority Critical patent/JPS6292340A/en
Publication of JPS6292340A publication Critical patent/JPS6292340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a flat insulating film by forming a wiring layer in three layer structure, in which a polycrystalline silicon layer having a blocking effect to anodizing treatment is interposed between upper and lower metallic layers as an intermediate layer, and anodizing-treating the metallic wiring layer as the upper layer. CONSTITUTION:An insulating film 12, a first metallic layer 13 consisting of aluminum, a polycrystalline silicon layer 14 and a second metallic layer 15 composed of aluminum are formed onto a semiconductor substrate 11. A photo- resist film 16 is shaped onto the layer 15. The layers 15 in regions not coated with the film 16 are converted into aluminum oxide layers through anodizing, using the film 16 as a mask. The aluminum oxide layers 17A, 17B are removed through etching. The films 14, 13 are removed through etching, employing the film 16 as the mask. The film 16 is got rid of, thus acquiring wiring layers 30.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に、全組配線
層を被覆する絶縁膜の表面を平坦化するのに有効な金属
配線層の形成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular, to a method for forming a metal wiring layer that is effective for flattening the surface of an insulating film covering all interconnection layers. Regarding the method.

〔従来の技術〕                  
   :従来、半導体装置の全組配線領域は、第2図(
a)に示すように半導体基板21表面の絶縁膜22上に
金属膜を形成し次いでその所定領域をホトレジスト膜で
へい異方性のドライエツチング法を用いて加工形成後、
ホトレジスト膜を除去し金属配線     1:層23
A及び23Bの表面を絶縁膜27で被覆していた。金属
膜にはシリコンとの電気的接触性、酸化シリコン膜との
接着性、材料としての価格等の匍で他の金属よりも優れ
ているアルミニウムが使用されることが多い。
[Conventional technology]
: Conventionally, the total wiring area of a semiconductor device is shown in Figure 2 (
As shown in a), a metal film is formed on the insulating film 22 on the surface of the semiconductor substrate 21, and then a predetermined area of the metal film is covered with a photoresist film and processed using an anisotropic dry etching method.
Remove photoresist film and form metal wiring 1: Layer 23
The surfaces of A and 23B were covered with an insulating film 27. Aluminum is often used for the metal film because it is superior to other metals in terms of electrical contact with silicon, adhesion with silicon oxide films, and cost as a material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置の製造方法では、異方性エツ
チング法を用いて金属配線層を形成後、化学的気相成長
法(以下CVD法という)やプラズマ励起による蒸着法
でその表面を被覆すると金属配線層の上面端部の角で絶
縁膜が厚く成長し易くなる。この現象はCVD法やプラ
ズマ励起法のような化学反応を主とした膜形成法では、
金属配線層23A、23Bの上面端部の角で反応基の供
給される量が他の場所よりも多いために生ずる。
In the conventional semiconductor device manufacturing method described above, after forming a metal wiring layer using an anisotropic etching method, the surface is coated using a chemical vapor deposition method (hereinafter referred to as CVD method) or a deposition method using plasma excitation. The insulating film tends to grow thickly at the corners of the upper end of the metal wiring layer. This phenomenon occurs in film formation methods that mainly involve chemical reactions, such as the CVD method and plasma excitation method.
This occurs because the amount of reactive groups supplied at the corners of the upper surface ends of the metal wiring layers 23A, 23B is larger than at other locations.

第2図(h)に示すように、金属配線層23Aの−F面
の角28は、底面の角29に対して約3倍程度も膜は形
成され易くなる。このようにして形成された絶縁膜27
でも950°0〜1000℃程度の高温の熱処理を行な
えば膜を平坦にする事も可能であるが、特に、金楓膜と
してアルミニウムを用いた場合は、融点が650″Oと
低温であるため、そのようガ高温熱処理を行なう事は出
来ない。従って、特別な平坦化技術を用いることがなけ
れに、絶縁膜27の表面は非常に凹凸のはげ1〜い形状
になることは避けられない。
As shown in FIG. 2(h), the film is formed about three times more easily at the corners 28 of the -F plane of the metal wiring layer 23A than at the corners 29 of the bottom surface. Insulating film 27 formed in this way
However, it is possible to flatten the film by performing heat treatment at a high temperature of about 950° to 1000°C, but especially when aluminum is used as the gold maple film, the melting point is as low as 650"O. However, such high-temperature heat treatment cannot be performed. Therefore, without using a special planarization technique, it is inevitable that the surface of the insulating film 27 will have a very uneven and bald shape.

従って、絶縁膜27を層間絶縁膜に用いてその上にさら
に第2JWI目の金属配線層を形成する場合、第2層目
の金属配線層が断線する欠点がある。
Therefore, when the insulating film 27 is used as an interlayer insulating film and a second JWI metal wiring layer is further formed thereon, there is a drawback that the second metal wiring layer is disconnected.

また、絶縁膜27を装置のバシペーシ曹ン膜として用い
る場合にF、1、装置を樹脂封止した時、樹脂からの応
力は絶縁膜27の凹凸を介して装置に作用し金塊配線層
23A、23Bの破壊が生じることもある。
Furthermore, when the insulating film 27 is used as a bathymetal carbon film for a device, when the device is sealed with resin, the stress from the resin acts on the device through the unevenness of the insulating film 27, and the gold bullion wiring layer 23A, 23B destruction may also occur.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、半導体基板の一主面
に形成された絶縁膜上に第1の金属層と多結晶シリコン
層及び第2の金属層が順次積層された3層膜を形成する
工程と、前記第2の金属層を梳う所定形状のホトレジス
ト膜を形成する工程と、前記ホトレジスト膜で祷われ−
Cいない前記第2の金属層を陽極酸化処理によりすべて
金属酸化層に変換後、更に所定時間陽極酸化処理を追加
することにより前%iiホトレジスト膜7B下の前記第
2の金属層端部を金属酸化層に変換し前記第2の金属層
の断面をほぼ台形状にする工程と、前記金属酸化層を選
択的にエツチング除去する工程と、前記ホトレジスト膜
をマスクにして前記多結晶シリコン層と第1の金属層を
順次エツチング除去して3層膜よりなる配線層を形成す
る工程を含むことを特徴とする。
The method for manufacturing a semiconductor device of the present invention includes forming a three-layer film in which a first metal layer, a polycrystalline silicon layer, and a second metal layer are sequentially laminated on an insulating film formed on one main surface of a semiconductor substrate. a step of forming a photoresist film of a predetermined shape to cover the second metal layer;
After converting the entire second metal layer that does not contain C into a metal oxide layer by anodizing, the end portion of the second metal layer under the photoresist film 7B is converted into a metal oxide layer by further anodizing for a predetermined period of time. a step of converting the second metal layer into an oxide layer to make the cross section of the second metal layer approximately trapezoidal; a step of selectively etching and removing the metal oxide layer; The method is characterized in that it includes a step of sequentially etching and removing one metal layer to form a wiring layer made of three layers.

〔実施例〕〔Example〕

第1図(a)〜(f)は、本発明の一実施例の工程順縦
断面図である。
FIGS. 1(a) to 1(f) are longitudinal cross-sectional views in the order of steps of an embodiment of the present invention.

まず、第1図(a)に示すように、半導体基[11上に
絶縁膜12を形成し、さらに例えはアルミニウムより成
る第1の金属層13を形成し、さらに引き続き多結晶シ
リコン層14を前記第1の金属層13の上に形成する。
First, as shown in FIG. 1(a), an insulating film 12 is formed on a semiconductor substrate [11], a first metal layer 13 made of aluminum, for example, is formed, and then a polycrystalline silicon layer 14 is formed. It is formed on the first metal layer 13.

続いて、前記多結晶シリコン層140表向にはアルミニ
ウムよね成る第2の金に層15を形成する。
Subsequently, a second gold layer 15 made of aluminum is formed on the surface of the polycrystalline silicon layer 140.

次に、第1図(blに示すように、前記第2の金属層1
5の上の所定領域に7オトレジスト膜16を形成する。
Next, as shown in FIG.
7 photoresist film 16 is formed in a predetermined region on top of 5.

次に、第1図(C)に示すように、前記フォトレジスト
膜16をマスクとして所定の陽極酸化処理を施すことに
より、前記フォトレジスト膜16で覆われていない領域
の前記アルミニウムよりなる第20金縞層15を完全に
酸化アルミニウム層に変換する。
Next, as shown in FIG. 1(C), a predetermined anodic oxidation treatment is performed using the photoresist film 16 as a mask, so that the twenty The gold stripe layer 15 is completely converted into an aluminum oxide layer.

その後、陽極酸化処理をさらに追加することにより、酸
化アルミニウム層17A、17Bを、フォトレジスト膜
16により檀われた領域下の一部まで進入させる。これ
により、フォトレジスト膜】6によって袴われているこ
とにより酸化アルミニウム層に変化することのない第2
の金塊配線層15Aが形成される。前述したように、陽
極酸化処理は酸化アルミニウム層が多結晶シリコン層1
4の表面に到達した稜、さらに追加を行なっているため
、フォトレジスト膜16によってマスクされた領域の前
記第2の金属配線層15Ati側向から等方的に酸化ア
ルミニウム化が進行するため、断面はほぼ台形状となる
Thereafter, by further adding anodizing treatment, the aluminum oxide layers 17A and 17B are allowed to penetrate into a part of the area under the area covered by the photoresist film 16. This creates a second layer that does not change into an aluminum oxide layer because it is covered by the photoresist film [6].
A gold bullion wiring layer 15A is formed. As mentioned above, the anodizing process changes the aluminum oxide layer to the polycrystalline silicon layer 1.
Since the edge that has reached the surface of 4 is further added, aluminum oxide progresses isotropically from the side of the second metal wiring layer 15A in the area masked by the photoresist film 16, so that the cross section is almost trapezoidal.

一方、陽極酸化反応は前記多結晶シリコン膜14により
阻止され、前記第2の金属層にとどめられ、前記第1の
金属層にまで進行することはない。
On the other hand, the anodic oxidation reaction is blocked by the polycrystalline silicon film 14, remains in the second metal layer, and does not proceed to the first metal layer.

次に、第1図(d)に示すように、前記酸化アルミ6一 ニウム層17A、17Bをエチレングリコールとフ、化
水素酸を主成分とする溶液で選択的にエツチング除去す
る。
Next, as shown in FIG. 1(d), the aluminum 6-oxide layers 17A and 17B are selectively etched away using a solution containing ethylene glycol and hydrochloric acid as main components.

続いて、第1図(e)に示すように、前記フォトレジス
ト膜16をマスクとして異方性のエツチング法を用いて
、前記多結晶シリコン膜14、前記第1の金属層】3を
順次エツチング除去する。この工程において、前記第1
の金属配線層13A1前記多結晶シリコン配線層14A
は異方性のエツチング法で形成するため、その寸法は、
フォトレジスト膜16により規定された所定のものに出
来上る。
Subsequently, as shown in FIG. 1(e), the polycrystalline silicon film 14 and the first metal layer 3 are sequentially etched using an anisotropic etching method using the photoresist film 16 as a mask. Remove. In this step, the first
The metal wiring layer 13A1 and the polycrystalline silicon wiring layer 14A
is formed by an anisotropic etching method, so its dimensions are
A predetermined shape defined by the photoresist film 16 is completed.

最後に、フォトレジスト膜16を除去することにより、
第1図げ)に示すような第1の金属配線層13A1多結
晶シリコン配線層14A1第2の金縞配線層15Aの3
層構造からなる配線層30が得られる。
Finally, by removing the photoresist film 16,
First metal wiring layer 13A1 polycrystalline silicon wiring layer 14A1 second gold striped wiring layer 15A as shown in Figure 1
A wiring layer 30 having a layered structure is obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、配線層を上下の金属層間
に中間層として陽極酸化処理に対して阻止効果を有する
多結晶シリコン層を介在させた3層構造とし、さらに、
上層の金属配線層に所定の陽極酸化処理を行ない、形成
された金属酸化膜をエツチング除去して上層の金属配線
層の断面を台形状となし、それによって金属配線層を情
って形成する絶縁膜の表面を平用化できる効果がある。
As explained above, the present invention has a three-layer wiring structure in which a polycrystalline silicon layer is interposed as an intermediate layer between upper and lower metal layers and has a blocking effect against anodic oxidation, and further,
The upper metal wiring layer is subjected to a predetermined anodic oxidation treatment, and the formed metal oxide film is etched away to make the upper metal wiring layer have a trapezoidal cross section. This has the effect of flattening the surface of the membrane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜げ)は本発明の一実施例の工程順縦断面
図、第2図(a)は従来の金属配線領域の断面図、第2
図(b)は従来の金属配線領域の絶縁膜の膜厚を説明す
る断簡図である。 11.21・・・・・・半導体基板、12.22・・・
・・・絶縁膜、13・・・・・・第1の金属層、13A
・・・・・・第10金桝配線層、14・・・・・・多結
晶シリコン層、14A・・・・・・多結晶シリコン配線
層、15・・・・・・第2の金属層、15A・・・・・
・第2の金属配線層、16・・・・・・フォトレジスト
膜、17A、1713・・・・・・金縞酸化膜層、23
A、23B・・・・・・金属配線層、27・・・・・・
絶縁膜、28・・・・・・金属配線層上部の角、29・
・・・・・全組配線層底面の角、30・・・・・・配線
層。 皐2図 第 1 図 ンtノ −1
FIG. 1 (al to ge) is a vertical cross-sectional view of an embodiment of the present invention in the order of steps, FIG. 2 (a) is a cross-sectional view of a conventional metal wiring area, and FIG.
FIG. 2B is a simplified diagram illustrating the thickness of an insulating film in a conventional metal wiring region. 11.21... Semiconductor substrate, 12.22...
...Insulating film, 13...First metal layer, 13A
10th metal interconnection layer, 14A polycrystalline silicon layer, 14A polycrystalline silicon interconnection layer, 15 second metal layer , 15A...
・Second metal wiring layer, 16...Photoresist film, 17A, 1713...Gold striped oxide film layer, 23
A, 23B...metal wiring layer, 27...
Insulating film, 28...Corner of upper part of metal wiring layer, 29.
... Corner of the bottom of all wiring layers, 30 ... Wiring layer. Figure 2 Figure 1 Figure t-1

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の一主面に形成された絶縁膜上に第1の金属
層と多結晶シリコン層及び第2の金属層が順次積層され
た3層膜を形成する工程と、前記第2の金属層を覆う所
定形状のホトレジスト膜を形成する工程と、前記ホトレ
ジスト膜で覆われていない前記第2の金属層を陽極酸化
処理によりすべて金属酸化層に変換後、更に所定時間陽
極酸化処理を追加することにより前記ホトレジスト膜直
下の前記第2の金属層端部を金属酸化層に変換し前記第
2の金属層の断面をほぼ台形状にする工程と、前記金属
酸化層を選択的にエッチング除去する工程と、前記ホト
レジスト膜をマスクにして前記多結晶シリコン層と第1
の金属層を順次エッチング除去して3層膜よりなる配線
層を形成する工程を含むことを特徴とする半導体装置の
製造方法。
forming a three-layer film in which a first metal layer, a polycrystalline silicon layer, and a second metal layer are sequentially laminated on an insulating film formed on one main surface of a semiconductor substrate; forming a photoresist film of a predetermined shape to cover the second metal layer, and after converting all of the second metal layer not covered with the photoresist film into a metal oxide layer by anodizing treatment, further anodizing treatment for a predetermined period of time. a step of converting the end portion of the second metal layer directly under the photoresist film into a metal oxide layer to make the cross section of the second metal layer approximately trapezoidal; and a step of selectively etching away the metal oxide layer. Then, using the photoresist film as a mask, the polycrystalline silicon layer and the first
1. A method of manufacturing a semiconductor device, comprising the step of sequentially etching away metal layers to form a wiring layer made of three layers.
JP23268285A 1985-10-17 1985-10-17 Manufacture of semiconductor device Pending JPS6292340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23268285A JPS6292340A (en) 1985-10-17 1985-10-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23268285A JPS6292340A (en) 1985-10-17 1985-10-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6292340A true JPS6292340A (en) 1987-04-27

Family

ID=16943139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23268285A Pending JPS6292340A (en) 1985-10-17 1985-10-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6292340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130544A (en) * 1987-11-17 1989-05-23 Nec Corp Wiring of semiconductor device
JP2005351384A (en) * 2004-06-10 2005-12-22 Ogino Kogyo Kk Coriolis movement gear device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130544A (en) * 1987-11-17 1989-05-23 Nec Corp Wiring of semiconductor device
JP2005351384A (en) * 2004-06-10 2005-12-22 Ogino Kogyo Kk Coriolis movement gear device

Similar Documents

Publication Publication Date Title
JPS5944824A (en) Lift off method of foring self-aligning contact
JPS5828736B2 (en) How to form a flat thin film
JPH02103939A (en) Manufacture of semiconductor device
KR900001652B1 (en) Semiconductor device and manufacturing method thereof
US3836446A (en) Semiconductor devices manufacture
JPS6292340A (en) Manufacture of semiconductor device
JPS6110257A (en) Method of forming insulator on patterned conductive layer
JP2000232090A5 (en)
JPH0864557A (en) Manufacture of mesa type semiconductor element
JPH0419707B2 (en)
JPH036817A (en) Manufacture of multilayer electrode of semiconductor element
JPH0194623A (en) Manufacture of semiconductor device with multilayer interconnection
JPS6279625A (en) Manufacture of semiconductor device
JPS62296443A (en) Semiconductor device and manufacture thereof
JPS6387742A (en) Manufacture of semiconductor device
JPS6159747A (en) Manufacture of semiconductor device
JPS6278853A (en) Manufacture of semiconductor device
JPH0799745B2 (en) Method for manufacturing semiconductor device
JPS6041242A (en) Semoconductor device and manufacture thereof
JPS5939050A (en) Manufacture of semiconductor device
JPS59105339A (en) Manufacture of semiconductor device
JPH08273962A (en) Method for manufacturing electronic device
JP2002025934A (en) Electrode pattern forming method and semiconductor device
JPS60257182A (en) Manufacture of semiconductor device
JPS6218041A (en) Manufacture of semiconductor device